Effects of over-irrigation on plant growth and

hormone balance

Perfect storm scenario

"...by 2030 the world will need to produce around **50 % more food and energy**, together with **30 % more fresh water**, whilst **adapting to climate change**." (John Beddington, 2009)

 \rightarrow Agriculture accounts for 70 % of the increased fresh water demand

Challenge for global agriculture

- Managing and balancing supply and demand for water
- Grow more food on not much more land
- Use less water, fertiliser and pesticides
- Use low-cost and efficient drip irrigation systems

Soil moisture based irrigation

Irrigation control

ïle View Help			
🗺 Dataset 🛛 🞆 Program		?	Help
Main Control	, Soil moisture	threshold to de	activate irrigatior
Standard GP1 program			galler galler
Control output			
Activate the relay when:	Deactivate the relay w	hen:	
theta2 < 40 % OR	Insert theta > 42 %	Insert	
theta < 40 %	theta > 42 %	htten 23	
	Bemove	Remove	12
	Change	Change	
Relay is Active when: closed 💌	Test whether to Deactivate every	15 seconds 💌	
🗖 Enable gulsing	🗖 Aļways Deactivate	relay on sensor error	
Pulse duration 🛨 15 seconds 💌		R	
		$\mathbf{\lambda}$	
	How often is soil	moisture check	ed?

Soil moisture threshold to activate irrigation

Practical application

Soil moisture sensors in a "typical" nursery

<u>Aims</u>

- Study effects of over-irrigation on tomato plant growth and physiology
- Understand what acts as a key signal
- Ameliorate possible growth inhibition

Soil moisture controlled by automatic irrigation scheduling

Comparison of manual and automatic irrigation

Effect of over-irrigation on tomato plant growth

Significantly decreased growth

after 4 weeks of over-irrigation in wild type tomato ('Ailsa Craig' [AC])

No significant differences in leaf water potential [a] or stomatal conductance [b]

Plant hormones abscisic acid (ABA) and ethylene

No significant change in foliar ABA concentration [a]

The Lancaster Environment Centre Significantly increased foliar ethylene emission [b]

Root-zone ethylene measurements

22623

Macronutrients

No significant change in leaf nutrient status [a, b]

But significantly lower nitrogen [c]

Ca(NO₃)₂ supplementation

10 mM calcium nitrate supplementation **restores shoot fresh weight** [a] and **leaf nitrogen concentration** [b] to control plant levels

Ca(NO₃)₂ supplementation

10 mM calcium nitrate supplementation restores foliar ethylene emission [a]

But ethylene unlikely to be key growth regulator during over-irrigation [b] – Instead, over-irrigation might change nitrogen availability or uptake

Effects of over-irrigation on tomato plants

Where to from here (future projects)?

What impact does overirrigation have on other species or when other substrates are used?

• Use of commercially used substrates (rockwool)

• Use of plants grown in pots: ornamentals, strawberries, herbs

Where to from here (future projects)?

How can the automatic irrigation control be of advantage for growers (especially in the containerised area)?

- Embed soil moisture system in commercial greenhouses
- → Use as an irrigation control, but also as "advanced warning" before water stress is harmful
- Enhance crop quality, save water
- Interact directly with growers

IHC Brisbane (17th-22nd August)

gation v

nd physiq

and its

Thank you very much for your attention

This research is part of the HDC-funded studentship CP 81

a.fiebig@lancaster.ac.uk