Multikilogram enantioselective synthesis of a HCV polymerase inhibitor

Mr Andrew Gibb
Global Process Chemistry
Merck Sharp and Dohme.
Hertfordshire, UK

SCI Young Chemist in Industry 8 May 2013

Hepatitis C Virus is a chronic viral infection that can cause liver disease

- RNA virus
- Primarily infects liver cells
- Multiple genotypes
- Primarily blood borne transmission
- RNA-dependent RNA polymerase
 - Frequent mutation and no "proofreading"
 - Selection of HCV variants

Hepatitis C: A global health problem

170 million people are chronically infected with HCV

Current HCV Treatment

- Pegylated interferon alpha (PEG-IFN) plus ribavirin (RBV) for 24-48 weeks
 - Weekly subcutaneous injections of PEG-IFN
 - Twice daily oral ribavirin
- Goal is eradication of virus
 - Sustained Viral Response (SVR): undetectable HCV RNA in plasma
 6 months after completion of therapy
- Significant adverse experiences associated with both ribaviran and PEG-IFN

2011: A new dawn rises for HCV patients

- Victrelis[™] (Merck) and Incivek[™] (Vertex) received FDA approvals in 2011.
- 1st generation NS3/4A inhibitors used with existing standard of care to substantially improve treatment rates for hepatitis C.
- The frequent mutation and genetic heterogeneity of HCV requires that new therapies continue to be developed.
- Long term goal is shift to all oral direct acting antiviral therapy.

HCV NS5B polymerase candidate

- Single enantiomer
- Unusual 8-membered dihydroindolobenzoxazocine ring
- 2,3-Disubstituted pyrrole
- Zwitterionic

• Narjes, F. and co-workers *J. Med. Chem.* **2011**, *54*, 289

Medicinal chemistry approaches

- 1,3-Dielectrophile construction of 8-membered ring.
 - Thermal instability of aziridine route *via* **5** unworkable and multiple steps with no crystalline intermediates to prepare.
 - Epoxide route *via* **6** attractive for further exploration.

Racemic synthesis of desired target

- Used to access multi-gram amounts.
- Preparative separation not viable for further kilogram scale-up.

Strategy for first kilogram scale delivery

- Employ commercially available chiral pool starting material (S)-6.
- Replace high temperature azide displacement with alternative protocol.
- Develop expedited elaboration of triethylethylenediamine sidechain from primary amine 2.

Substituted indole core synthesis

- Readily scaled and straightforward chemistry.
- 2-Hydroxyphenylboronic acid expensive and not widely available.

8-Membered benzoxazocine ring construction

- Heavily optimised to minimise dimeric and dialkylated impurities.
- First step:
 - Slow, reverse addition of preformed phenoxide into epoxide at 65 °C.
 - Addition of EtOAc prior to water addition gave smooth direct crystallisation of 10.
 - MTBE swish of product to remove unreacted glycidol tosylate. Typical 10A% of 3 formed under reaction conditions.

Second step:

- Slow reverse addition of **10** into cesium carbonate at 65 °C to promote intravs intermolecular cyclisation.
- Direct crystallisation by water addition following addition of IPAc as co-solvent.
- One-pot 2-step telescoped through process suffered from low yields.
- (S)-Epichlorohydrin cheaper but led to racemic 3.

Transformation of alcohol to primary amine: medchem

- High temperature displacement : safety concerns.
- β -elimination also a competitive side reaction.
- What about Mitsunobu based protocol using diphenylphosphoryl azide?

Mitsunobu inversion with diphenylphosphoryl azide (DPPA)

DIAD: Diisopropylazodicarboxylate

- Dramatic reactivity enhancement : inversion takes place at 15 °C vs 110 °C!
- Telescoped Staudinger azide reduction through addition of further Ph₃P then water to avoid any handling of intermediate azide.
- Simple direct crystallisation of HCl salt from IPA/MeOH sheds all of the 2 mol Ph₃PO byproduct. No distillation required at any point.
- Other *N*-nucleophiles evaluated did not afford desired inversion products.

Hydrazoic acid headspace measurements

Hydrazoic acid headspace measurements

• Process run in the presence of 1.2 equiv. of *i*-Pr₂NEt to avoid HN₃ in the headspace as well as with nitrogen sweep.

RC-1 Calorimetry measurements

BATCH OPERATION	HEAT OF REACTION (kJ mol ⁻¹ of alcohol 3)	ADIABATIC △T (°C)	COMMENTS
Addition of DIAD	-173.1	23.3	Addition rate controlled. Accumulation <5% (addition over 20 minutes at 10 °C)
Addition of DPPA	-149.3	18.5	70% accumulation (addition over 6 minutes at 15 °C)
Addition of THF solution of Ph ₃ P	-277.7	30.5	~50% accumulation (addition over 12 minutes at 25 °C)
Addition of water	-11.8	1.3	-

Trimethylethylene diamine sidechain installation: medchem

• 6 steps, linear with Boc glycine aldehyde not readily available

Trimethylethylene diamine sidechain installation

- Crystallisation of **18** from acetonitrile leads to ee upgrade to 98% through rejection of racemic mother liquors.
- Hydrazinolysis developed to address issues of genotoxicity and headspace liberation during batch concentration.

One-pot Mitsunobu/Staudinger/Aza-Wittig

• One-pot telescoped through process demonstrated to be viable but not developed due to time constraints.

Reductive trimethylation and final isolation

- High pressure required for triple methylation (90 psi H₂). Direct isolation by pH adjustment to crystallise **20**.
- >5 kg drug substance prepared at >99 A%, >99% ee as tosylate salt.

Jeremy P. Scott* and co-workers *Org. Process Res. Dev.* **2011**, *15*, 1116 (Special Issue: Asymmetric Synthesis on Large Scale 2011)

Long term route development : indole core

$$\begin{array}{c} \text{MeO} \\ \text{HO} \\ \text{1} \end{array} \begin{array}{c} \text{HO} \\ \text{Et}_3 \text{SiH} \\ \text{TFA, MeCN} \end{array} \begin{array}{c} \text{NBS} \\ \text{DCM} \end{array} \begin{array}{c} \text{NBS} \\ \text{DCM} \end{array}$$

- Cost basis too high to support long term manufacture.
- Supply chain for phenylhydroxyboronic acid unreliable and slow.

Smiles rearrangement to prepare indole core

- Grignard prepared using elemental Mg.
- Ketone formation and demethylation high yielding allowing for 4-step telescoped through process to the desired indole product.
- Raw material cost basis significantly lower vs previous route.
- > 50 kg of indole, 59% overall from cyclohexylacetic acid.

A Gibb* and co-workers, Org. Process Res. Dev. 2012, 16, 1947-1952

Asymmetric approaches based on enamide reduction

- Ketone 1 fully converted to imine in the presence of TiCl₄ (0.5 equiv.) and N,N-dimethyl ethylenediamine.
- Acylation gave the phenyl, methyl and trimethylacyl enamides.
- Enamine and enamide regiochemistry confirmed by NMR.

Proof of concept for enamide reduction

- R=Me; Rh(nbd)₂BF₄ with ligands 38
 or 39 each gave full conversion and 95% ee.
- Enamine reductions gave only low ee's.

Summary

- Efficient construction of the 8-membered dihydroindolobenzoxazocine ring.
- Practical room temperature azidation under Mitsunobu conditions.
- Expedited construction of the trimethylethylenediamine sidechain.
- Multikilogram demonstration to prepare >5 kg of drug substance.
- Alternative indole core synthesis via Smiles rearrangement demonstrated.
- Alternative enantioselective route evaluted by asymmetric enamide hydrogenation.

Acknowledgements

Mahbub Alam
Jos Brands
Robert Wilson
Nadine Bremeyer
Antony Alorati
Andrew Gibb
Adrian Goodyear
Neil Strotman

Tony Davies
Frank Narjes
Bob Reamer
Peter Mullens
Gavin Stewart
George Zhou
Thientu Lam