Using predatory birds to monitor long term trends of PBDEs in the UK

John D. Crosse^{1,2,}, Richard F. Shore¹, Richard A. Wadsworth¹, Kevin C. Jones² & M. Glória Pereira¹

NERC Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, U.K.
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K.

Overview

- PBDEs
 - What they are
 - Usage and consumption
 - Environmental occurrence
 - Why we should care
- Environmental monitoring
- Using apex predators (birds and their eggs)
- Results from two UK birds
 - Spatial trends (marine, terrestrial)
 - Temporal trends
 - Toxicity

PBDEs

- Additive flame retardants
 - Not chemically bonded to host matrix
- Disrupt combustion
 - Dilute flammable gases
 - Scavenge free radicals
- Used in high impact plastics, textiles, furniture foam
- Release to environment from product manufacture, use, disposal
 - Continual release through normal usage

PBDEs

Structurally and chemically analogous to PCBs

- 209 theoretical congeners
 - 28, **47**, **99**, **100**, **153**, **154**, **183**, 196,197, 201, 202, 203, **209**
- Technical products utilise a mixture of congeners
 - PeBDE (99,47), OBDE (183, 209), DeBDE (209)

Drivers for changes in PBDE usage

- Series of fire disasters in the UK and Ireland
 - Summerland 1973, Taunton train fire 1978, Woolworth's department store fire 1979, Stardust discotheque fire 1981, Bradford City football stadium fire 1985, King's Cross Underground fire 1987
 - Over 150 people died
 - Rapid spread of fire, production of toxic smoke
- Furniture and Furnishings Fire Safety Regulations (FFFSR), 1988
- RoHS, EEC Directive EEC793/93
- EEC proposes ban on penta- and octa-BDEs, 2001

PBDE consumption

Cycling of PBDEs

PBDEs are everywhere

- Persistent
- Subject to long range transport
- Lipophilic and bioaccumulative
- Are toxic

- Found in all environmental compartments
- Found in places where they have never been used
- Found in unborn children
- Growing evidence of toxicity

Examples of human toxicity

- Chromosomal damage and genotoxicity at low doses
 - (Barber at al., 2006; Llabjani et al., 2011)
- Cytotoxicity
 - (He et al., 2008)
- · Apoptosis and genotoxicity in a dose dependant manner
 - (Song et al., 2009;
- Cellular changes in DNA/RNA reflecting a genotoxic mechanism – (Llabjani et al., 2011)
- Competitive binding with T4 to plasma thyroid hormonetransporter transthyretin (TTR)
 - (Athanasidou et al., 2008; Lacorte & Ikonomou, 2009; Ryden et al., 2012)

Specific examples in predatory birds

- Henny et al., (2009)
 - Osprey
 - Reduced productivity (concs >1ug/g wwt)
- McKernan et al., (2009)
 - American kestrel
 - Decreased pipping and hatching success (concs 10-20ug/g)
- Fernie et al., 2005, 2008, 2009; Marteinson et al., 2010
 - American kestrel Concs 0.2 2.1 ug/g)
 - Delayed hatching, reduced pair bonding, shell thinning
- Llabjani et al., 2012
 - DNA/RNA effects
 - Low doses (10⁻⁹, 10⁻¹² M)

Legislation

- Penta and Octa BDE mixtures now 'banned'
- Inclusion into the Stockholm Convention on POPs
 - Tetra, Penta, Hexa, Hepta BDEs
 - Annex A (Elimination)
 - OC pesticides and PCBs

- Deca BDE now prohibited in EU in electrical goods
 - ~80% of usage
 - Subject to voluntary phase-outs in the US
- All formulations still in circulation in consumer goods
- Reoccurrence through recycled plastic?

Environmental sampling

- Occupy a high trophic position
 - Representative of a whole ecosystem

PBMS

- Long term, national scale
- Funded by CEH, NE, EA, CRRU, RSPB
- Chemical surveillance and monitoring in sentinel species
- SGARs, POPs, Trace & toxic metals, PAHs

- Aims: identify hazards, assess risk, quantify environmental drivers, inform policy, evaluate mitigation, assess risks to high priority species
- Tissue and egg archive for monitoring and research

Predatory birds as Biomonitoring tools

- Why use predatory birds?
 - High trophic position
 - Integrated sentinel more representative of the ecosystem as a whole
 - Sparrowhawks = terrestrial
 - Gannets = Marine
- Why use eggs?
 - Consistent media
 - Easy to collect
 - Long running archive ~1970-present
 - Good accumulators of lipophilic contaminants

How it works

Study 1 - Gannets

Marine sentinels

- Two colonies; Bass Rock and Ailsa Craig
- Historically contaminated waters
- Eggs from 1977-2007

Specific aims

- Spatial differences
- Temporal trends
 - PBDE concentration
 - PBDE congeners
 - BDE209 was not analysed as a 209 was not detected by Leslie et al., 2011 in a subsample of these eggs

Toxicity

Shell thickness

- Congener profile
 - PeBDE dominated
- Spatial trends
 - No significant spatial trends
 - ΣPBDE or congeners
- Temporal trends
 - Significant temporal trends
 - Rapid increase from 1980s
 - Peak in 1994, before declining
 - Higher brominated congeners increase over time

Toxicity

- Overall concentrations relatively low
- 12.9 66.8 ng/g in eggsfrom Bass Rock
- 6.3 to 60.8 ng/g in eggsfrom Ailsa Craig
- No effect on eggshell thickness or volume

Factors affecting consumption in the UK

- Legislative drivers
 - For and against

Environmental concentrations respond rapidly

Summary

- No spatial differences
 - North Sea and Irish Sea exhibit similar levels of contamination
- Congeners associated with PeBDE
 - BDE47 most dominant congener

- Marine environmental concentrations respond rapidly to change
- Increase in higher brominated congeners over time

Toxicity

 No significant effect on egg volume or shell thickness

Study 2 - sparrowhawks

- Terrestrial raptor
- Wide geographic distribution
- Long running archive
 - **1985 2007**
- Specific aims
 - Temporal trends
 - PBDE concentration
 - PBDE congeners
 - BDE209 was not analysed for as this analysis was being conducted by Jacob de Boer's group (Leslie et al., 2011)
- Toxicity
 - Shell thickness

Sample selection

Results

- Concentrations
 - -34 2281 ng/g wwt
 - Several orders of magnitude higher than the gannets
- Congener profile
 - BDE 99 dominant congener
 - BDEs 99>47>153>100>154 dominated the PBDE profile
 - Smaller contributions of BDEs 28, 85, 138
 - All congeners co-correlated with each other and with ΣPBDE concentrations (p<0.001)
 - Very similar to PeBDE mixture
 - Similar profile to that found in prey sp (Van den Steen et al., 2009)

Results: Congener profile

Temporal trends

- Linear increase of ΣPBDE concentrations until mid 1990s (R²=0.39, F_{1,42}=17.5, P<0.001)
 - Similar pattern for BDEs 47, 99, 100, 153, 154
 - BDE concentrations remained high from mid 1990s onwards
 - No significant decline

Temporal trends

OBDE-associated BDEs196, 197, 201, 202, 203 increased linearly over time (R²≤0.40, F_{1,42}≤27.75, P<0.05)

BDE203

Toxicity

- ΣPBDE in sparrowhawk eggs ranged from 0.34-2.28 ug/g wet weight (wwt)
 - 0.27-27.4 ug/g (lipid weight)
- Exceed the threshold for shell thinning and reproductive impairment found in other raptors (Fernie et al., 2009; Henny et al., 2009; Marteinson et al., 2010)
- No relationship between ΣPBDE nor individual congeners on sparrowhawk eggshell thickness (p>0.05)
 - Shell thickness increasing over time ($R^2=11.4$, $F_{1,37}=5$, P<0.05)
- Eggs collected represent failed or abandoned eggs
 - May not be associated with PBDEs

Summary

- Concentrations in sparrowhawk eggs represent environmental concentrations during the breeding season
- PBDE concentrations are not declining in sparrowhawk eggs
 - Slow clearance from the terrestrial system
 - Stark contrast to the marine system and other studies
- Dominated by PeBDE mix congeners
 - BDE99
 - Input from OBDE congeners
 - Slower clearance of these congeners
- Concentration of heavy BDEs increasing
 - BDE209 detected in a subsample of eggs
 - Debromination of labile BDE209

Summary (continued)

- Concentrations amongst the highest ever reported in bird eggs
 - Exceed threshold for shell thinning and impaired reproductive output
 - We did not find any effect of PBDEs on shell thinning
 - Difficult to relate cause and effect of PBDE concentrations on egg failures

What's next?

- DeBDE being phased out in US
 - UK following
 - New flame retardants already on the market
 - PBT, PBEB, HBB, DP, BTBPE, OBIND, TBPAE, TBECH, BATE, DBDPE
 - DecaBromoDiphenyl<u>Ethane</u>
 - Replacement for DecaBromoDiphenyl<u>Ether</u> (DeBDE)

DeBDE (209)

DBDPE

A long way from home...

A long way from home...

PBDEs and emerging halogenated flame retardants in elution order

Acknowledgements

- NERC & PBMS
 - CEH
 - Natural England
 - RSPB
 - EA
 - CRRU
- Lancaster University (CCM)
- Volunteers who collected the eggs
- Everyone else who helped out
 - Dave Hughes and Lee Walker
 - Dr Sabino Del Vento
 - Dr Jasmin Schuster
 - Dr Gareth Thomas

