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Thinking about Molecular Interactions 
in Drug Discovery



A Ligand in its Binding Site 
Shape Complementarity



Hydrogen Bonds
Specific and Directed
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More Interactions!
A Continuum or Discrete Types?

Hydrogen Bonds Hydrophobic Contacts

Halogen bonds

Cation – π Interactions

Dipolar interactions

Weak hydrogen bonds

Halogen – Aromatic contacts

Aromatic contacts

Sulfur-oxygen contacts

π hydrogen bonds
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“Interactions” are only Part of a Complex Reality
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Learning about Interactions
From Theoretical to Experimental

Method Benefit Caveat

Quantum chemistry Exact energies & 
orientations

Gas phase only

Complex
interpretation

Empirical force fields,
scoring functions

Fast estimates Contributions to 
energy sum easily 
over-interpreted

Statistical X-ray 
analysis

Net energetic 
estimates & good 
geometries

Choice of reference
states
Sampling bias
No total energy

Experimental model 
Systems

Good upper and 
lower bounds for 
an interaction

Tedious, many expt. 
parameters, 
Context dependent
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Orthogonal Multipolar Interactions?
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Paulini, R.; Müller, K.; Diederich, F. Angew. Chem. Int. Ed. 2005, 44, 1788-1805.
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Fluorine and Carbonyl Groups in the CSD
C vs. O Interactions

carbon interaction: slightly preferred 
when accounting for available space

oxygen interaction



P38 MAP Kinase Inhibitors
Role of F Substituents in Back Pocket
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Halogen Bond more Frequent than Orthogonal Multipolar 
Interaction
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Strong Halogen Bonding Effect in Cathepsin L

Hardegger et al, Angew. Chem. Int. Ed. 2011, 50, 314
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Binding Modes Adapt to Halogen Bonding
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Flexible Pyrrolidine Ring Allows for Adjustment
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Interaction with Cl-substituted 5-membered Rings
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Conclusions: Halogen Bonding

• Rigorous geometric requirements:

- d (halogen···oxygen) ≤ sum of van der Waals radii

- angle C–X···O ≈ 140°-180° (optimal): steep angle dependency

- angle X···O=C can vary between 90° and 180°

• I > Br > Cl

• No halogen bonding for aryl fluorides

• Establishing a halogen bond might enhance protein–ligand interactions by 

as much as a factor of 74 (X = H vs. X = I) which translates into a gain in 

free enthalpy of -ΔΔG = 2.6 kcal/mol



SAR in S1 Pocket of Factor Xa 

Salonen et al, Chem. Eur. J. 2012, 18, 213
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Polarity of Amide Groups

electrostatic potentialdipole moment: 3.8 Debye

N-methylacetamide as model system

M. Harder et al., ChemMedChem 2013, in press



Rotational Scan of Pyridine…N-methylacetamide

preference for close to anti-parallel alignment

Interaction energy vs. dipole moment angle
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Dipole-dipole Interaction
∆
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parallel dipoles, on top of each other:
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PDB Database Analysis Confirms Antiparallel 
Preference

2ec9 (factor 7a)

angle between planes: 0-30°



Correlation between Interaction Energy and Dipole 
Moment
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Trends in Interaction Energies
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Stacking interaction is improved with increasing dipole moment of the heterocycle 



Trends in Interaction Energies
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Conclusions: Amide-π Stacking

• Stacking energies of heteroarenes on amide π systems can be improved by:

– proper orientation of the dipole moment vectors in an anti-parallel 
fashion

– increasing the dipole moment of the heterocycle

– decreasing its π-electron density.

• Ideal distances between both planes: 3.4-3.8Å

• Guidelines can be extended to other π systems, e.g. H-bonding arrays 



SAR in S1 Pocket of Factor Xa 
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There is Never Only One Explanation
Exit Vector Differences in Oxazoles

O
N

N
O



It’s Never Only About Interactions
Dipole Moments and Physicochemical Parameters

J. Boström et al., JMC 2012, 55, 1817-1830.

Vmin values

log D 5.9

solubility, 7 μM

log D 4.0

solubility, 26 μM



17-fold 30-fold 4200-fold

expected for combination: 500-fold
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42 μM 2.5 μM 1.4 μM 0.01 μM

J.-U. Peters et al., BMCL 2004, 14, 1491

Non-Additivity
Aminopyrimidine DPPIV Inhibitors



Directed Pairwise Interactions 
… or Interaction Networks



Protein-Ligand Complex
Modeled as a Small World Network

Addition of an extra node and just a few extra edges can reduce 
shortest path lengths between many pairs of nodes

Use network approach to capture cooperativity in protein-ligand 
complexes?



“Static” Cooperativity, e.g. Hydrogen Bond Networks

ureas in apolar solvents & crystal lattice water clusters

stacking of beta sheets



L. Muley et al. J. Med. Chem. 2010, 53, 2126-2135.
B. Baum et al. J. Mol. Biol. 2010, 397, 1042-1054.

“Dynamic” Cooperativity



Distinct Network Elements Involving                
Ligand and Protein Atoms

1nnc

ligand-protein-protein

(subsets of larger loops)

ligand-protein-ligand

“cycles” 

ligand-protein-ligand

“loops” 

B. Kuhn et al., J. Chem. Inf. Model. 2011, 51, 3180.



Aurora A Kinase Inhibitors

3d15



Aurora A Kinase Inhibitors
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How Valid is the Network Concept? 

• Forces to consider the complexity of molecular interactions

• Visualization is Key

• A template against which to judge reality

• Scoring function derived to get a feeling for relative magnitude of parameters 

• Need far more examples (positive and negative) for robust selection of terms

• Alternatively, use as an expert system (highlight what’s been observed before)

• A good network may just mean there is a good fit – true even for fragments

• Current model still treats cooperativity as a very local phenomenon



Beta-Lactamase Inhibitors
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Y. Chen, B. Shoichet, Nature Chem. Biol. 2009, 5, 358
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R. W. Hoffmann et al., Chemistry 1998, 4, 559-65.

Syn-Pentane Interactions
Strongly Avoided



VINTAN01 – Discodermolide



Enalapril SAR
Conformational Locking Avoiding Syn-Pentane Interactions
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Enalapril / ACE Cocrystal Structure
No Direct Interaction formed by Methyl Group 

1uze Enalaprilate – human testicular ACE1



Using the Tools



Best Practices

• Molecular Design is interactive work, it needs to be practiced like an instrument.
• Besides optimizing attractive interactions, monitor repulsive ones.
• Target rigid portions first.
• Conformations and interactions cannot be separated.

• Carefully assess experimental structures:
– Electron densities
– Invest into solving apo structures
– Carefully analyze water networks
– Assess key properties of pockets: rigid / induced two-state / induced with multiple 

conformations
– Use overlays to solidify assessments (water / flexibility)

• Deconvolute larger ligands: Make compounds that lead to understanding which 
pockets, which moieties are giving what binding affinity

• Consciously push the boundaries of your models.
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