Halogen vs Non-halogen Flame Retardants: Some inconvenient truths!
(with apologies to Al Gore)

Prof Dick Horrocks
University of Bolton
Bolton
BL3 5AB

SCI FMG conference, 5th November 2015, Glasgow
Inorganics (& N-containing) < Halogen (plus synergist) < Organophosphorus

Eg.
Alumina trihydrate (ATH) (< magnesium hydroxide (MDH))
Zinc borate (APP)
Melamine + salts
Intumescents
Zinc stannates

Eg.
Chloro- and bromo- phosphates
Decabromodiphenyl ether (Deca)
Hexabromocyclododecane (Hexa)
Tetrabromobisphenol A (TBBPA)
Bromine-containing polymeric eg Brominated polystyrene Poly(pentabromobenzyl acrylate)

Eg.
Triaryl phosphates
Resorcinol bis(diphenyl phosphate) (RDP)
Aluminium diethyl phosphinates
THP-derivatives eg Proban
Cellulose reactive phosphonamides eg Pyrovatex
Potential eco-toxicity?

- **Bromine** under the spotlight:
 - Persistent organic pollutants (POPs)
 - Currently banned BrFRs include polybromobiphenyls and octa- and penta-bromodiphenyl ethers (2003-2005)
 - Withdrawn: “hexa” (2015)
 - Partially withdrawn/under threat: “deca”
 - Under scrutiny: Tetrabromo-bisphenol A (TBBPA)

- **Phosphorus**?
 - Essential to life
 - Organophosphate agrochemicals have known H&S issues
 - Nerve agents are based on organophosphorus!

- **Nitrogen**?
 - Basis of protein chemistry
 - Melamine: 2008 - Chinese baby’s milk adulteration!
 - Nox (NO₂) and air pollution (Guardian, 2 April, 2015: 29000 deaths in UK per annum)

- **Carbon??**
 - Carbon monoxide is the main killer in fires!
Relative effectiveness and concentrations

• For acceptable (ie pass “standard” test requirements) FR levels:
 – 5-15 wt% Bromine (requires synergist eg antimony III oxide)
 – 1-2 wt% Nitrogen (usually in combination with phosphorus)
 – 1-3 wt% Phosphorus
 – >55 wt% Aluminium/magnesium hydroxides!
Relative effectiveness

- For acceptable (ie pass "standard" test requirements) FR levels:
 - 5-15 wt% Bromine (requires synergist eg antimony III oxide)
 - 1-2 wt% Nitrogen (usually in combination with phosphorus)
 - 1-3 wt% Phosphorus
 - >55 wt% Aluminium/magnesium hydroxides!

Most BrFRs contain 40-80% Br but require ATO with Sb/Br=1/3
Typical “Deca”/ATO combination present at 2:1 mass ratio
Total [BrFR+ATO] levels 10-25 wt% in final polymer.
Relative effectiveness and concentrations

• For acceptable (ie pass "standard" test requirements):
 – 5-15 wt% Bromine (requires synergist eg antimony III oxide)
 – 1-2 wt% Nitrogen (usually in combination with phosphorus)
 – 1-3 wt% Phosphorus
 – >55 wt% Aluminium/magnesium hydroxides!

Melamine salts rich in nitrogen:
- Melamine cyanurate (MC): 49% N
- Melamine polyphosphate (MPP); 37.5%N (and ~14%P)
- Urea: 47%N
Relative effectiveness and concentrations

- For acceptable (ie pass “standard” test requirements) FR levels:
 - 5-15 wt% Bromine (requires synergist eg antimony III oxide)
 - 1-2 wt% Nitrogen (usually in combination with phosphorus)
 - 1-3 wt% Phosphorus
 - >55 wt% Aluminium/magnesium hydroxides!

Most PFRs contain 8-15%P and so 1-3% wt P ~ 5 - >30 wt% in the formulation; additional N-containing species may also be required (eg melamine salt)
Relative effectiveness and concentrations

- For acceptable (ie pass “standard” test requirements) FR levels:
 - 5-15 wt% Bromine (requires synergist eg antimony III oxide)
 - 1-2 wt% Nitrogen (usually in combination with phosphorus)
 - 1-3 wt% Phosphorus
 - >55 wt% Aluminium/magnesium hydroxides!

Most hydrated inorganics at >55 wt% significantly reduce properties of the polymer matrix.
Polymer spectrum

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Copolymerics</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>EVA</td>
<td>PA6, PA6.6, etc</td>
</tr>
<tr>
<td>PP</td>
<td>PVC-acrylate</td>
<td>HTPA</td>
</tr>
<tr>
<td>PS</td>
<td>Styrene acrylate</td>
<td>PET</td>
</tr>
<tr>
<td>PVC</td>
<td>Synth. rubbers/elastomers</td>
<td>PBT</td>
</tr>
<tr>
<td></td>
<td>Styrenics/HIPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polyurethanes</td>
<td></td>
</tr>
</tbody>
</table>

Thermosets:

- Vinyl & Unsat. polyester
- Epoxy
- Phenolics
Polymer spectrum

Commodity

PE PP PS PVC

EVA
PVC-acrylate
Styrene acrylate
Synth. rubbers/elastomers
Styrenics/HIPS
ABS
Polyurethanes

i. BrFR/synergist (~15%Br for V-0)

ii. P-N FR (25-30% for V-0)

iii. ATH (>60% for V-0)

Engineering

PA6, PA6.6, etc
HTPA
PET
PBT

Thermosets:

Vinyl & Unsat. polyester
Epoxy
Phenolics
Polymer spectrum

Commodity

PE
PP
PS
PVC

Copolymerics

EVA
PVC-acrylate
Styrene acrylate
Synth. rubbers/elastomers
Styrenics/HIPS
ABS
Polyurethanes

Thermosets:

Vinyl & Unsat polyester
Epoxy
Phenolics

BrFR/synergist, P-N FRs require balance to maintain correct physical properties

ATH or similar often present as an FR component with BrFRs or PFRs
i. **BrFR/synergist, P-N** FRs require high temperature (>250°C) resistance;

ii. Many non-aromatic FR structures and simple P-compounds eliminated;

iii. Total [FR] ≤ 20 wt% if mechanical/electrical properties to be maintained

Thermosets:
- Vinyl & Unsat. polyester
- Epoxy
- Phenolics

Engineering
- PA6, PA6.6, etc
- HTPA
- PET
- PBT
Polymer spectrum

Commodity

PE
PP
PS
PVC

Thermosets:

Vinyl & Unsat. polyester
Epoxy
Phenolics

Engineering

BrFR/synergist effective in all types;
ii. Br-comonomers also effective;
iii. P-N FRs as additives (high levels) reduce resin strength;
iv. P-comonomers for epoxies
“New/recent” Technologies

• Nanotechnology
 – Nanoparticles alone reduce ignition times, slow down overall burning rate
 – Nanoparticles + FR can reduce total [FR] required;
 – eg EVA/65%ATH ~ EVA/45%ATH/5%nanoclay (Kabelwerk, Belgium)
 – Nanoparticles on surface can create fire protective ceramic layer

• Surface treatments
 – Thermally thin (<4mm):
 Must still generate high levels of FR required for normal bulk polymer (eg 1-3%P, 5-15%Br, 1-3%N, etc)
 – Plasma
 – Sol gel
 – Layer-by-layer
 – Thermally thick (>4mm), then surface layers can form fire barriers (eg The “fire resistant paint” effect).
Volatile Phosphorus?

- **Hastie & Bonnell (1980):** Volatile P via HPO⁻. And similar radicals are as effective as Br⁻ radicals at terminating flame chemistry radical reactions.
- **Horrocks et al, (2008):** Volatile P (as tributyl phosphate or Fyrol 51(oligomeric phosphate-phosphonate)) essential in a textile coating as a potential BrFR replacement.
- **DOPO** (dihydro-oxa-phosphaphenanthrene oxide): polyesters, epoxies?
- **Al dialkyl phosphinate:** PA6, PA66, HTPA, PET, PBT
Three Case studies

• Textile back coatings
• Polyolefins
• Engineering polymers
1. Textile backcoatings

• Work at Bolton 1999-2007
 – [BrFR] may be reduced significantly if other FRs (eg, P-NFRs, ATH) present
 – P-NFRs function ONLY on 100% cotton if mobilised (ie fluid or volatile) <300°C ($T_{ig} \sim 350^\circ C$); APP best of examples tried
 – Addition of heavy metal salts may reduce melting/liquefaction temperature of APP
 – Best results obtained in a condensed + vapour phase active formulation *(specific to 100% cotton)*:

 Pentaerythritol phosphate + Fyrol 51 + Melamine
 (Char former) (Volatile P) (Volatile nitrogen)
2. Polyolefins (HDPE)

- **BrFR vs P-NFR for V-2 in HDPE**
 - >30-35 wt% of proprietary P-N intumescent
 - 10 wt% (~8 wt% Br) DecaBDE + 3.5 wt% ATO

- **BrFR vs synergist (antimony III oxide vs zinc hydroxy stannate)**
 - 17 wt% (~12 wt% Br) BrFR + 2 wt% ATO
 - **14 wt%** (~10 wt%Br) BrFR + 4 wt% ZHS
3. Engineering polymers

- Ideally total [FR] ≤ 20 wt%
- Often contain glass fibre (~30 wt%)
- Work at Bolton 2008-2014 for PA6, PA6.6 and HTPA suggests:
 - With BrFRs (especially polymeric BrFRs), zinc stannate (ZS) often more effective than ATO and so total [BrFR] may be reduced;
 - Some evidence that Sn-P synergies exist; at present time in PA6 only V-2 achieved with ZS + PFR
 - In HTPA 15wt% PFR may be reduced to ~11wt% if ~4wt% ZS present AND smoke reduced by ~20%
Conclusions

• Current climate demands that ALL flame retardant presence is reduced in consumer products.

• To attack bromine and promote a total ban on BrFRs will divert the attention to the next “easy target”, P-NFRs

• FR development should be based on interactive combinations of individual components such that:
 – [total FR] is minimised in any given substrate;
 – Flame retardancy and hence fire safety are maximised

• There is no “silver bullet” based on a single flame retardant!