The Route from Organic Materials Synthesis to High Performance Processable Electro-optical Devices

Dr Jeremy Burroughes FREng, FRS

Organic Materials: New Opportunities for Synthetic Chemists

- Introduction to Solution Processable OLEDs
- Synthesis of Conjugated Polymers for Blue OLEDs
 - Summary of Synthetic Schemes
 - Impact of Purification on Performance
 - Maximising RGB Efficiency
- OLED Applications
- Other Solution Processed Devices
 - Thin Film Transistors
 - All-Printed OLEDs
 - Solar Cells
- Summary

Introduction to Solution Processable OLEDs

1989 – First Polymer Generated Light

- CDT originated from work at the Cavendish Laboratory, Cambridge
- In 1989, an investigation of the breakdown voltage of Poly(pphenylene vinylene) found the device emitted green light!
- The research teams quickly focused on the commercial potential of this effect

CDT

What is OLED?

CDT

... The next generation display and solid state lighting technology

5

How OLED works

C|D|T

Semiconducting Polymers

C|D|T

Semiconducting properties arise from overlap of delocalised pi-orbitals

Light Emission from Organic Polymers

C|D|T

Light emission results from recombination of injected charges

Device structure of Polymer-OLED (PLED) $\operatorname{C}\operatorname{D}\operatorname{T}$

- 1. LEP thickness and carrier mobilities à Optimum RZ and outcoupling
- 2. Introduction of iL **à** Hole injection, efficiency and lifetime
- 3. HIL and ITO thicknesses **à** Colour and outcoupling
- 4. Electrodes / charge injection layers à Stable electron/hole injection

© CDT 2014

Synthesis of Conjugated Polymers for Blue OLEDs Summary of Synthetic Schemes

© CDT 2014

Polymer History & Options

CDT

Disadvantage

12

Emission from more conjugated segments, broadening and red-shifting emission – energy gap not big enough for blue

Addition of solubilising substituents twist backbone, disrupt π -electron system and decrease PLQY

Large Stokes shift after annealing (yellow) attributed to polymer stacking (formation of excimers)

Blue emission – low internal efficiencies (0.1%)

Good efficiencies but homopolymers show short lifetime

Design of Polymers for R,G,B Emission

CDT

- Quantum chemistry to look at trends in polymer properties
- Selection of the backbone monomer considering
 - Efficient charge transport.
 - Solubility
 - Rigidity
 - Twist of the chain
 - Aggregation
- Colour through selection of appropriate emitting monomer units
- Selection of functional groups
 - Limit number of trap site/ quenching
 - Tune the HOMO-LUMO for good injection and transport properties
 - Ensure good solubility polymer

Molecular Engineering

CDT

- Polyfluorene blue emitter, deep delocalized HOMO and moderate delocalised LUMO – wide band gap
- Co-polymerise with benzothiodiazole, deep HOMO and deep LUMO smaller band gap

CIE 1931 Chromaticity Chart C|D|T

PLEDs can be used to produce light of any visible hue

Single Component Polymers

CDT

Integration of all functions using copolymer system

© CDT 2014

Important Factors - Polymerisation Process C D T

- Robust process
- Availability of air stable catalysts for ease of handling
- Range of available monomers
 - Crystalline and air stable
 - A variety of functional groups are tolerated
- Control of polymer architecture
 - Control of monomer feed
- Control of molecular weight
 - Ability to synthesize a range of molecular weights for different solution processing methods with narrow Pd
- Reproducibility of polymerisation
 - Batch to batch reproducibility
- Produces high purity polymers
- Scalable (Research and Production scale)

Synthesis Methods for LEPs

- Yamamoto Chemistry
 - Air and water sensitive reaction
 - Poor Pd
 - $\frac{XArX}{XArX}$ Ni(II)L_m \longrightarrow (Ar)
- Pd or Ni catalysed Coupling of Grignard reagents
 - Air and water sensitive reaction

- Suzuki Chemistry
 - Air sensitive reaction
 - Water tolerant, versatile to a wise range of functional groups
 - High Mw & Good (low) Pd

© CDT 2014

CDT

Suzuki Advantages

CDT

- High molecular weight polymer produced
 - Mw > 1,000,000
 - Pd 2-3
- Good reaction control and therefore good batch to batch reproducibility
 - Also tailor Mp for deposition techniques
 - Spin coat, Ink jet etc
- Simple purification procedure
- Control over end capping process
- Several thousand different polymers have been prepared using this process

Synthesis of Conjugated Polymers for Blue OLEDs Impact of Purification on Performance

© CDT 2014

Monomer Purification

CDT

- Absolute monomer purity is critical for successful polymer synthesis
 - Impurities can have negative impact device performance
- >5 Recrystallisations is not unusual
- Repetitive chromatography or sublimation is often used for emitters
 - Development of "clean" robust chemistry is often required to facilitate scale-up
 - Might require purification after each synthesis step!
- Monomers must be stable & non-hygroscopic

Monomer Analysis & QC

CDT

- CDT synthetic chemists have a "Love/Hate" relationship with our analysts
 - HPLC methods are optimised for each compound to give best sensitivity
 - New analytical methods are implemented whenever possible
 - Impurity profiling can identify "problematic" impurities
- QC includes HPLC, LCMS, GCMS, NMR, TGA, Mp, GPC, ICP, solution clarity
- Alignment of Chromatography methods is also required for outsourcing projects

Effects of Monomer Purity

CDT

 Method development on a nominally pure monomer identified a 0.3% impurity

 Removal of the impurity has a dramatic effect on Mw & device lifetime

Termination & Isolation

- Polymer is end-capped to remove reactive terminal groups
 - ppm bromine levels
- Washes to remove inorganics & Pd
- Filtration for Pd(0) removal & clarification
 - ppm levels of metals & inorganics
- Precipitation into anti-solvent
 - Removal of organic impurities
- Processes complicated by solution viscosity

Halogen Effect

C|D|T

 High levels of bromine (& other halogens) have a catastrophic effect on device lifetime

 End-capping & removal of Bromine by-products must be effective

Routine Polymer Analysis Capability CDT

- GPC absolute Mol. Wt. determination
- DSC Tg
- PLQY photoluminance quantum yield (emitter efficiency)
- UV optical & band-gap properties
- Electrochemistry HOMO/LUMO & bad-gap levels
- ICP ppm metal analysis
- XRF complimentary to ICP + halogen analysis
- FTIR low resolution structural information
- 600MHz NMR high resolution structural characterisation

Material QC – The Final Test

C|D|T

 After POLED has passed analytical QC, the material performance is assessed in a light emitting test cell.

 Analytical and purification method development continues to improve baseline material performance!

Challenge Summary

CDT

- Monomer purity > commonly required in other chemical industries
- Polymer defects must be carefully controlled
- Polymer impurities must be removed to ppm level
 - Or even ppb levels!

 Despite the challenges, tremendous progress has been made over the past 10 years

Synthesis of Conjugated Polymers for Blue OLEDs Maximising Efficiency

P-OLED RGB efficiency

CDT

Key parameters

Materials improvements

mcavity performance

© CDT 2014

C D T P-OLED RGB efficiency Key parameters Materials improvements mcavity performance

© CDT 2014

© CDT 2014

- Phosphorescent materials potentially have 100% Internal QE
- For displays require a deep blue emitter
 - Phosphorescent blues have much shorter operational lifetime than fluorescent materials
 - RG for displays is phosphorescent and RGB (White) for lighting is phosphorescent
 - Blue emission for displays is fluorescent
 - How to maximize fluorescent efficiency?

Solution Processable Phosphorescent Materials

- CDT Phosphoescent platform is built around dendrimer emitters blended into the polymer host matrix
- Dendrimers have complex structure allowing independent control of:
 - Optoelectronic properties in the core
 - Physical properties in the shell

Key parameter 1 - Singlet Yield C|D|T

From TTA

From charges

a Up to 40% Singlet Yield expected for standard spin statistics

© CDT 2014

 $\mathbf{F}_{s:t} = S:T$ ratio

a 32% lower limit to Singlet Yieldsome scope for improvement...

© CDT 2014

aIn this analysis, all PL quenching effects are taken into account in the parameter 'PLQE@RZ'

a RZ widths d < 20nm give efficiency within 90% theoretical max

© CDI 2014

© CDT 2014

Key parameter 4 - Dipole orientation $C \mid D \mid T$

A Model blue PLEDs anisotropic...some scope for improvement..
© CDT 2014
Cambridge Display Technology Limited (Company Number 02672530)

Key parameter 4 - Dipole orientation $C \mid D \mid T$

Variations in materials (Amine%) and bake temperature (15mins in N₂)

▲Both materials design and processing are key to optimising emitter orientation

- Singlet Yield (F $_{s:t'}$ c $_{TTA}$)
- PLOE at RZ (k_{rad} , k_{nrad})
- Recombination Zone profile
- Dipole orientation (k_x, k_y, k_z)

- → Scope for increasing %DF
- → Consider IL quenching
- → Within ~10% of optimum
- → Scope for increasing planarity

P-OLED RGB efficiency

CDT

Key parameters

Materials improvements

mcavity performance

© CDT 2014

Blue – standard model

C|D|T

à Some scope for improvement in all areas

© CDT 2014

PLQE at RZ – reduced iL quenching C D T

à Control of IL S1 can reduce PL quenching at emission zone

à Improved materials give a higher Singlet Yield from TTA

Anisotropy – improved alignment C | D | T

Blue – Improved efficiency

CDT

MODEL		à 9cd/A (0.14,0.14)	MODEL		à 13cd/A (0.14,0.12)
PLQE@RZ = 65% (Intrinsic PLQE = 80%)			PLQE@RZ = 80% (=Intrinsic PLQE)		
Singlet Yield = 32%			Singlet Yield = 38%		
RZ profile = 15nm width near iL			RZ profile = 15nm width near iL		
Dipole orientation = $k_z/k_x = 0.3$		Dipole orientation = $k_z/k_x = 0.2$			

EXPT 9.4cd/A (0.14,0.14) à 13.4cd/A (0.14,0.12)

© CDT 2014

à 7cd/A at 1000cd/m2 (0.15, 0.08) achieved

© CDT 2014

Green – std model

CDT

PLQE at RZ – reduced iL quenching CDT

à Reducing iL quenching is key to high green efficiency

Green – improved efficiency

CDT

MODEL		à 56cd/A (0.32,0.63)	MODEL		à 88cd/A (0.32,0.63)
PLQE@RZ = 44% (Intrinsic $PLQE = 75%$)			PLQE@RZ = 75% (=Intrinsic PLQE)		
Triplet Yield = 100%			Triplet Yield = 100%		
RZ profile = 15nm width near iL			RZ profile = 15nm width near iL		
Dipole orientation = $k_z/k_x = 1$ (isotropic)		Dipole orientation = $k_z/k_x = 1$ (isotropic)			

EXPT 56cd/A (0.32,0.63) à 88cd/A (0.32,0.63)

a 88cd/A at 1000cd/m2 (0.32, 0.63) achieved

Red – standard model

CDT

Red – improved efficiency

CDT

EXPT 19.2cd/A (0.65,0.35) **à** 21.8cd/A (0.65, 0.35)

à 21.8cd/A at 1000cd/m2 (0.65,0.35) achieved

Efficiency improvement summary for weak cavity devices

C|D|T

Previous efficiency	Improved performance	Origins of improvements
9.4cd/A (0.14,0.14)	13.4cd/A (0.14, 0.12) 7cd/A (0.15, 0.08)	TTA Yield Dipole orientation iL Singlet energy Deep blue Emitter
56cd/A (0.32, 0.63)	88cd/A (0.32, 0.63)	iL Triplet energy
19.2cd/A (0.65, 0.35)	21.8cd/A (0.65,0.35)	Material PLQE

P-OLED RGB efficiency

CDT

Key parameters

Materials improvements

mcavity performance

© CDT 2014

a meanity device structures can significantly improve colour © CDT 2014

Blue – mcavity

a 6.3cd/A at 1000cd/m2 (0.145,0.055) achieved CLIZVIA

Green – mcavity

à 120cd/A at 1000cd/m2 (0.217,0.723) achieved © CD1 ZVIT

Red – mcavity

C|D|T

à 26.5cd/A at (0.67,0.33) achieved

© CDT 2014

Efficiency and colour achievement summary for mavity devices

© CDT 2014

C|D|T

OLED Applications

PLED performance 2013/Autumn

CDT

Non-cavity device

Spin/BE data @1000cd/m2	Red		Green		Blue			
Efficiency [cd/A]	31	22	17	75	75	12.4	8.6	7.3
Colour	x=0.62	x=0.65	x=0.65	x=0.32	x=0.32	x=0.14	x=0.14	x=0.14
(C.I.E. x,y)	y=0.38	y=0.35	y=0.35	y=0.63	y=0.63	y=0.12	y=0.12	y=0.13
T50 lifetime [hrs]	350k	350k	>150k	>300k	190k	16k	-	-
T95 lifetime [hrs]	-	-	>3000	-	2100	-	150	700
Vd [V]	4.2	4.1	3.6	5.1	4.5	3.9	3.6	4.1

Device structure

*Lifetime estimated from acceleration test. *No electrical-ageing applied before lifetime test.

ITO (45nm)/ spin-coated HIL (30-65nm)/ Interlayer (20nm)/ LEP (60-75nm) / low-WF cathode

Low-WF cathode EML IL HIL ITO

ü RGB common and simple layer structure.

ü Organics are fully solution-processed.

© CDT 2014

Cambridge Display Technology Lim..... Number 62072030

Materials for Display panels

- Good efficiency can be achieved with micro-cavity
- >100% s-RGB can be achieved with micro-cavity
- Forward direction cd/A efficiencies
- T95 lifetimes key to avoid image sticking

Display parameters:

- Average luminance 200 cd/m²
- Circular polarizer transmittance 44%.
- Aperture ratio 38%.

0.2 0.3

CIEx

0.1

0.9

0.1

0

0

		Micro-cavity sub-pixel				
	Colour	CIEx	CIEy	Luminance (cd/m²)		
	Red	0.651	0.349	1200		
	Green	0.199	0.720	2000		
	Blue	0.142	0.060	270		

0.4 0.5 0.6 0.7 0.8

C|D|T

•••• NTSC

SRGB

P-OLED

Materials Efficiency for Display panels

C|D|T

	Optical efficiency, cd/A			
	2011	2012	2013	
Red	25	25	31	
Green	50	75	90	
Blue	3.8	4.4	5.6	
Colour gamut - CIExy (1936) % of sRGB	135%	145%	140%	
White point Optical efficiency (D65)	22.2cd/A	28.3cd/A	32.3cd/A	
White point				
Power efficiency	4.0cd/W	6.4cd/W	8.8cd/W	
cd/W				

© CDT (20112014

Lighting

- OLEDs have great potential for creating large area, diffuse light sources
- General lighting requires >80lm/W efficacy, large area tiles and low cost manufacturing 2

2014 Sumitomo Light and Build stand: Ink Jet Printed

- In a standard device structure, only ~25% (external QE) of the light is emitted
- Technology challenges for lighting are not only materials related: device structure development is also key

The Lighting Devices Project at CDT tackles the key device technology challenges:

- Develop low cost structure and process => ITO free; low cost metal grid
- Extract trapped light out of the device to increase efficiency
- Develop a structure and process scalable to large area tiles (2" or 6")

Cambridge Display Technology Limited (Company Number 02672530)

\$3CDT 2014

SDC test pixel Lm/W over time Technology Limited (Company Number 02672530)

Automotive Engineering Exposition C|D|T2013

- Sumitomo Chemical demonstrates conformable solution processed lighting panels.
 - Fabricated using a glass substrate carrier
 - Red and White organic materials are printed by Ink Jet Printing
 - Layer thickness is designed so as to light the panel at the same voltage.
 - Electrodes are designed to achieve the uniform emission across the panel.

Other Solution Processed Devices: Organic Thin Film Transistors

Introduction

- We are developing "3rd generation" semiconductors in collaboration with Sumitomo Chemical OSC Team
- OTFT development focus:
 - Material development: High mobility semiconductors
 - Single component and blend systems
 - Device platform development: Improved uniformity
 - Customer support: Material sampling & sales
- Device performance requirements:
 - Mobility >0.5cm²V⁻¹s⁻¹ with ≤10µm channel length
 - On/off current ratio ³ 10⁵
 - Compatible with plastic substrates
- Material processing requirements:
 - Compatible with low temperature process (<100°C)</p>
 - Air stability:
 - Materials processable in air
 - Devices operational in air

© CDT 2014

•C) Dielectric Source Drain

Gate

OTFT Development: Platform Development $C \mid D \mid T$

- Device fabrication:
 - OTFT devices are fabricated & testing in air
 - No encapsulation
- Plastic substrates:
 - OTFT technology shifted to plastic/flexible substrates
 - Developed lithography on plastic substrates at 350mm size with 5µm channel resolution
 - High performance demonstrated
- Interface engineering & control:
 - More efficient devices by controlling metal-semiconductor interfaces
 - Improved control of OSC morphology

OTFT Device Platform Development

2nd Generation Device Performance

- Device improvements focussed to increase mobility for short channel devices
- Low contact resistance 4kWcm
- Low spread in mobility:

Devices fabricated in air. Upper process temp 100°C.

© CDT 2014

3rd Generation OSC

CDT

- New Formulation:
 - Modifying HOMO levels between components
 - Rc reduced from 4-5 kWcm to < 2 kWcm</p>
 - Long channel mobility suppressed
 - Short Channel performance improved
 - @ 10 mm channel length mobility > 1.8 cm²/Vs
 - @ 5 mm channel length mobility > 1 cm²/Vs

© CDT 2014

Other Solution Processed Devices: All Printed OLED

LEC Technology

CDT

- High specification best lifetime device structure
- High cost suitable for high information content displays – HDTV
- Rigid substrate because of high barrier property of glass

- Reduce number of process steps
- Reduce tool set cost
- Improve air stability à plastic flexible substrate

Cambridge Display Technology Limited (Company Number 02672530)

- Standard LEPs incompatible with polyelectrolyte causing phase separation
 - Poor yield at target thickness
- But increased thickness impacts turn-on time

ØThicker film

ØSmaller electrical field

Ølons slow to reach electrodes

C D T

Compatible LEP

- Solving the problem by materials design •
- Developing an LEP that is compatible with polyelectrolyte
 - ØReduced phase separation
 - **Ø**Smoother films

<1s turn-on

to 100cd/m²

Improvement of visual appearance

C|D|T

- Increasing contrast display:
 - Improved visual appearance à Improved user experience
 - Operation at lower brightness à Better stability
- Standard device has white background (outside of pixel area) and reflective cathode.
- High contrast device has dark background and non-reflective cathode.
 - Efficiency loss due to reduced out-coupling. But this is acceptable since device can be run at lower absolute brightness for same apparent clarity.

<u>High brightness device</u> Suitable for applications where high brightness is important but contrast is less important

High contrast device + Favourable visual appearance + Improved stability Additionally Observe improved lifetime

Other Solution Processed Devices: Solar Cells

© CDT 2014

OPV Introduction

CDT

- OPV research started in order to develop photovoltaic materials into new business areas beyond our core P-OLED technology
- Sumitomo Chemical & CDT jointly developing high performance, solution processable photovoltaic materials for OPV
- OPV programme encompasses material & device & process platform developments
 Delymor OLED
 Organic Photovoltacis

Organic photovoltaic cell activities in SCC Basic Device structure Metal electrode P-type/n-type ITO Organic semiconductor (Transparent (Conjugated Polymers) electrode) 200 x 200mm Plastic substrate Light **Typical I-V characteristics** Flexible type Current density[mA/cm²] 15 -η=8.1% 10 $Jsc=18.9mA/cm^{2}$,

© CDT 2014

5

0

0

Voc=0.70V, ff=0.61

0.4

Voltage[V]

0.6

0.8

0.2

Cambridge Display Technology Limited (Company Number 02672530)

reference

Field test

Summary

© CDT 2014

Organic Electronics

CDT

- Chemists and Physicists required to work together in order to understand the fundamentals of device operation.
- Detailed knowledge of the impact of material design and synthesis required to maximise the intrinsic material performance
 - Purification to levels not normally required in order to achieve application requirements
- Device operation is the only way to measure the material performance
 - Device degradation understanding allows new materials development
- Analytical procedures require continual improvement
 - Impurities and defects < ppm levels required!</p>