Mediator Lipidomics: dissecting the role of PUFA-derived metabolites

Anna Nicolaou, PhD FRSC

Professor of Biological Chemistry

Compositional Analysis of Lipids 21 June 2013, Ghent

Mediator Lipidomics: array of >80 lipids

Massey & Nicolaou FRBM 2012

Mediator lipidomics workflow

Solid phase extraction (SPE) clean up

tandem mass spectrometer typical lipidomics platform

Massey & Nicolaou FRBM 2012

LC/ESI-MS/MS (ESI-)

Liquid chromatography: reverse phase

Lipid mediators typically separated by hydrophobic moiety (C18, e.g. Luna ®)

Prostanoids:

isobaric species e.g. PGE and PGD optimal separation: acetonitrile-based gradient elution system

Masoodi & Nicolaou RCM 2006; Masoodi et al RCM 2008

LC/ESI-MS/MS (ESI-)

Liquid chromatography: reverse phase

Lipid mediators typically separated by hydrophobic moiety (C18, e.g. Luna ®)

Hydroxy fatty acids:

poor resolution with acetonitrile strong interaction with C18 column improved elution with methanol

Core shell columns: behave like UPLC columns (pore size 2.5µm) improved peak resolution and better sensitivity Very fast even better separation of isobaric compounds with different RP UPC2 column

1.60

1 40

1 20

1 00

ກ່ອກ

0.60

@2013 W

1.80

200

2.20

2 40

2 60

2 80

• Time

3 00

Chiral separation by LC

Stationary phases:

Amylose: 18(S)-E Resolvins (Oh et al., J Clin Invest. 2011;121) Cellulose:12(S)-HETE in blister fluid (Massey and Nicolaou, FRBM. 2012)

Reverse or normal phase solvents

Cellulose (Lux-1)

more stable stationary phase improved separation of enantiomers

Massey& Nicolaou FRBM 2012

Very fast separation of isobaric compounds with chiral UPC2 column

mediator lipidomics protocol

- Solid phase extraction clean-up step (matrix effects).
- Multiple Reaction Monitoring (MRM) assays.
 for > 80 lipid mediators; LoD/LoQ 1-10 pg.
- LC/ESI-MS/MS (Q³); calibration lines; *d*-internal standards.

Biological material

- Solids: skin, tumours, liver, brain, uterine, ocular, nerve tissues, cells, etc.
- Liquids: plasma, urine, seminal plasma, follicular fluid, blister fluid, cell culture media, etc.
- Samples snap-frozen; extracted/run within days; dark/cold.

lipid mediators in skin inflammation: the sunburn response

inflammation in cutaneous disease

psoriasis

photoageing

sunburn

atopic dermatitis

wound healing

squamous cell skin cancer

UV radiation and human skin

UVR: immunosuppression; photosensitivity; photoageing; photocarcinogenesis

UVR-induced skin inflammation (sunburn)

- Acute inflammatory response
- Erythema, pain, oedema (vasodilatation)
- Leukocytic infiltration
- Sunburn (apoptotic) cells

human skin samples: ethical tissue; 3 mm punch biopsies; ~20 mg; n=8; LC/ESI-MS/MS

human skin samples: ethical tissue; 3 mm punch biopsies; ~20 mg; n=8; LC/ESI-MS/MS

sunburn: experimental model

- healthy adult volunteers, skin type I-IV
- skin exposed to UVR
 (UV6; 280-400 nm; 23% UVB :77% UVA)
- 3-4 minimal erythema doses (MED)

Suction blisters and skin sections (0 -72 h post UVR)

Overlapping sequential eicosanoid profiles may mediate the early and late phases of sunburn response

erythema in skin types I/II and III/IV post single high UVR dose (12 SED)

PGE₂ higher in subjects prone to sunburn

15-HETE higher in subjects prone to sunburn

n=9; *p<0.05, ***p<0.001

higher neutrophil infiltrate in subjects prone to sunburn

phototype I/II 16 14 ■ phototype III/IV mean cell count 12 10 8 6 4 2 0 24 72 0 4 Time (h)

neutrophils in dermis

CD3+ cells in dermis

n=6; * p<0.05; ** p<0.01

Nicolaou et al Photochem Photobiol Sci 2012

lipid biomarkers of skin inflammation in human nutritional studies

n-3PUFA in skin inflammation and immunity: photoimmunosuppression

Randomised double-blind study (n=79 subjects)

control: GTCC

active: 1g capsule~70% EPA&10% DHA; 5 cps/day; 12 weeks

Pre supplementation

Blood sample Erythema assessment Photoimmunosuppression test (Ni)

Post supplementation

Blood sample Erythema assessment Photoimmunosuppression test (Ni)

EPA supplementation did not increase skin DPA or DHA levels

a: p<0.001 comparing to basal; b:p<0.001 comparing to placebo

AA, EPA, OA mediators in cutaneous blister fluid

		Mean (SEM) (pg/µl)						
	Baseline				12 weeks			
	Control (n=19)		EPA (n=17)		Control (n=19)		EPA (n=17)	
	Unexposed	UVR- exposed	Unexposed	UVR- exposed	Unexposed	UVR- exposed	Unexposed	UVR- exposed
PGE ₂	9.5 (1.9)	19.5 (3.1) ^{†††}	11.0 (2.4)	22.2 (3.8)†	10.7 (2.2)	28.1 (5.4)††	6.0 (1.1)*	19.9 (3.4) ^{†††}
PGE ₃	0.5 (0.1)	0.8 (0.2)	0.7 (0.2)	1.6 (0.4)†	0.6 (0.2)	1.2 (0.3)†	0.8 (0.2)	3.1 (1.0)†
PGE₁	2.7 (0.7)	6.2 (1.2)†††	2.6 (0.6)	7.0 (1.2)††	3.5 (1.4)	8.7 (2.0)††	1.6 (0.4)	6.7 (1.4)†††
13,14 dh- 15k-PGE ₂	4.6 (1.1)	1.2 (0.4)†††	8.1 (2.2)	1.5 (0.4)†††	4.8 (1.3)	1.4 (0.4)†††	4.9 (1.4)	1.9 (0.4)
12-HETE	12.7 (1.8)	33.0 (5.7) ^{†††}	11.7 (1.9)	38.1 (5.7)	13.1 (2.9)	51.4 (8.6) ^{†††}	13.4 (3.9)	50.3 (8.2) ^{†††}
11-HETE	1.6 (0.2)	3.7 (0.6)†††	1.6 (0.2)	4.3 (0.5)†††	1.4 (0.2)	4.8 (0.5)†††	1.3 (0.3)	4.3 (0.6)†††
15-HETE	3.4 (0.5)	4.6 (0.6)	3.3 (0.5)	6.0 (0.7)††	3.0 (0.5)	6.3 (1.3)††	4.5 (0.9)	6.1 (0.9)†
15-HETrE	0.9 (0.1)	2.4 (0.5)††	1.3 (0.3)	2.2 (0.5)†	0.9 (0.1)	5.4 (2.4)††	0.9 (0.2)	1.9 (0.3)††
12-HEPE	2.5 (0.4)	3.9 (0.5)†	3.1 (0.4)	5.3 (0.5)	3.0 (0.6)	6.4 (1.9) [†]	5.9 (1.7)	18.2 (3.5) ^{†††**}
11-HEPE	ND	0.4 (0.14)a	1.7 (0.9)b	1.7 (0.6)f	7.4 (4.5)b	0.4 (0.05)c	0.6 (0.3)c	4.1 (2.0)g
15-HEPE	ND	ND	ND	ND	ND	ND	3.4 (0.9)d	5.0 (2.2)e
9-HODE	34.3 (5.6)	46.3 (9.6)	45.9 (10.6)	63.7 (7.7)†	26.1 (4.8)	51.1 (9.0)†	32.6 (11.0)	56.1 (9.3)††
13-HODE	36.6 (7.0)	32.6 (5.2)	32.3 (4.4)	55.5 (8.4)†	30.5 (5.9)	33.2 (4.7)	26.3 (5.2)	38.5 (5.9)

systemic EPA alters skin eicosanoids

RCT: n=16-19 volunteers per group; skin type I/II; n-3 LC-PUFA (EPA: 70%; DHA: 10%) 5 cps/d, 3 months

oral n-3 PUFA supplement protects against UVR-induced immunosuppression

Protection at 3.8 J/cm² – 15 min summer midday sun at Manchester

SSR: Solar simulator; nickel allergy; n=33-36 per group; p=0.04

Pilkington et al AMCN in press

n-3PUFA in wound healing

Randomised double blind study (n=18 subjects)

- placebo (mineral oil) or
- active (1.6 g EPA+1.2 g DHA/day, 81 mg aspirin) 28 days

	1 Day 28
Day 0	Blood samples
Admission;	Blistering (forearm)
Blood samples	g(
Food frequency questionnaire	Blister fluid sampling:

12 h post blistering 24 h post blistering

Monitoring of wound healing: 1-15 days post blistering

n-3PUFA supplement and COX-mediators

n-3PUFA supplement and LOX-mediators

N-3 PUFA reduced wound area (improved healing)

McDaniel et al Wound Repair Regeneration 2011

Green Tea Catechins (GTC) and UVRinduced cutaneous inflammation

Healthy human volunteers:	n=14, 27-56 yrs; all female; phototype I/II (tend to burn not tan)		
Supplement:	GTC 550 mg/day + 50mg/day vit.C		
Study period:	12 weeks		
Green tea supplement Admission MED assessed Irradiation 3xMED (pre.supp.) no UVR & 24h post 0	12 Weeks MED assessed Irradiation 3xMED (pre.supp.) no UVR & 24h post UVR		
- skin punch biopsies - skin blister fluid	- skin purion biopsies		

urine samples: compliance

Rhodes et al BJN 2013

Effect of low dose GTC on cutaneous eicosanoids

* p<0.05** p<0.001

Rhodes et al BJN 2013

A Consideration of Biomarkers to be used for Evaluation of Inflammation in Human Nutritional Studies

P.C. Calder¹, N. Ahluwalia², R. Albers^{3,4}, N. Bosco⁵, R. Bourdet-Sicard⁶, D. Haller⁷, S.T. Holgate¹, L.S. Jönsson⁸, M.E. Latulippe⁸, A. Marcos⁹, J. Moreines¹⁰, C. M'Rini¹¹, M. Müller¹², G. Pawelec¹³, R.J.J. van Neerven¹⁴, B. Watzl¹⁵ and J. Zhao¹⁶

Table 2. Lipid mediators associated with inflammation'

Prostanoids				
	PGD ₂	Arachidonic acid via COX	DP1, DP2	
	PGE	Arachidonic acid via COX	EP1, EP2, EP3, EP4	
	PGFza	Arachidonic acid via COX	FP	
	PGb	Arachidonic acid via COX	IP	
	TXA.	Arachidonic acid via COX	TP	
	PGE	Dihomo-y-linolenic acid via COX	EP1, EP2, EP3, EP4	
	PGD ₁	EPA via COX	DP1, DP2	
	PGE ₃	EPA via COX	EP1, EP2, EP3, EP4	
eukotrienes	5-HETE	Arachidonic acid via 5-LOX	BLT2	
	5-HPETE	Arachidonic acid via 5-LOX	OXE	
	LTB.	Arachidonic acid via 5-LOX	BLT1, BLT2	
	LTC, D., E. (termed cvs-LT)	Arachidonic acid via 5-LOX	CvsLT1, CvsLT2	
	15-HETE	Arachidonic acid via 15-LOX	BLT2	
	15-HPETE	Arachidonic acid via 15-LOX	BLT2	
	12-HETE	Arachidonic acid via 12-LOX	BLT2	
	LTB.	EPA via 5-LOX	BLT1, BLT2	
Lipaxins	LXA4	Arachidonic acid via 15-LOX and 5-LOX or 5-LOX and 12-LOX (transcellular)	FPR2/ALX	
Endocannabinoids	2-Arachidonoyiglycerol	1,2-Diacylglycerol with anachidonic acid at the sn-2 position	CB1, CB2	
	Anandamide	N-arachidonoytphosphalidylethanolamide via phos- pholipase D; in turn, N-arachidonoylphosphalidy- lethanolamide is formed from phosphalidylcholine with arachidonic acid at the sn-1 position and phosphalidylethanolamine	CB1, CB2	
Resolvins, protectins and maresins	RVE1	EPA via acetylated COX-2 and 5-LOX (transcellular)	RvE1 (ChemR23), BLT1	
	RvD1	DHA via acetylated COX-2 and 5-LOX or via 15-LOX and 5-LOX (transcellular)	RVD1 (GPR32), ALX/FPR2	
	PD1 (NPD1)	DHA via 15-LOX and LOX (transcellular)	Not yet known	
	MaR1	DHA via 15-LOX and 12-LOX (transcellular)	Not yet known	
ysdipids	PAF	Phosphalidylcholine with diethyl ether link at the sn-1 position	PAF-R	
	Lyso-PA	Phosphatidic acid, which in turn is synthesised from phosphatidylcholine	LPA1, LPA2, LPA3, LPA4, LPA5, LPA6	
	Sphingosine-1-phosphate	Sphingosine, which in turn is synthesised from ceramide	S1P1, S1P2, S1P3, S1P4, S1P	

Vol. 109 Supplement No. S1 January 2013

British Journal of Nutrition

Mediator Lipidomics

- LC/ESI-MS/MS mediator lipidomics: versatile, sensitive approach.
- Role of lipid mediators in health and disease.
- Discovery of novel mediators and biomarkers; development of therapeutics.
- Contribution to systems biology.

Acknowledgements

Bradford University

Karen Massey Alex Kendall Sharon Murphy Mojgan Masoodi Karl Gledhill Andrew Healey Naser Al-Aasswad Paula Urquhart Des Tobin Tony Thody Lesley Rhodes (Manchester, UK) Suzy Pilkington Sue Bennett Gemma Darby Mags Brownrigg Gary Williamson (Leeds, UK) Tristan Dew Kayleigh Clarke Jodi McDanie (Ohio, USA)

Robert Tonge (Waters, UK)

