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A Ligand in its Binding Site
Shape Complementarity




Hydrogen Bonds
Specific and Directed

Protein



Hydrophobic Interactions
“Surface Contacts”




More Interactions!
A Continuum or Discrete Types?
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“Interactions” are only Part of a Complex Reality




Learning about Interactions
From Theoretical to Experimental

Method Benefit Caveat

Quantum chemistry Exact energies & Gas phase only
orientations

Complex

interpretation
Empirical force fields, | Fast estimates Contributions to
scoring functions energy sum easily

over-interpreted
Statistical X-ray Net energetic Choice of reference
analysis estimates & good | states

geometries Sampling bias

No total energy




Orthogonal Multipolar Interactions?
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Fluorine and Carbonyl Groups in the CSD
C vs. O Interactions

Angle C-X:--O
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P38 MAP Kinase Inhibitors
Role of F Substituents in Back Pocket
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Chlorine vs. Fluorine

Halogen Bond more Frequent than Orthogonal Multipolar
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Strong Halogen Bonding Effect in Cathepsin L
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Binding Modes Adapt to Halogen Bonding
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Flexible Pyrrolidine Ring Allows for Adjustment




Changing the Halogen Bonding Angle
Interaction with Cl-substituted 5-membered Rings
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Conclusions: Halogen Bonding

Rigorous geometric requirements:
- d (halogen--oxygen) < sum of van der Waals radii
- angle C-X--O = 140°-180° (optimal): steep angle dependency
- angle X--0=C can vary between 90° and 180°

| > Br > Cl

* No halogen bonding for aryl fluorides

« Establishing a halogen bond might enhance protein-ligand interactions by
as much as a factor of 74 (X = H vs. X = |) which translates into a gain in

free enthalpy of -AAG = 2.6 kcal/mol



SAR in S1 Pocket of Factor Xa
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Polarity of Amide Groups

N-methylacetamide as model system

dipole moment: 3.8 Debye

electrostatic potential

M. Harder et al., ChemMedChem 2013, in press



Rotational Scan of Pyridine...N-methylacetamide

AE / kcal mol-1

Interaction energy vs. dipole moment angle
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Dipole-dipole Interaction

AE / kcal mol-1

parallel dipoles, on top of each other:
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PDB Database Analysis Confirms Antiparallel
Preference
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Correlation between Interaction Energy and Dipole
Moment

0.0 4 median angle of dipole vectors: o. = 161°

Interaction energy [kcal/mol]

Dipole moment [Debye]



Trends in Interaction Energies

&S S

AE (dimer) in kcal/mol -3.67 -4.34 -5.31

Dipole moment in Debye 0.00 2.47 4.38

Stacking interaction is improved with increasing dipole moment of the heterocycle



Trends in Interaction Energies
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AE (dimer) in kcal/mol -2.50 -3.67 -4.91

Dipole moment in Debye 0.00 0.00 0.00

Stacking interaction is improved with decreasing m-electron density



Conclusions: Amide-nt Stacking

« Stacking energies of heteroarenes on amide © systems can be improved by:

— proper orientation of the dipole moment vectors in an anti-parallel
fashion

- increasing the dipole moment of the heterocycle

- decreasing its mt-electron density.
« Ideal distances between both planes: 3.4-3.8A

e (@uidelines can be extended to other it systems, e.g. H-bonding arrays




SAR in S1 Pocket of Factor Xa
*5{2%’ K =146 nM ‘;KBN_/TE’ Ki=1620 nM



There is Never Only One Explanation
Exit Vector Differences in Oxazoles
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It’s Never Only About Interactions
Dipole Moments and Physicochemical Parameters

log D 5.9 log D 4.0
solubility, 7 uM solubility, 26 uM
(3.1D)
236 @ ®-126 266 @ @®-266
(1.8 [))”—\
& &
-211 -46
® V. values

J. Bostrom et al., JMC 2012, 55, 1817-1830.



Non-Additivity
Aminopyrimidine DPPIV Inhibitors

OO0 LT

42 uM 2.5 uM 1.4 uM 0.01 uM
17-fold 30-fold 4200-fold

expected for combination: 500-fold

J.-U. Peters et al., BMICL 2004, 14, 1491



Directed Pairwise Interactions
... or Interaction Networks




Protein-Ligand Complex
Modeled as a Small World Network
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Addition of an extra node and just a few extra edges can reduce
shortest path lengths between many pairs of nodes

Use network approach to capture cooperativity in protein-ligand
complexes?



“Static” Cooperativity, e.g. Hydrogen Bond Networks

water clusters

stacking of beta sheets



“Dynamic” Cooperativity
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Distinct Network Elements Involving
Ligand and Protein Atoms

ligand-protein-ligand ligand-protein-ligand ligand-protein-protein

“cycles” “loops” (subsets of larger loops)

1nnc B. Kuhn et al., J. Chem. Inf. Model. 2011, 51, 3180.



Aurora A Kinase Inhibitors

3d15



Aurora A Kinase Inhibitors




Aurora A Kinase Inhibitors

networked H-bonds with high
score incl. network contribution

?/N\([)]/NO/CFg

<N 1C50: >20'000 nM
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How Valid is the Network Concept?

Forces to consider the complexity of molecular interactions
Visualization is Key

A template against which to judge reality

Scoring function derived to get a feeling for relative magnitude of parameters
Need far more examples (positive and negative) for robust selection of terms
Alternatively, use as an expert system (highlight what's been observed before)
A good network may just mean there is a good fit - true even for fragments

Current model still treats cooperativity as a very local phenomenon



Beta-Lactamase Inhibitors

~4 mM

392z Y. Chen, B. Shoichet, Nature Chem. Biol. 2009, 5, 358



Syn-Pentane Interactions
Strongly Avoided
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VINTANO1 - Discodermolide



Enalapril SAR

Conformational Locking Avoiding Syn-Pentane Interactions
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Enalapril / ACE Cocrystal Structure
No Direct Interaction formed by Methyl Group

Tuze Enalaprilate - human testicular ACET



Using the Tools




Best Practices

= Molecular Design is interactive work, it needs to be practiced like an instrument.
= Besides optimizing attractive interactions, monitor repulsive ones.

= Target rigid portions first.

= Conformations and interactions cannot be separated.

= Carefully assess experimental structures:
— Electron densities
- Invest into solving apo structures
— Carefully analyze water networks

— Assess key properties of pockets: rigid / induced two-state / induced with multiple
conformations

- Use overlays to solidify assessments (water / flexibility)

= Deconvolute larger ligands: Make compounds that lead to understanding which
pockets, which moieties are giving what binding affinity

= Consciously push the boundaries of your models.
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