Blog search results for Tag: material

Materials

Dinosaurs were some of the largest creatures to ever roam the Earth, but the mystery of how they supported their great weight remains. A new study published in PLOS ONE now indicates that the answer may lie in their unique bone structure, which differs from mammals and birds.

The bone is made up of different layers of different consistency, including the spongy interior, or trabecular. This part of the bone is formed of porous, honeycomb like structures.

A group of inter-disciplinary researchers, including palaeontologists, mechanical engineers, and biomedical engineers, analysed trabecular bone structure in a range of dinosaur samples, ranging from only 23 kg to 8000 kg in body mass. Their study found that the structure of dinosaur bones possessed unique properties allowing them to support large weights.

‘The structure of the trabecular, or spongy bone that forms in the interior of bones we studied is unique within dinosaurs,’ said Tony Fiorillo, palaeontologist and one of the study authors. ‘Unlike in mammals and birds, the trabecular bone does not increase in thickness as the body size of dinosaurs increase, instead it increases in density of the occurrence of spongy bone. Without this weight-saving adaptation, the skeletal structure needed to support the hadrosaurs would be so heavy, the dinosaurs would have had great difficulty moving.’

Their analysis included scanning the distal femur and proximal tibia bones from dinosaur fossils, and modelling how mechanical behaviour may have occurred. The research team also used allometry scaling – a method of understanding how physical characteristics change with physical size. They then compared the architecture of the bones to scans of both living and extinct large animals, such as Asian elephants and mammoths.

a walking cartoon dinosaur gif

Originally posted by manucalavera

Researchers hope that they can apply their findings to design other lightweight structures such as those used in aerospace, construction, or vehicles.

‘Understanding the mechanics of the trabecular architecture of dinosaurs may help us better understand the design of other lightweight and dense structures,’ said Trevor Aguirre, mechanical engineer and lead author of the paper.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237042


Health & Wellbeing

A shortage of donor organs for transplant surgery is fueling research to develop artificial livers and hearts, but how closely do they match up to the real thing?

Liver failure due to alcohol abuse, drug overdose and hepatitis is a growing problem. In 2016, 1220 Americans died waiting for a liver transplant, with the cost of treating cirrhosis – late stage liver scarring – is estimated at nearly $10bn/year.

‘In 2017, if you have liver failure, we don’t have a backup system,’ says Fontes. ‘But my group has a potential backup system. We are not ready for prime time yet, but we’ve some really good data.’

 bar and alcohol

Liver failure can be hereditary or caused by excessive drinking. Image: Pixabay

Transplant surgeon Paulo Fontes at the University of Pittsburgh, US, regularly meets patients who ask what their options are aside from a liver transplant.

His group has attempted to build a new bioartificial liver, by seeding liver cells onto a liver scaffold. However, others working in this area have so far met with little success.

Now Fontes, working at the Starzl Transplantation Institute, has hit on a different strategy: to grow mini livers in living organisms. The work is in collaboration with Eric Lagasse, a stem cell biologist at the University of Pittsburgh, who showed lymph nodes are excellent ‘bioreactors’ for growing different types of cells, including liver cells.

 The liver made up of hepatocytes

The liver – made up of hepatocytes – has the capacity to regenerate after surgery. Image: Ed Uthman/Flickr

Lymph nodes filter damaged cells and foreign particles out of the body’s lymph system, which transports fluids around the body. When someone is ill, T cells from the immune system move to the lymph nodes to be cloned and released back to the bloodstream en masse to take on the microbe causing the illness.

For the past five years, Fontes and Legasse have been working with large animal models, infusing hepatocytes into the lymph nodes of pigs. ‘Within two months, it is amazing, but you have mini livers in the lymph nodes,’ he explains. ‘When you compare the mini liver with normal livers, they look very similar.’

 a pig

Pigs are common animal models as they have similar organ systems to humans. Image: Pixabay

The mini livers weigh a few grams and would not offer a complete replacement for failed livers, but rather a supplement of liver tissue in patients with end stage liver disease who are too sick to undergo a transplant.

‘A lot of these patients have significant heart and lung problems, so would not sustain a full transplant,’ says Fontes. ‘The idea is to sustain their life by increasing their liver mass by creating new small ectopic livers within their lymph nodes.’

Compared with artificial livers, artificial heart technology is much further along the road to the clinic. To date, around 2000 artificial hearts have been implanted in patients, with demand driven similarly by an acute shortage of donors.  

heart gif

Originally posted by electric-hearts-war

‘We wanted an artificial heart very similar to the natural human heart,’ explains Nicolas Cohrs at ETH Zurich in Switzerland. ‘Our hypothesis is that when you mimic the human heart in function and form you will have fewer side effects.’

Cohrs and his colleagues aim to print their artificial hearts so that they fit precisely into an individual patient. This is not yet close to clinic, but promises a tailored heart.

‘We take a CT scan of a patient, put it in a computer file and design an artificial heart around it, so it closely resembles the patient heart,’ says Cohrs. ‘We use these 3D printers and print a mould in ABS [acrylonitrile butadiene styrene], which is the plastic Lego is made of, fill it with silicone and then dissolve the mould with acetone to leave behind the silicone heart.’

Testing a soft artificial heart. Video: ETH Zurich

The plastic heart deflates and inflates with pressurised air. The first-generation device, made from silicone, has two chambers but survived for only 2000 beats. ‘This is only half an hour, so there is a lot of improvement needed,’ adds Cohrs.

A new prototype made from a more resistant [so far, undisclosed] polymer has managed more than a million beats, which is the equivalent of 10 days for a human heart. The goal is to develop a four-chamber heart that beats for 10 years, so a lot more work is still needed.