Blog search results for Author: Joe Oddy

Agrifood

Today we chat to Joe Oddy about his life as a Plant Sciences PhD Student at Rothamsted Research.  

Joe Oddy 

Give us a summary of your research, Joe!

I study how levels of the amino acid asparagine in wheat are controlled by genetics and the environment. Asparagine levels in wheat grain determine the levels of acrylamide, a probable carcinogen, in certain foods. We are hoping to better understand the biology of asparagine to mitigate this risk.

What does a day in the life of a Plant Sciences PhD Student look like?

My schedule is quite variable depending on what analysis I am doing. I could have whole days in the lab doing molecular work or whole days at the computer analysing and writing up data. Most of the time it is probably somewhere in between!

via GIPHY

How did your education prepare you for this experience?  

I think I had a good grounding in basic principles from my undergraduate degree, but the training they gave in R stands out as being particularly useful. In my degree program I also worked for a year in research, which really helped prepare me for this kind of project work.

What are some of the highlights so far?

Being able to go outside to check plants in the field or in the glasshouse makes a nice break if you have been doing computer work all day! Finishing up some analysis after a lot of data collection is also quite cathartic, as long as it works…

What is one of the biggest challenges faced in a PhD?

In my project so far, the biggest challenge has just been trying to decide what research questions to focus on since there are so many interesting options available. I realise I am probably quite fortunate to have this be my biggest challenge!

What advice would you give to someone considering a PhD?

My undergraduate university actually gave me this advice. They said that the most important part of choosing a project was not the university or the project itself, but the supervisor. I think this is true in a lot of cases, and at least for me.

via GIPHY

How have things been different for you because of the global pandemic?

I wasn’t able to go into the labs for a while but thankfully my plants in the field and glasshouse were maintained. By the time they finished growing the lockdown had been partially eased. At last, a long growing season has helped rather than hindered a PhD project.

What are you hoping to do after your research?

I’d like to go into research either in academia or industry, but beyond that I’m not sure. The landscape is always changing and I would probably be open to anything that seems interesting!

Joe Oddy is a PhD Student at Rothamsted Research and a member of SCI’s Agri-Food Early Career Committee and SCI’s Agriscences Committee

Agrifood

This year’s wheat harvest is currently underway across the country after a difficult growing season, with harvest itself being delayed due to intermittent stormy weather. The high levels of rainfall at the start of the growing season meant that less winter wheat could be planted and dry weather in April and May caused difficulties for spring wheat as well. This decline in the wheat growing area has caused many news outlets to proclaim the worst wheat harvest in 40 years and potential bread price rises.

 wheat harvest

Difficult weather during this year’s growing season. Photo: Joe Oddy

This is also the first wheat harvest in which I have a more personal stake, namely the first field trial of my PhD project; looking at how asparagine levels are controlled in wheat. It seemed like a bad omen that my first field trial should coincide with such a poor year for wheat farming, but it is also an opportunity to look at how environmental stress is likely to influence the nutritional quality of wheat, particularly in relation to asparagine.

The levels of asparagine, a nitrogen-rich amino acid, in wheat grain have become an important quality parameter in recent years because it is the major determinant and precursor of acrylamide, a processing contaminant that forms during certain cooking processes. The carcinogenic risk associated with dietary acrylamide intake has sparked attempts to reduce consumption as much as possible, and reducing asparagine levels in wheat is a promising way of achieving part of this goal.

 asparagus

Asparagus, from which asparagine was first discovered and named.

Previous work on this issue has shown that some types of plant stress, such as sulphur deficiency, disease, and drought, increase asparagine levels in wheat, so managing these stresses with sufficient nutrient supply, disease control, and irrigation can help to prevent unwanted asparagine accumulation. Stress can be difficult to prevent even with such crop management strategies though, especially with environmental variables as uncontrollable as the weather, so it is tempting to speculate that the difficulties experienced this growing season will be reflected in higher asparagine levels; but we will have to wait and see.