

NOVEL COMPREHENSIVE CHROMATOGRAPHIC TECHNIQUES FOR DETAILED EDIBLE OIL AND FAT ANALYSIS MINOR AND MAJOR COMPOUNDS

Hans-Gerd Janssen Unilever Foods R&D Vlaardingen, Vlaardingen, the Netherlands University of Amsterdam, Amsterdam, the Netherlands

PEOPLE KNOW US BY OUR BRANDS

Unilever Knorr Bece Almond Delight Almond Oil, Peach and Cream mighty isontialo UP THERAP NEW Rexona Dove Vaseline Lipton NED BY PROFE addictive Women shine PETROLEUM لمان جذاب ر لامع ومتألق beauty t Cericho Estate Te POCKET SIZE BRING OUT THE BEST ORIGINA ene MAYONNAISE 32 FL.OZ 11011 950

業業

Edible fats and oils (minor constituents)

'Natural' ingredients

Sterolesters Glycolipids Sterolglucosides Alcohols Natural antioxidants / vitamins Carotenoids Minerals / metals '<u>Contaminants'</u> Pesticides PAHs Dioxines

Solvents

.

Stabilisers (BHT, EDTA..)

Steradienes Alkanes Oxidized lipids Polymerised TAGs

.

.

Monochloropropanediol esters (MCPD-esters) Dialkylketones Glycidyl fatty acid esters

Oils and fats: Structures and reactions

5. Column connection, 6. modulator

GC×GC hardware

Modulator

Advantages of GC×GC

Improved chromatographic resolution

Increased peak capacity

Enhanced signal-to-noise ratios

More effective automated qualitative and quantitative data processing

More information per sample

Minimizes dynamic range problems

LC×GC×GC -ToF MS set-up: Syringe interface

<u>Conditions</u>: AgLC: Ag loaded Silica, 4.6 mm, 10 cm, 3 μm, From Hx/Tol/EtAC (48.5/50.75/0.75) to Hx/Tol/EtAC (5/72.5/22.5) at 2 ml/min. GC: CP-Sil 5 CB, Ultimetal, 10 m, 530 μm, 0.1 μm, 12 ml/min (H₂), 94°C (2 min), 20°C/min, 385°C.

Silver phase AgLC×Carbon Number GC: Competitor product research (TAGs)

From Hx/Tol/EtAC (48.5/50.75/0.75) to Hx/Tol/EtAC (5/72.5/22.5) at 2 ml/min.

GC:(TMSH methylation), CP-wax, 10 m, 100 μm, 0.15 μm, Split, 1 μl, 75°C (2 min), 20°C/min, 265°

Detailed sterolester composition

	Fatty acids :	C16:0	C18:0	C18:1	C18:2
		6.20%	3.80%	29.60%	60.30%
		CN 16	CN 18	CN 18	CN 18
Sterols		No of DB: 0	No of DB: 0	No of DB: 1	No of DB: 2
Campestanol	0.7%	0.04%	0.03%	0.21%	0.42%
	CN 28	44	46	46	46
	No of DB: 0	0	0	1	2
Stigmasterol	0.8%	0.05%	0.03%	0.24%	0.48%
	CN 29	45	47	47	47
	No of DB: 2	2	2	3	4
D5-avenasterol	1.1%	0.07%	0.04%	0.33%	0.66%
	CN 29	45	47	47	47
	No of DB: 2	2	2	3	4
Brassicasterol	2.8%	0.17%	0.11%	0.83%	1.69%
	CN 29	45	47	47	47
	No of DB: 2	2	2	3	4
Sitostanol	6.4%	0.40%	0.24%	1.89%	3.86%
	CN 29	45	47	47	47
	No of DB: 0	0	0	1	2
Campesterol	15.9%	0.99%	0.60%	4.71%	9.59%
	CN 28	44	46	46	46
	No of DB: 1	1	1	2	3
Sitosterol	72.2%	4.48%	2.74%	21.37%	43.54%
	CN 29	45	47	47	47
	No of DB: 1	1	1	2	3

Unilever

LC×GC composition map of Olive oil

NPLC as sample preparation for GC (off-line or on-line)

Aim: isolate specific compound classes for futher separation and quantification by GC-MS

Target compound groups:

- Sterol
- Sterolesters
- Waxesters
- Partial glycerides
- Glycidyl fatty acid esters

Experimental conditions: Glycidylesters by GC

Standards
GE-C12:0, GE-C14:0, GE-C16:0-d31, GE-
C16:0, GE-C18:0, GE-C18:1, GE-C18:2,
GE-C18:3.

Columns

On-column: 15 m x 0.25 mm x 0.10 μ m DB-5ms (pre-column 1 m x 0.53 mm apolar deactivated). Splitless: 5 m x 0.10 mm x 0.2 μ m Carbowax or 15 meter x 0.25 mm x 0.50 μ m Carbowax.

Equipment

Agilent 7890A GC with cold-on-column and split/splitless injector. Agilent 5975C inert XL mass selective detector.

<u>Operating conditions</u> Helium at 150 kPa (splitless injection) or 2 ml/min (on-column) Injection volume 1 µL. Temperature from 60 °C (on-column) or 110 °C (splitless) to 260 °C at 10 °C/min.

MS SIM ions Target ion		Qualifier 1	Qualifier 2
GE-C16:0-d31	119.1	133.0	Х
GE-C12:0	116.0	129.0	183.1
GE-C14:0	116.0	129.0	185.1
GE-C16:0	116.0	129.0	Х
GE-C18:0	129.0	116.0	185.1
GE-C18:1	129.0	116.0	185.0
GE-C18:2	67.1	79.1	95.0
GE-C18:3	79.1	67.1	95.0

Method development GC analysis II: GC-MS of intact glycidyl esters

Understanding the degradation behaviour of glycidyl esters. Deliberately select conditions where degradation occurs (i.e. on-column injection on a 1 m x 0.53 mm apolar retention gap, press-fit connector, 15 m x 0.25 mm x 0.10 µm DB-5ms analytical column).

Double peaks are seen. MS spectra show identical mass fragments, albeit at different relative abundances. Structures and degradation routes are yet unknown.

Method development sample preparation II: NPLC method

Normal phase TLC, SPE and LC are widely used for isolating specific compound-classes from edible oils and fats.

Glycidyl ester are slightly less polar than triacylglycerides.

Unilever

The NPLC step provides efficient isolation of the glycidyl-esters, but unfortunately only at low injected amounts. Enrichment prior to NPLC isolation is needed.

GC-MS analysis: the final method (submitted)

- 1. 100 mg of oil (containing GE-C16:0-d 31) is dispersed in 4 mL of acetonitrile
- 2. The oil is slightly warmed and vigorously mixed for 20 second.
- 3. The acetonitrile phase is washed with 2 mL of heptane.
- 4. Coextracted glycidyl-esters are recovered from the heptane by acetonitrile extraction.
- 5. The solvent is evaporated under nitrogen at 35 °C.
- 6. The residue is redissolved in 1 mL hexane/isopropanol (85/15 v/v).
- 7. 100 µl of the extract are separated by gradient HPLC.
- 8. The glycidyl ester fraction is collected and evaporated (under nitrogen, at 35 °C).
- 9. The residue is redissolved in 40 µl chloroform.
- 10.1 μL of the final sample is injected in GC-MS using splitless injection. MS detection is by SIM.

LC-GC-MS method for glycidyl ester analysis Validation results – Detection limits

The LOD and LOQ were estimated from a concentration level that gives a peak with a signal-to-noise ratio of 4:

LOD \approx 0.01 mg/kg per individual glycidyl ester. LOQ \approx 0.05 mg/kg per individual glycidyl ester (\approx 0.01 mg/kg as free glycidol).

Detection limits are highest (poorest) for GE-C18:3 as a result of the extensive MS fragmentation. The lower MW ions suffer more from interferences.

GC-MS method: Validation results – Trueness

The trueness of the method was assessed by re-analyzing the samples from the collaborative AOCS ringtrial at different time points (Aug. 2012 - April 2013)

Conclusions Glycidyl esters by GC-MS

• GC-MS can be reliably used to quantify intact glycidyl esters in edible oils.

Unilever

- NPLC isolation after ACN extraction gives very clean fractions.
- The final method is rather similar to other methods used in edible oil analysis (e.g. sterol analysis, waxesters, partial acylglycerides etc.)
- Detection limits are better than 0.05 mg/kg glycidol.
- Quantitative data from our new method agree very well with data from the AOCS ringtrial.
- The method proofed to be robust: so far over 450 samples were
- analysed

without problems.

Overall Conclusions

Oils and fats are too complex for a one-dimensional separation !

Comprehensive GCxGC and LCxGC are powerful methods !

NPLC is the ideal sample prep method for GC–MS analysis of specific compound classes !