Blog search results for Tag: electrical

Energy

A 3D battery made using self-assembling polymers could allow devices like laptops and mobile phones to be charged much more rapidly.

Usually in an electronic device, the anode and cathode are on either side of a non-conducting separator. But a new battery design by Cornell University researchers in the US intertwines the components in a 3D spiral structure, with thousands of nanoscale pores filled with the elements necessary for energy storage and delivery.

image

Originally posted by novelty-gift-ideas

This type of ‘bottom-up’ self-assembly is attractive because it overcomes many of the existing limitations in 3D nanofabrication, enabling the rapid production of nanostructures at large scales.

In the Cornell design, the battery’s anode is made of gyroidal (spiral) thin films of carbon, generated by block copolymer self-assembly. They feature thousands of periodic pores around 40nm wide. The pores are coated with a 10 nm-thick separator layer, which is electronically insulating but ion-conducting. Some pores are filled with sulfur, which acts as the cathode and accepts electrons but doesn’t conduct electricity.

Adaptive battery can charge in seconds. Video: News Direct

‘This is potentially ground-breaking, if the process can be scaled up and the quality of the electrodes can be ensured,’ comments Yury Gogotsi, director of A.J. Drexel Nanomaterials Institute, Philadelphia, US. ‘But this is still an early-stage development, proof of concept. The main challenge is to ensure that no short-circuits occur in the structure.

Energy

A 3D battery made using self-assembling polymers could allow devices like laptops and mobile phones to be charged much more rapidly.

Usually in an electronic device, the anode and cathode are on either side of a non-conducting separator. But a new battery design by Cornell University researchers in the US intertwines the components in a 3D spiral structure, with thousands of nanoscale pores filled with the elements necessary for energy storage and delivery.

image

Originally posted by novelty-gift-ideas

This type of ‘bottom-up’ self-assembly is attractive because it overcomes many of the existing limitations in 3D nanofabrication, enabling the rapid production of nanostructures at large scales.

In the Cornell design, the battery’s anode is made of gyroidal (spiral) thin films of carbon, generated by block copolymer self-assembly. They feature thousands of periodic pores around 40nm wide. The pores are coated with a 10 nm-thick separator layer, which is electronically insulating but ion-conducting. Some pores are filled with sulfur, which acts as the cathode and accepts electrons but doesn’t conduct electricity.

Adaptive battery can charge in seconds. Video: News Direct

‘This is potentially ground-breaking, if the process can be scaled up and the quality of the electrodes can be ensured,’ comments Yury Gogotsi, director of A.J. Drexel Nanomaterials Institute, Philadelphia, US. ‘But this is still an early-stage development, proof of concept. The main challenge is to ensure that no short-circuits occur in the structure.