Blog search results for Tag: iyph2020

Sustainability & Environment

Single plant cells have amazing capacities for regenerating into entire plants. This property is known as ‘totipotency’ discovered in the 1920s. Linking this with increasing understanding of growth control by plant hormones resulted in the development of the sterile, in vitro, culture. Tiny groups of cells, explants, are cut from the rapidly growing tips of shoots in controlled environments and washed in sterilising agents. These are cultured sterile jars containing a layer of agar supplemented with nutrients and hormones.

 Green plantlets growing on sterile agar

Green plantlets growing on sterile agar

The process is known as ‘tissue culture’ or micropropagation. As the cells divide and multiply, they are transferred through a series of sterile conditions which encourage root formation.

 Roots growing from newly developing plantlets

Roots growing from newly developing plantlets

Ultimately numerous new whole plants are generated. At that point they are removed from sterile conditions and weaned by planting into clean compost in high humidity environments. High humidity is essential as these transplants lack the protective coating of leaf and stem waxes which prevent desiccation. Ultimately when fully weaned the plants are grown under normal nursery conditions into saleable products.

Why bother with this processes which requires expensive facilities and highly skilled staff? A prime advantage is that micropropagated plants have genotypes very closely similar to those of the original parent, essentially they are clones. As a result vast numbers of progeny can be generated from a few parents preserving their characteristics. That is particularly important as a means of bulking-up newly bred varieties of many ornamental and fruit producing plants which otherwise would be reproduced vegetatively from cuttings or by grafting and budding onto rootstocks. Micropropagation is therefore a means for safeguarding the intellectual property of plant breeding companies.

Explants cut from parent plants before culturing can be heat-treated as a means of removing virus infections. The resultant end-products of rooted plants are therefore disease-free or more accurately disease-tested. These plants are usually more vigorous and produce bigger yields of flowers and fruit. Orchids are one of the crops where the impact of micropropagation is most obvious in florists’ shops and supermarkets. 

Orchids have benefitted greatly from micropropagation

Orchids have benefitted greatly from micropropagation

Large numbers of highly attractive orchids are now readily available. Previously orchids were very expensive and available in sparse numbers.   

The world is not perfect and there are disadvantages with micropropagation. Because the progeny are genetically similar they are uniformly susceptible to pests and pathogens. Crops of clonal plants can be and have been rapidly devasted by existing and new strains of insects and diseases to which they have no resistance.


Sustainability & Environment

Another month starts in the SCIence Garden with no visitors to appreciate the burgeoning growth of fresh new leaves and spring flowers, but that doesn’t mean we should forget about it!

Hopefully in our absence the Laburnum tree in the garden, Laburnum watereri ‘Vossii’ will be flowering beautifully, its long racemes of golden yellow flowers looking stunning in the spring sunshine!

 Laburnum x watereri

Laburnum x watereri ‘Vossii’ in the SCIence Garden

This particular cultivar originated in the late 19th century in the Netherlands, selected from the hybrid species which itself is a cross between Laburnum alpinum and L. anagyroides. This hybrid species was named for the Waterers nursery in Knaphill, Surrey and was formally named in a German publication of 1893 (Handbuch der Laubholzkunde, Berlin 3:673 (1893)

 Laburnum tree

The laburnum tree is found very commonly in gardens in the UK, and is noticeable at this time of year for its long chains of golden yellow flowers. However, the beautiful flowers hide a dark side to this plant. The seeds (and indeed all parts) of the tree are poisonous to humans and many animals. They are poisonous due to the presence of a very toxic alkaloid called cytisine (not to be confused with cytosine, a component of DNA). Cytisine has a similar structure to nicotine (another plant natural product), and has similar pharmacological effects. It has been used as a smoking cessation therapy, as has varenicline, which has a structure based on that of cytisine. These molecules are partial agonists at the nicotinic receptor (compared to nicotine which is a full agonist) and reduce the cravings and “pleasurable” effects associated with nicotine. 

 cytisine structure

Cytisine is found in several other plants in the legume family, including Thermopsis lanceolata, which also looks stunning in early summer and Baptisia species, also growing in the SCIence Garden and flowering later in the year.

 Thermopsis lanceolata

In 2018 there were 9.6 million deaths from cancer and 33% of these were linked to exposure to tobacco smoke.*  Since the link between smoking and lung cancer was established in 1950, the market for smoking cessation therapies has increased enormously. In 2018 it was worth over 18 billion dollars annually worldwide and is projected to increase to 64 billion dollars by 2026.** Staggering! Varenicline, sold under the brand names Champix and Chantix, is one of the most significant smoking cessation therapies apart from nicotine replacement products.

If you see a laburnum tree whilst out on your daily allowed exercise this month, have a thought for its use as a smoking cessation therapy!

* Data from the Cancer Research UK website https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer#heading-Zero accessed May 2020.

** https://www.businesswire.com/news/home/20200319005381/en/Global-Smoking-Cessation-Market—Expected-Reach


Sustainability & Environment

Transferring plants between countries was a profitable source for novel commercial and garden plants until quite recently.

 Potato crop

Potato crop: Geoff Dixon 

Potatoes and tomatoes are classic examples arriving in Europe from South America during the 16th century. Substantial numbers of new plants fuelled empire expansion founding new industries such as rubber and coffee. One of the earliest functions of European botanic gardens was finding potentially valuable new crops for colonial businesses. At home selecting orchids and other exotics from imported plants brought fame and fortune for head gardeners managing the large 19th century estates such as Chatsworth.  Commercially seed merchants selected by eye and feel new and improved vegetables, fruit and flowers.

The rediscovery of Mendel’s laws of inheritance brought systematic science and formalised breeding new crops and garden plants. Analysing the effects of transferring physical, chemical and biological characters identified gene numbers and their functions. 

 Colour range in Gladioli

Colour range in Gladioli: Geoff Dixon 

As a result, varieties with improved colourfulness, fruitfulness, yield and pest and pathogen tolerance fill seedsmen’s catalogues. Breeding increased food supplies and added colour into the gardens springing up in suburban areas as affluence increased.

Greater plant reliability and uniformity arrived with the discovery of F1 hybrids.

 Hybrid Sunflowers

Hybrid Sunflowers: Geoff Dixon

Selected parental lines each with very desirable characters such as fruit colour are in-breed for several generations. Then they are crossed bringing an explosion of vigour, uniformity and reliability (known as heterosis). Saving seed from the hybrid lines does not however, perpetuate these characters; new generations come only from remaking the original cross. That is a major boon for the breeder as competitors cannot pirate their intellectual property.

Knowledge at the molecular level has unravelled still further gene structure and functioning. Tagging or marking specific genes with known properties shortens the breeding cycle adding reliability and accuracy for the breeder.  Simplifying the volume of genetic material used in crosses by halving the number of chromosomes involved adds further precision and control (known as haploidisation). 

Opportunities for breeding new plants increases many-fold when advantageous genes are transferred between species. Recent developments of gene-editing where tailored enzymes very precisely snip out unwanted characters and insert advantageous ones is now offering huge opportunities as a non-transgenic technology. Breeding science makes possible mitigation of climate change, reducing for example the impact of soil degradation brought about by flooding.

 Flood degraded land

Flood degraded land: Geoff Dixon


Sustainability & Environment

Growing in just about the most challenging of locations in the SCIence Garden are a small group of Helleborus niger. They are planted in a very dry and shady location underneath a large tree sized Escallonia and although they struggled to establish when they were first planted (in May 2017) they are now flowering and growing well.

This plant was first featured as a Horticulture Group Medicinal Plant of the Month in December 2011 and as it is now in the SCIence garden I thought a reprise was in order.

 Helleborus flower

Helleborus is a genus of 15 species of evergreen perennials in the buttercup family, Ranunculaceae. In common with most members of the family, the flowers are radially symmetric, bisexual and have numerous stamen.

Helleborus is the Latin name for the lent hellebore, and niger means black – referring in this species to the roots.

This species is native to the Alps and Appenines. Helleborus niger has pure white flowers, with the showy white parts being sepals (the calyx) and the petals (corolla) reduced to nectaries. As with other hellebores, the sepals persist long after the nectaries (petals) have dropped.

 Another angle of a Helleborus flower

All members of the Ranunculaceae contain ranunculin, an unstable glucoside, which when the plant is wounded is enzymatically broken down into glucose and protoanemonin. This unsaturated lactone is toxic to both humans and animals, causing skin irritation and nausea, vomiting, dizziness and worse if ingested.

Protoanemonin dimerises to form anemonin when it comes into contact with air and this is then hydrolysed, with a concomitant ring-opening to give a non-toxic dicarboxylic acid.

 Protoanemonin chemical structure

Many hellebores have been found to contain hellebrin, a cardiac glycoside. The early chemical literature suggests that this species also contains the substance but later studies did not find it suggesting that either mis-identified or adulterated material was used in the early studies.

It is reported to contain many other specialized metabolites including steroidal saponins.

This plant has long been used in traditional medicine – in European, Ayurvedic and Unani systems and recent research has been aimed at elucidating what constituents are responsible for the medicinal benefit.

 black hellebore

Extract of black hellebore is used sometimes in Germany as an adjuvant treatment for some types of tumour.

A recent paper* reports the results of a safety and efficacy investigation. The Helleborus niger extract tested was shown to exhibit neither genotoxic nor haemolytic effects but it was shown to have anti-angiogenetic effects on human umbilical vein endothelial cells (HUVEC), anti-proliferative effects and migration-inhibiting properties on tumour cells thus supporting its use in cancer treatment.

 A helleborus flower

* Felenda, J.E., Turek, C., Mörbt, N. et al. Preclinical evaluation of safety and potential of black hellebore extracts for cancer treatment. BMC Complement Altern Med 19, 105 (2019) doi:10.1186/s12906-019-2517-5