Blog search results for Author: Cassie Sims

Policy

At this month’s Vitae Connections Week Event, Amanda Solloway, Member of Parliament and Minister for Science, Research and Innovation, spoke about the promoting a culture of wellbeing for researchers and improving the way we evaluate research success.

Academia has long had cultural issues, including harassment, inequality and the overall high-pressure environment. Though there are great examples of effective career mentorship and support by many senior academics, often early career researchers, particularly those from underrepresented groups, are exposed to the dark side of academia.

In her speech, Amanda Solloway speaks of the ‘Publish or Perish’ mantra that penetrates academic culture; the pressure to publish research and win grants in order to be successful in scientific research. Amanda also spoke on the short term and casual contract culture, something most early career academics are all too familiar with, and the harassment and bullying that takes place in academia, with around half of researchers having experienced bullying or harassment in the workplace.

So what can be done? These problems are not new, or surprising, to anyone who has worked in academia. The perfect world solution involves a vast systemic change, an uprising of equality within academic departments across the world. This can only happen if, as Amanda rightfully suggests, there is an increase in diverse and sustainable funding. Consistently, large grants, which allow researchers to develop independent research careers, hire new talent and maintain stable job roles within their institutions, are disproportionately awarded to those who fit a certain mould, with underrepresented groups constantly underfunded. This creates an ongoing system of inequality, and a review of how these grants are awarded is essential for academic culture to evolve.

 a stressed student

Stress, high-pressure working and elitism are common in academia.

In addition to large scale systemic changes, more needs to be done to help the wellbeing of researchers and crush the culture of high academic expectations. Stable, long-term job roles form one part of this, and the pressure to publish research is a huge part of academic life. However, the wellbeing of early career researchers is often affected by a culture of harassment, discrimination and elitism. For example, the #MeToo movement shook the world, with the exposure of sexual harassment in academia being no exception to this. The recent increase in online events from Black Scientists is empowering, but also highlights the struggles of being a minority group in science and academia in 2020. Every day, the academic Twitter space is filled with early career researchers speaking of their ongoing problems getting through a career in academic research.

The assessment and valuation of researchers based on metrics needs to be switched up. Often, the value placed on outputs like scientific publications disadvantages those who do not fall into a particular group, those who do not have to take on extra responsibilities, something which disproportionately affects women for example. It gives an advantage to those who have support, both through finances and mentorship. It is a self-perpetuating cycle of exclusion, where success is not measured on the individuals work. Amanda Solloway is right, that many researchers are passionate, driven, love their research, and it isn’t reflected in the outputs. Many of those researchers leave academia to seek a happier and more stable existence elsewhere when we should be fighting to keep them.

 a mental health infographic

Mental health and wellbeing often suffers in academia. Inforgraphic by Zoe Ayres.

As a young woman starting out on an academic career, I have experienced my fair share of these problem, including sexism, high-pressure working and mental health problems. It fills me with fear to see how things never appear to get better as you move through the ranks. I am extremely passionate about my research, but I cannot disagree with the sentiment of the PhD student Amanda spoke to: “I just can’t see myself having a future in research”. Personally, I will keep trying, but the idea of being a successful academic, within the culture of academia we sit in right now, feels like a pipe dream.

This motion from Amanda Solloway to “create a culture that welcomes the widest range of viewpoints, experiences and approaches” and “provide funding… properly and sustainably” is hopeful. A systemic change to academic culture is needed, and this can be fuelled by diversifying funding, providing more stable career progressions for early career academics and creating a workplace that is a supportive, encouraging and safe place to be.


Materials

Dinosaurs were some of the largest creatures to ever roam the Earth, but the mystery of how they supported their great weight remains. A new study published in PLOS ONE now indicates that the answer may lie in their unique bone structure, which differs from mammals and birds.

The bone is made up of different layers of different consistency, including the spongy interior, or trabecular. This part of the bone is formed of porous, honeycomb like structures.

A group of inter-disciplinary researchers, including palaeontologists, mechanical engineers, and biomedical engineers, analysed trabecular bone structure in a range of dinosaur samples, ranging from only 23 kg to 8000 kg in body mass. Their study found that the structure of dinosaur bones possessed unique properties allowing them to support large weights.

‘The structure of the trabecular, or spongy bone that forms in the interior of bones we studied is unique within dinosaurs,’ said Tony Fiorillo, palaeontologist and one of the study authors. ‘Unlike in mammals and birds, the trabecular bone does not increase in thickness as the body size of dinosaurs increase, instead it increases in density of the occurrence of spongy bone. Without this weight-saving adaptation, the skeletal structure needed to support the hadrosaurs would be so heavy, the dinosaurs would have had great difficulty moving.’

Their analysis included scanning the distal femur and proximal tibia bones from dinosaur fossils, and modelling how mechanical behaviour may have occurred. The research team also used allometry scaling – a method of understanding how physical characteristics change with physical size. They then compared the architecture of the bones to scans of both living and extinct large animals, such as Asian elephants and mammoths.

a walking cartoon dinosaur gif

Originally posted by manucalavera

Researchers hope that they can apply their findings to design other lightweight structures such as those used in aerospace, construction, or vehicles.

‘Understanding the mechanics of the trabecular architecture of dinosaurs may help us better understand the design of other lightweight and dense structures,’ said Trevor Aguirre, mechanical engineer and lead author of the paper.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237042


Agrifood

The fruits of Viburnum tinus, a Mediterranean flowering shrub, have a secret property that gives them a vibrant, metallic blue colour without relying on pigments. Blue fruits are uncommon in nature, due to the rarity of blue pigments, but a recent study, published in Current Biology, investigated the colour properties of the nutritionally valuable fruits of V. tinus and found it originates from unique structural features.

 Viburnum tinus

Viburnum tinus, a Mediterranean flowering shrub

Usually, pigmentation in fruits arises from the presence of flavonoid compounds, specifically anthocyanins. V. tinus is an important food source for birds, which are attracted to the vibrant colour. In turn for nutrition, the birds disperse the plant’s seeds.

Using microscopy and spectroscopy techniques, researchers investigating the stunning metallic properties of V. tinus fruit uncovered nanostructures of lipids in its cell walls. These structures may act as a double signal to birds, indicating these fruits are full of nutritious fats. These nanostructures differ from regular plant cell walls, which are made of cellulose, and lipids are normally only stored within the cell and used for transport. This distinctive structural property of V. tinus fruit allows it to create the blue colour without containing any pigment.

 bluefruitsinnature

Blue fruits are uncommon in nature

“Structural colour is very common in animals, especially birds, beetles, and butterflies, but only a handful of plant species have ever been found to have structural colour in their fruits,” says co-first author Miranda Sinnott-Armstrong, a researcher at the University of Colorado-Boulder. “This means that V. tinus, in addition to showing a completely novel mechanism of structural colour, is also one of the few known structurally coloured fruits.”

The researchers hope this work can help to understand how birds identify nutritious food, and that the interesting structural colour properties could be exploited to provide safe and sustainable food colourants.

“There are lots of problems connected to food coloration,” says Silvia Vignolini, senior author from the University of Cambridge. “Once this mechanism is better understood, it could potentially be used to create a healthier, more sustainable food colorant.” 


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at mercury and some of its reactions.

 Mercury

Mercury is a silver, heavy, liquid metal. Though mercury is a liquid at room temperature, as a solid it is very soft. Mercury has a variety of uses, mainly in thermometers or as an alloy for tooth fillings.


Mercury & Aluminium

 mercury gif

Mercury is added directly to aluminium after the oxide layer is removed. Source: NileRed

The reaction between mercury and aluminium forms an amalgam (alloy of mercury). The aluminium’s oxide layer is disturbed When the amalgam forms, in the following reaction:

Al+ Hg → Al.Hg

Some of the Al.Mg get’s dissolved in the mercury. The aluminium from the amalgam then reacts with the air to form white aluminium oxide fibres, which grow out of the solid metal.


Mercury & Bromine

 mercury and bromine gif

Mercury and bromine are the only two elements that are liquid at room temperature on the periodic table. Source: Gooferking Science

When mercury and bromine are added together they form mercury(I) bromide in the following reaction:

Hg2 + Br2 → Hg2Br2

This reaction is unique as mercury can form a metal-metal covalent bond, giving   mercury(I) bromide a structure of Br-Hg-Hg-Br

 

Pharaoh’s Serpent

 igniting mercury

Making the Pharaoh's Serpent by igniting mercury (II) thiocyanate. Source: NileRed

The first step of this reaction is to generate water-soluble mercury (II) nitrate by combining mercury and concentrate nitric acid. The reaction goes as follows:

Hg + 4NO3 → Hg(NO3)2 + 2H2O + 2NO2

Next, the reaction is boiled to remove excess NO2 and convert mercury(I) nitrate by-product to mercury (II) nitrate. The mixture is them washed with water and potassium thiocyanate added to the mercury (II) nitrate:

Hg(NO3)+ 2KSCN→ Hg(SCN)2 + 2KNO3

The mercury (II) thiocyanate appears as a white solid. After this is dried, it can be ignited to produce the Pharaoh’s serpent, as it is converted to mercury sulfide in the following reaction:

Hg(SCN)2 → 2HgS + CS2 + + C3N4

The result is the formation of a snake-like structure. Many of the final products of this process are highly toxic, so although this used to be used as a form of firework, it is no longer commercially available.

Though many reactions of mercury look like a lot of fun, mercury and many of it’s products is highly toxic - so don’t try these at home!


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at helium.

balloons

Originally posted by rusticstyle


Discovery

Helium was first discovered by French astronomer Jules Janssen in 1868 when observing the spectral lines of the Sun during a solar eclipse. He initially thought the unidentified line was sodium, later concluding it was an element in the sun unknown to Earth.

In March 1895, Sr William Ramsey, a Scottish chemist, isolated helium on Earth for the first time by treating a mineral called cleveite with mineral acids. He was initially looking for argon, but noticed his spectral lines matched that of Jules Janssen’s.

 balloons

Helium was discovered when Jules Janssen was observing the solar eclipse spectra.

Helium is a colourless, non-toxic and inert gas. It is the second lightest and second most abundant element in the universe.  


Applications

Helium is often used for cryogenic (cooling) purposes. Liquid helium has a temperature of -270°C or 4K, which is only 4°C above absolute zero. It is utilised for cooling super conducting magnets.

 MRI

Helium is used to cool superconducting magnets used in MRI. Image: Pixabay

Super conducting magnets have applications in imaging such as nuclear magnetic resonance (NMR), used for analysing molecules, and magnetic resonance imaging (MRI), a medical imaging device. These techniques are important for scientific research and medical diagnostics.

Helium can also be used a pressurising gas for welding and growing silicon wafer crystals, or as a lifting gas for balloons and airships.

 airship

Helium is also used in airships and balloons. Image: Pixabay


Squeaky voices

A commonly known use of helium is to fill balloons often found at parties and events. When people breathe in the helium gas from these balloons, their voice changes.

As helium is much less dense that nitrogen and oxygen, the two gases that make up regular air, sound travels twice as fast through it. When you speak through helium, the timbre or tone of your voice is affected by this change, causing it to appear higher in pitch.

Why is helium so important? Video: SciShow

Unfortunately, helium is a non-renewable resource, and reserves are running out. There is currently no cheap way to create helium, so industries need to be vigilant when using it, and we may see less helium balloons in the future.

 

Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and sciblog.com.

 child running gif

As part of my PhD programme – the BBSRC Doctoral Training Partnership (DTP) with the University of Nottingham – I have had the opportunity to do a 12-week internship in something different to research. Today, I am going to tell you why I think every PhD student should step outside their comfort zone and do an internship.


1.       Expand your community

Doing a PhD internship allows you to temporarily leave the academic bubble, and meet some new and different people. During my internship, I had the opportunity to engage with members of SCI’s community, including a range of industrial partners, academics and other early career scientists.

black panther gif

Originally posted by brodiel

Attending events at SCI HQ has given me the chance to network with people I may never have met otherwise, gaining valuable connections and career advice. I was also able to see the range of work that goes on in chemistry and the chemical industry, including the variety of different career paths that are available.

Taking a step back from the practical side of science can also allow you to gain an appreciation for other areas of science. Learning about science in journalism and digital media will inform my decisions when trying to communicate my research to the general public in the future.

 reading newspaper gif

2.       Gain transferable skills

Undertaking an internship in an area that you are unfamiliar with will diversify your skills. Digital media has taught me many new skills, such as social media and Photoshop, but also refined skills that are valuable and transferable.

The main skills I have worked on are my writing and editing capabilities. I have found my flow for writing, learnt about proofreading, and refreshed my memory in grammar and spelling. These skills will be incredibly useful when trying to write a PhD thesis, and my experience will shine on my CV when applying for future jobs.

 friends gif

3.       A break from the lab

A PhD can be an overwhelming experience; sometimes it can feel like you are drowning in lab work and data analysis. Doing an internship means you can take a few months to escape, allowing you the chance to free your mind from data and reactions.

During my internship, I have had time to think about my research in more depth, considering options and planning, instead of rushing into things. The opportunity to take a step back means I will be re-entering the lab with clear, coherent plans and a new-found energy.

 phone gif

Although I have missed the rush of scientific research, my internship has taught me useful skills and allowed me to meet so many interesting people. I have really enjoyed my time in the SCI Digital Media team, and I would urge anyone considering an internship to take the leap. 

I hope to continue working with SCI through the Agri-Food Early Careers Committee and other SCI activities that I am involved with.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is an element which gives us life, oxygen.


Physical Properties

Oxygen is a group 5 gas that is found abundantly in nature. Of the air we breathe, 20.8% is oxygen in its elemental, diatomic form of O2. Oxygen is also one of the most abundant elements in nature, and along with carbon, hydrogen and nitrogen, makes up the structures of most of the natural world. Oxygen can be found in DNA, sugar, hormones, proteins and so many more natural structures.

Although oxygen mainly exists as a colourless gas, at -183°C it can be condensed as a pale blue liquid. Oxygen may seem unsuspecting, but it is highly reactive and highly oxidising. A common example of this reactivity is how oxygen reacts with iron to produce iron oxide, which appears as rust.

Elements: Oxygen, with Dr Andrea Sella. Source: Wellcome Collection

Oxygen molecules are paramagnetic – they exhibit magnetic characteristics when in the presence of a magnetic field. Liquid oxygen is so magnetic that the effect can be seen by suspending it between the poles of a powerful magnet.

Oxygen gas has applications for medicine and space travel in breathing apparatus.


Ozone

Oxygen can be found as ozone or O3. Ozone is a pale blue gas and has a distinctive smell. It is not as stable as diatomic oxygen (dioxygen) and is formed when ultraviolet light (UV) and electrical charges interact with O2.

The highest concentration of ozone can be found in the Earth’s stratosphere, which absorbs the Sun’s UV radiation, providing natural protection for planet Earth.

 ozone layer

Ozone (O3) is most concentrated in the stratosphere. Image: Pixabay

Ozone can be used industrially as a powerful oxidising agent. Unfortunately, it can be a dangerous respiratory hazard and pollutant so much be used with care.


Water

Water consists of an oxygen atom and two hydrogen atoms. Though this may seem remarkably unassuming, this combination gives water unique properties that are crucial to it’s functions in the natural world.

water stream

Originally posted by wiccangoddes

Water can form hydrogen bonds between the slightly positive hydrogen and the slightly negative oxygen. These hydrogen bonds, along with waters other practical properties, make water useful in nature.

Without the hydrogen bonding found in water, plants could not transpire – transport water through their phloem’s against gravity. The surface tension of water provides stability for many natural structures.

 lilypad

Oxygen plays a key role in nature, including in water molecules. Image: Pixabay

Oxygen plays a key role in nature, from the ozone layer that encapsulates our planet, to our DNA. It’s combination with hydrogen in water makes a molecule which is integral to the natural world, and both water and oxygen itself are pivotal to our existence the planet.


Policy

To celebrate World Poetry Day, today we look at how poetry and science interlink, and how poetry can be a unique medium for science communication.

 old book

History

Poetry and science have an interesting history – John Keats once said that Isaac Newton, one of the most prominent scientists of the time, had ‘destroyed the poetry of the rainbow by reducing it to a prism’. However, poetry can be a powerful tool to disseminate scientific research to a wider audience.

In 1984, J. W. V. Storey published his works on ‘The Detection of Shocked CO Emission’ in The Proceedings of the Astronomical Society of Australia as a lengthy poem. He even noted on the paper that his colleagues may wish to dissociate themselves from the presentation style.

image

A note from J. M. V. Storey’s paper dissociating his colleagues from the poetry style. Source:  The Detection of Shocked CO Emission

Modern Science Poetry

Notable British poet Ruth Gabel, also the great-great-granddaughter of Charles Darwin, has written a plethora of poetry about science, including works on Darwin’s writings. She has written a multitude of poems, mainly on zoology and genetics.

In 2015, Professor Stephen Hawking, world-renowned physicist, collaborated with poet Sarah Howe to write a poem about relativity for National Poetry Day in the UK.

Stephen Hawking reads “Relativity” By Sarah Howe Film Bridget Smith. Source: National Poetry Day

Poetry can also be utilised for outreach, especially for younger audiences. The SAW Trust is a charity that uses art and poetry to engage school children in science. SAW Trust was founded by Professor Anne Osbourne, Associate Research Director and Institute Strategic Programme Leader, Plant and Microbial Metabolism at the John Innes Centre, Norwich, UK. The charity inspires children to find a love for science through the arts.

Science and poetry, or more generally art have always been interlinked, and by using poetry we can spread science to a wider audience.

 

Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. British scientists, engineers and inventors have played a significant role in developing engines and the automotive industry that stemmed from them.

steam train gif

Originally posted by suffocating-in-the-void

Steam power

Before the internal combustion engine, steam power was revolutionary in progressing industry in Britain. 

The first practical steam engine was designed by English inventor Thomas Newcomen in 1712 and was later adapted by Scotsman James Watt in 1765. Watt’s steam engine was the first to make use of steam at an above atmospheric pressure.

The Steam Engine - How Does It Work? Video: Real Engineering  

In 1804, the first locomotive-hauled railway journey was made by a steam locomotive design by Richard Trevithick, an inventor and mining engineer from Cornwall, UK. 

After this, steam trains took off and the steam engine was used in many ways such as powering the SS Great Britain, designed by Isambard Kingdom Brunel and launched in 1843.

 SS Great Britain
The SS Great Britain in Bristol, UK, today.

Engines at the ready

The conception and refinement of the internal combustion engine involved many inventors from around the world, including British ones. 

The automobile, using the internal combustion engine, was been invented in the United States, and Britain picked up on this emerging industry very quickly. These brands are among the most famous and abundant cars on the road today; Aston Martin, Mini, Jaguar, Land Rover and Rolls Royce may come to mind.  

 car engine

By the 1950s, the UK was the second-largest manufacturer of cars in the world (after the United States) and the largest exporter.

In 1930, the jet engine was patented by Sr Frank Whittle. He was an aviation engineer and pilot who started his career as an apprentice in the Royal Air Force (RAF). The jet engine became critical after the outbreak of World War II.

raf jet

Originally posted by aviationgifs

Great Britain are still major players in the aviation industry, and engineering innovations continue to be a major part of the British economy. British inventors have gone on to invent the hovercraft, hundreds of different jet designs and a variety of military vehicles.


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. First, we are delving into genetics and molecular biology – from Darwin’s legacy, to the structure of DNA and now modern molecular techniques.

The theory of evolution by natural selection is one of the most famous scientific theories in biology to come from Britain. Before Charles Darwin famously published this theory, several classical philosophers considered how some traits may have occurred and survived, including works where Aristotle pondered the shape of teeth. 

These ideas were forgotten until the 18th century, when they were re-introduced by philosophers and scientists including Darwin’s own grandfather, Erasmus Darwin.

 colorful bird

Darwin used birds, particularly pigeons and finches to demonstrate his theories. Image: Pixabay

In 1859, Darwin first set out his theory of evolution by natural selection to explain adaptation and speciation. He was inspired by observations made on his second voyage of HM Beagle, along with the work of political economist Thomas Robert Malthus on population.

Darwin coined the term ‘natural selection’, thinking of it as like the artificial selection imposed by farmers and breeders. After publishing a series of papers with Alfred Russel Wallace, followed by On the Origin of Species, the concept of evolution was widely accepted.

 darwin gif

Although many initially contested the idea of natural selection, Darwin was ahead of his time, and further evidence was yet to come in the form of genetics.


Double Helix

Gregor Mendel first discovered genetics whilst working on peas and inheritance in the late 19th century. The unraveling of the molecular processes that were involved in this inheritance, however, allowed scientists to study inheritance and genetics in a high level of detail, ultimately advancing the field dramatically. 

A major discovery in the history of genetics was the determination of the structure of deoxyribose nucleic acid (DNA).

 double helix

DNA was first isolated by Swiss scientists, and it’s general structure – four bases, a sugar and a phosphate chain – was elucidated by researchers from the United States. It was a British team that managed to make the leap to the three-dimensional (3D)structure of DNA.

Using x-ray diffraction techniques, Rosalind Franklin, a British chemist, discovered that the bases of DNA were paired. This lead to the first accurate model of DNA’s molecular structure by James Watson and Francis Crick. The work was initially published in Nature in 1953, and would later win them a Nobel Prize.

The age of genetic wonder. Source: TED

By understanding the structure of DNA, further advances in the field were made. This has lead to a wide range of innovations, from Crispr/CAS9 gene editing to targeted gene therapies. The British-born science has been utilised by British pharmaceutical companies – pharma-giants GlaxoSmithKline (GSK) and AstraZeneca use this science today in driving new innovations.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today, on International Women’s Day, we look at the two elements radium and polonium and the part Marie Curie that played in their discovery.


Who is Marie Curie?

 Marie Sklodowska and her future husband Pierre Curie

Marie Sklodowska and her future husband Pierre Curie.

Marie Sklodowska-Curie was born in 1867 in Poland. As a young woman she had a strong preference for science and mathematics, so in 1891 she moved to Paris, France, and began her studies in physics, chemistry and mathematics at the University of Paris.

After gaining a degree in physics, Curie began working on her second degree whilst working in an industrial laboratory. As her scientific career progressed, she met her future husband, Pierre Curie, whilst looking for larger laboratory space. The two bonded over their love of science, and went on to marry, have two children and discover two elements together.

vial gif

Originally posted by savagebeastrecords

After finishing her thesis on ‘Studies in radioactivity’, Curie became the first woman to win a Nobel Prize, the first and only woman to win twice, and the only person to win in two different sciences.

Curie, along with husband Pierre and collaborator Henri Becquerel, won the 1903 Nobel prize in Physics for their radioactivity studies, and the 1911 Nobel prize in Chemistry for the isolation and study of elements radium and polonium.

 nobel prize

Curie won the Nobel prize twice in two different subjects. Image: Pixabay

As of 2018, Curie is one of only three women to have won the Nobel Prize in Physics and one of the five women to be awarded the Nobel Prize in Chemistry.


Polonium

Polonium, like radium, is a rare and highly reactive metal with 33 isotopes, all of which are unstable. Polonium was named after Marie Curie’s home country of Poland and was discovered by Marie and Pierre Curie from uranium ore in 1898.

 homer simpson radioactive gif

Polonium is not only radioactive but is highly toxic. It was the first element discovered by the Curies when they were investigating radioactivity. There are very few applications of polonium due to its toxicity, other than for educational or experimental purposes.


Radium

Radium is an alkaline earth metal which was discovered in the form of radium chloride by Marie and her husband Pierre in December 1898. They also extracted it from uranite (uranium ore), as they did with polonium. Later, in 1911, Marie Curie and André-Louis Debierne isolated the metal radium by electrolysing radium chloride.

 radiotherapy

The discovery of radium led to the development of modern cancer treatments, like radiotherapy.

Pure radium is a silvery-white metal, which has 33 known isotopes. All isotopes of radium are radioactive – some more than others. The common historical unit for radioactivity, the curie, is based on the radioactivity of Radium-226.

Famously, radium was historically used as self-luminescent paint on clock hands. Unfortunately, many of the workers that were responsible for handling the radium became ill – radium is treated by the body as calcium, where it is deposited in bones and causes damage because of its radioactivity. Safety laws were later introduced, followed by discontinuation of the use of radium paint in the 1960s.

Marie Curie: A life of sacrifice and achievement. Source: Biographics

Curie’s work was exceptional not only in its contributions to science, but in how women in science were perceived. She was an incredibly intelligent and hard-working woman who should be celebrated to this day.

 

Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and soci.org/blog.

funny gif internship blog

Originally posted by a-little-bit-of-thisandthat

Undertaking an internship in digital media has exposed me to a completely new part of science. As a young scientist, we are regularly taught the value of communicating our work, but often we are not taught how to best do this. 

There are many nuances and tricks to getting digital media to be the most engaging it can be, and here are a few that I have learnt over the last couple of months.


Know your audience

Before you start producing any kind of content, you need to know your audience. Are they scientists or the general public, early- or late-career, students or professionals? Understanding your target demographic can help you make informed decisions about the media or topic you choose, and how you write the piece.

 child chemist

It is crucial to know who your audience is!

It is important to keep your audience in mind at every stage of the process, from conception of the idea, to writing, presentation and marketing. By targeting your piece, you will produce a higher quality piece of content and have much more engagement overall.


Image is important

When presenting a piece of work to the world, be in a long-read article or just a Tweet, image is crucial. Choosing images or photographs to best display your message takes time and careful curation. 

Images can be obtained from a wide variety of sources, from stock photo websites, such as Shutterstock or Pixabay, to original images you may have designed or photographed. Remember to always give credit where appropriate. 

emoji gif

Originally posted by darokin

At SCI we are big fans of gifs and emojis. When targeting a younger audience, or using more informal media like out blog, these can engage and draw the eye much more than a standard image. This again requires meticulous decision-making skills, and it can be crucial to know the meanings behind each emoji.


Trust your gut

A large part of science communication is choosing which science to communicate. This involves selecting topics and editing to the most critical and interesting information.

 At SCI, we release innovation news pieces on a regular basis, where we choose the most exciting science news from the week. This involves looking through press releases, and sometimes selecting one piece from hundreds can be a daunting task.

funny gif internship blog

Originally posted by onlyonepisode

One thing I have learnt during my time at SCI is to trust that I can select something that people will want to read. When pitching ideas for articles and blog pieces, I have learnt to value my own opinion in what is engaging and relevant science that our members and the broader public might want to read about.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about iodine and some of the exciting reactions it can do!


Iodine & Aluminium

 iodine and aluminum gif

Reaction between iodine and aluminum. These two components were mixed together, followed by a few drops of hot water. Source: FaceOfChemistry

Reactions between iodine and group 2 metals generally produce a metal iodide. The reaction that occurs is:

2Al(s) + 3I2(s) → Al2I6(s)

Freshly prepared aluminium iodide reacts vigorously with water, particularly if its hot, releasing fumes of hydrogen iodide. The purple colour is given by residual iodine vapours.


Iodine & Zinc

 Zinc and iodine gif

Zinc and iodine react similarly to aluminium and iodine. Source: koen2all

Zinc is another metal, and when it reacts with iodine it too forms a salt – zinc iodide. The reaction is as follows:

Zn + I2→ ZnI2

The reaction is highly exothermic, so we see sublimation of some of the iodide and purple vapours, as with the aluminium reaction. Zinc iodide has uses in industrial radiography and electron microscopy. 


Iodine & Sodium

 Iodine reacting with molten sodium gif

Iodine reacting with molten sodium gives an explosive reaction that resembles fireworks. Source: Bunsen Burns

As with the other two metals, sodium reacts violently with iodine, producing clouds of purple sublimated iodine vapour and sodium iodide. The reaction proceeds as follows:

Na + I2→ 2NaI

Sodium iodide is used as a food supplement and reactant in organic chemistry.


Iodine Clock reaction

 iodine clock reaction gif

The iodine clock reaction – a classic chemical clock used to study kinetics. Source: koen2all

The reaction starts by adding a solution of potassium iodide, sodium thiosuphate and starch to a mixture of hydrogen peroxide and sulphuric acid. A set of two reactions then occur.

First, in a slow reaction, iodine is produced:

H2O2 + 2I + 2H+ → I2 + 2H2O

This is followed by a second fast reaction, where iodine is converted to iodide by the thiosulphate ion:

2S2O32− + I2 → S4O62− + 2I

The reaction changes colour to a dark blue or black.


Elephants toothpaste

 elephants toothpaste reaction gif

The elephant’s toothpaste reaction is a favourite for chemistry outreach events. Source: koen2all

In this fun reaction, hydrogen peroxide is decomposed into hydrogen and oxygen, and catalysed by potassium iodide. When this reaction is mixed with washing-up liquid, the oxygen and hydrogen gas that is produced creates bubbles and the ‘elephant’s toothpaste’ effect.

There are lot’s of fun reactions to be done with iodine and the other halogens (fluorine, bromine, chlorine). 

Iodine’s sublimation to a bright purple vapour makes it’s reactions visually pleasing, and great fun for outreach events and science classes.

 

Sustainability & Environment

How does climate change impact agriculture? Our Agrisciences group will be hosting an event on 6 March to look at just that!

Not only does climate change have a significant impact on agriculture, and the future of food security, but agricultural practices also directly contribute to climate change. Scientists, farmers and policy makers are coming together to find dynamic solutions to the problems caused by climate change in agriculture.

 

Agriculture provides food. Comprising of a variety of different farming systems, from crops to livestock, agriculture exists in almost every part of the world. Agriculture relies on knowing your geography – its soil properties, local pests and wildlife – but most importantly, the local climate. When these factors start to change, farming becomes a challenge.

We are already experiencing the effects of climate change, and turbulent or extreme weather is becoming more of the norm. As much as environmentalists can try to combat the development of these problems, agriscientists and farmers need to work together to overcome problems.


Consequences of climate change

One of the main consequences of climate change is a temperature increase. Even a slight temperature change can result in a significant effect on crop yields. Further to that, temperature change can result in drought, which affects the soil and plants alike, and lead to a change in pest numbers. An increase in atmospheric CO2 can also affect crops and livestock. Crops that thrive in higher CO2 levels will do better, but others may be negatively affected.

 beetle on a plant

Not only will crop growth be affected directly by the weather, we could see a change in the diversity and number of pests. Image: Pixabay

Extreme weather events are also rapidly increasing in frequency. These include tornadoes, floods, heat waves, all of which can have quickly detrimental effect on farms. The 2018 British summer heat wave significantly affected crop farming in the UK.

As well as being affected by it, agriculture itself contributes to climate change. An estimated 10-20% of greenhouse gases are produced by agriculture, mainly from livestock.

cows gif

Originally posted by livekindlyco


Addressing the challenge

It is easy to consider that the impact of climate change on agriculture is something which can feel beyond our control. However, it is a dynamic challenge, and brings together scientists, academics, farmers, industry and policy makers, to overcome the negative impacts that a changing climate can have on agricultural systems.

Firstly, scientists can work to breed crops that are more resilient to these changes. They can identify genes for traits like heat and drought tolerance, pest resistance and stability under extreme conditions.

 crops

Solutions include plant breeding, GM crops, smart crop protection, policy changes and large collaborations across sectors. Image: Pixabay

Livestock farmers can help to curb climate change by introducing new diets that produce less overall methane. Other farmers can make shifts in their farming systems to more sustainable practices.

Policy makers can help with reducing the impact of climate change on agriculture. Not only by supporting environmental policies that potentially reduce the effects of climate change, they can also encourage scientific developments and relevant legislation relating to pest control, GM plants and other key areas.

Alterations to consumer practices can also reduce the impact of agriculture on climate change, and changes need to be made at all levels of the farming and supply chain.

How does climate change affect agriculture? Source: Syngenta

Overall, many parties need to collaborate to help to reduce the impact of agriculture on climate change, and help to overcome the problems that the future might hold, ensuring food security through a changing climate.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about sulphur, specifically sulphites and their significance to the wine industry.

 wine glass

Sulphites and wine - what is all the fuss about? Image: Pixabay


What is a sulphite?

Sulphites are compounds that contain the sulphite ion (sulphate (IV) or SO32- ). There a wide-range of compounds of this type, but common ones include sodium sulphite, potassium bisulphite and sulphur dioxide.

Sulphites are often added as preservatives to a variety of products, and help maintain shelf-life, freshness and taste of the food or drink. They can be found in wines, dried fruits, cold meats and other processed food. Some are produced naturally during wine-making however, they are mainly added in the fermentation process, protecting the wine from bacteria and oxidation.

wine pouring gif

Originally posted by settebelllo


Sneezing and wine

Sulphites have a bad reputation for causing adverse reactions, such as sneezing and other allergic symptoms. But are sulphites really allergens, or just another urban myth?

Despite it being one of the top nine listed food allergens, many experts believe that the reaction to sulphites in wine can be considered not a ‘true allergy’, rather a sensitivity. Symptoms only usually occur in wine-drinkers with underlying medical issues, such as respiratory problems and asthma, and do not include headaches.

 sneezing

Some people report sneezing and similar symptoms when drinking wine.

Sulphites are considered to be generally safe to eat, unless you test positive in a skin allergy test –some individuals, particularly those who are hyperallergic or aspirin-allergic, may have a true allergy to sulphites. Sufferers of a true allergy would not suffer very mild symptoms if they consumed sulphites, instead they would have to avoid all food with traces of sulphite.

Some scientists believe adverse reactions to red wine could be caused by increased levels of histamine. Fermented products, such as wine and aged cheese, have histamine present, and red wine has significantly more histamine than white wine. They suggest taking an anti-histamine around one hour before drinking to help reduce symptoms.


Sulphite-free wine!

Despite it not being considered a true allergen, wine-makers must still label wine as containing sulphites. In 1987, a law was passed in the US requiring labels to be placed on wine containing a large amount of added sulphites. Similarly, in 2005, a European law was brought in to regulate European wine labelling. Sulphites are now often listed as a common allergen on bottle labels in wines that have over 10mg/l.

 wine bottles

You can often find the words ‘contains sulphites’ on a wine bottle. Image: Pixabay

Many food and drink industries are producing products suitable for allergy sufferers, and winemakers have followed this trend by beginning to make sulphite-free wine. These are mainly dry red wines that contain high levels of tannins, which act as a natural preservative. Wines without added sulphites are generally labelled as organic or natural wines and have grown in popularity over the last few years, but unfortunately, many wine critics believe that these naturally preserved wines sacrifice on flavour and shelf life.

In summary, sulphites are a common preservative, not only found in wine, but a range of food, and do not generally cause allergic reactions. If you are an individual with a true sulphite allergy, you may want to try sulphite free wine – but you will have to compromise on shelf life!

wine gif 2

Originally posted by key-change

 

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the highly reactive gas, fluorine.

Elusive element

Fluorine wasn’t discovered until the 19th century, and even now very few chemists have seen elemental fluorine. Fluorite – fluorine’s source mineral – was used industrially as far back as the 16th century, but elemental fluorine wasn’t made until much later.

Fluorite is the mineral form of calcium fluoride (CaF2) and can be found in a wide variety of colours – from pastel free, to burgundy, and even purple or golden yellow. Many samples of fluorite can also be seen fluorescing under UV light. Fluorite’s main industrial use is as a source of hydrogen fluoride (HF), a highly reactive acid. It can also be used to lower the melting point of raw materials, such as steel.

 Fluorite

Fluorite has been used in industry for hundreds of years and is fluorescent under UV light. Image: Pixabay

In 1886, French chemist Henri Moissan first made elemental fluorine by electrolysing a mixture of potassium fluoride and hydrogen fluoride. He later won the Nobel Prize in Chemistry for his work. 

Large-scale production of fluorine first began during World War II, where it was used to separate uranium for the Manhattan Project – the United States’ nuclear weapons development project.


Highly reactive

Fluorine is known for its high reactivity. It is the most electronegative element, which means it can react with almost every other element in the periodic table. Despite being difficult to handle, fluorine and fluorine containing compounds have many real-world applications.

Due to its reactivity, elemental fluorine must be handled with great care. Fluorine reacts with water to produce hydrogen fluoride, which is such a powerful acid it can eat through glassware.

Fluorine’s reactivity isn’t all bad – in fact, it has hundreds of applications. One of the most common uses of fluorine is the fluorides in toothpaste. 

toothpaste gif

Originally posted by adamvanwinden

These fluorides exist usually as tin or sodium fluoride, and when you brush your teeth they react with calcium in the enamel to make it less soluble to acids. This gives some protection to your teeth from acidic foods such as fizzy drinks or juices.


Fluorochemical industry

The fluorochemical industry began in the 1930′s and 40′s with DuPont, who commercialised organofluorine compounds on a large scale. They developed Freon-12 (dichlorodifluoromethane) after General Motors showed chlorofluorcarbons (CFCs) could be used as refrigerants. The two companies joined together to market Freon-12, which quickly replaced previously used toxic kitchen refrigerants.

ozone layer hole gif

Originally posted by asapscience

CFCs were found to be creating holes in the ozone layer, contributing to global warming. Image: Pixabay

CFCs were later banned by a number of countries due to the damage they caused to the ozone layer. More environmentally friendly fluorine-based alternatives are now used in refrigeration, including hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).

DuPont continued to pioneer the industry, when recently hired chemist Roy J Plunkett accidentally discovered polytetrafluoroethylene, also known as the polymer Teflon. Tests of the mysterious white polymer he had generated showed its’ high temperature stability and resistance against corrosion were significantly higher than any other plastic. It only took three years for large-scale production to begin.

Fluorine – Professor Martyn Poliakoff. Video: Periodic Videos

The development of Teflon lead to many other similar fluorine-containing polymers appearing on the market, including PTFE, which is used in breathable rainwear by the Gore-Tex business and was developed by Robert Gore, the son of ex-DuPont employee Bill Gore.

The fluorochemicals industry continues to grow to this day; in 2017 the global market was estimated at $17.6 billion.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the exciting group one element, lithium!

 lithium

Lithium has a wide range of uses – it can even power batteries!


Bipolar disorder

Lithium was first discovered in mines in Australia and Chile, and was initially used to treat gout, an arthritic inflammatory condition. Its use as a psychiatric medication wasn’t established until 1949, when an Australian psychiatrist discovered the positive effect that lithium salts had on treating mania. Since then, scientists have discovered that lithium works as a mood stabiliser by targeting neurotransmitters in the brain.

brain activity gif

Originally posted by buddhaismyhomeboy

Neurotransmitters are chemicals that are released by one neuron to send a message to the next neuron. There are several types found in humans including dopamine, serotonin and glutamate. Each has a different role, and different levels of each neurotransmitter can be linked to a variety of mental illnesses. However, it is an increase in glutamate – an excitatory neurotransmitter that plays a role in learning and memory – and has been linked to the manic phase of bipolar disorder.

 lithium sals in tablet

Lithium salts have been used as a medication for mania effectively since 1949. Image: Pixabay

Lithium is thought to stabilise levels of glutamate, keeping it at a healthy and stable level. Though it isn’t a fully comprehensive treatment for bipolar disorder, lithium has an important role in treating the manic phase and helping researchers to understand the condition.


Battery power

One of the most common types of battery you will find in modern electronics is the lithium ion battery. This battery type was first invented in the 1970s, using titanium (IV) sulphide and lithium metal. Although this battery had great potential, scientists struggled to make a rechargeable version.

out of battery gif

Originally posted by wreckedteen

Initial rechargeable batteries were dangerous, mainly due to the instability of the lithium metal. This resulted in them failing safety tests and led to the use of lithium ions instead.

 liion battery

Lithium-ion batteries are widely used and developments in the technology continue today.

Developments in lithium ion technology continue to this day, in which the recently-founded Faraday Institute plays a large role. As part of the Faraday Battery Challenge, they are bringing together expertise from universities and industry, supporting projects that develop lithium-based batteries, along with new battery technologies.


Nuclear fusion

Nuclear fusion happens in a hollow steel donut surrounded by magnets. The large magnetic fields contain a charged gas known as plasma, which is heated to 100m Kelvin and leads to nuclear fusion of the deuterium and tritium in the plasma. Keeping the plasma stable and preventing it from cooling is one of the largest industrial problems to overcome. This is where lithium comes in.

nucleur fusion gif

Originally posted by civisiii

Results from studies in which lithium is delivered in a liquid form to the edge of the plasma, show that lithium is stable and maintains its temperature and could potentially be used in controlling the plasma. It can also increase the plasma temperature if injected under certain conditions, improving the overall conditions for fusion.

Lithium has uses in plasma stabilisation in nuclear fusion. Video: Tedx Talks

Aside from its uses in nuclear fusion, lithium has other uses in the nuclear industry. For example, it is used as an additive in coolant systems. Lithium fluoride and other similar salts have a low vapour pressure, meaning they can carry more heat than the same amount of water.

 


Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and soci.org/blog.

 sci staff pass

The SCI staff pass makes a change from the conference lanyards I am used to.

I am studying for my PhD as part of the Biotechnology and Biological Sciences Research Council (BBSRC) and University of Nottingham Doctoral Training Programme (DTP). I’m currently stationed at Rothamsted Research, a research institute in Hertfordshire, studying insect olfaction, specifically in aphids. 

A DTP involves completing rotations in different labs, a variety of training days and an internship, alongside your PhD studies. The internship is expected to be three months working in a role not directly applicable to your PhD studies, and is designed to give you a break from the lab to explore different potential career options.

 digital media

Working in digital media is a big contrast from my usual lab work.

When choosing where to undertake my internship, I was presented with a world of possibilities. There was working in industry, policy, marketing or for a charity. Prior to even considering an internship, I had done a lot of volunteering with the Society of Chemical Industry, being a member of their Agrisciences Group and Agrifood Early Career Committees. 

I had even previously written for the blog about experiences as PhD student. Having really enjoyed my prior work with them, it seemed logical to ask whether they would host me for my internship – and they said yes! I was accepted to do a three-month internship in the digital media team starting in January 2019.

cat gif

Originally posted by usedpimpa

My first month working with SCI has been a whirlwind of activity. There have been lots of opportunities already, from writing for the website and SCI Blog, to running their social media accounts. Recently, I was asked to help cover an SCI conference, which presented an entirely different experience to that which I had had with conferences before. 

The conference was on formulation – an area of chemistry I am completely unfamiliar with – and there was a wide-range of talks from academics to industry partners. It was a unique experience to listen to technical talks in something you have never studied, and the variety of real-world applications piqued my interest.

 sci building

Commuting to London everyday takes some getting used to, but it is a privilege to work in such a beautiful building.

There are huge differences between working at SCI and Rothamsted. Aside from the obvious differences in the work, there’s the London commute, dressing smart, and most importantly, the exposure to the wide variety of science covered across the chemical industry. 

Coming from an academic science background, my brain has been filled with new knowledge, particularly in relation to the intersection of industry and policy, such as the Chemistry Council and Industrial Strategy. This new knowledge, along with my training in digital media, will certainly be beneficial to my future scientific career.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the first element in the periodic table, hydrogen!

 hot air balloon

Hydrogen isn’t just for keeping balloons afloat. Image: Pixabay


Hydrogen engineering

Hydrogen (H2) gas has many uses in modern engineering. Scientists are always searching for cheaper, more renewable fuel sources that have a lower negative impact on the environment. Hydrogen was frequently used to generate energy in the past, and this drive for more renewable energy has given hydrogen-derived fuel a new lease of life.  

Hydrogen can be used in fuel cells. These act like batteries, generating their energy from a reaction between hydrogen and oxygen (O2). Hydrogen fuel cells have been incorporated into many modern technologies, including automotive. As the reaction occurring only generates heat, electricity and water, fuel cells are significantly better for the environment than many alternatives. Hydrogen is also much cheaper as a commodity that typical fuels.  

 hydrogen fuel cell

Hydrogen fuel cells can now be used to power automotive vehicles, including cars! 

Engineering cooling systems can use hydrogen. The gases physical properties make it 7-10 times better at cooling than air. It can also be easily detected by sensors. Because of this, hydrogen is used in cooling systems, which are generally smaller and less expensive than other available options.


Chemical reactions

Hydrogen gas can be used in reactions. The most famous reaction using hydrogen is the production of ammonia (NH3), also known as the Haber process. The Haber process was developed by Fritz Haber and Car Bosch in the early 20th century to fill the need to produce nitrogen-based fertilisers. In the Haber process, atmospheric nitrogen (N2) is reacted with H2 and a metal catalyst to produce NH3.

 crop field

Nitrogen-based fertilisers are still used today, but ammonia was one of the first to be commercially produced.

Ammonia is a valuable fertilised, providing much needed nitrogen to plants. It was used on a variety of agricultural plants, including food crops wheat and maize, in the 19th and early 20th century.

Chemists undertake other chemical reactions, such as hydrogenation and reduction, that utilise hydrogen, to make commercially valuable products. Some physical properties of hydrogen make it tricky, and often dangerous, to use in industry. However, careful control of conditions allow for its safe use on larger scales.

hydrogen explosion gif

Originally posted by gifsofprocesses

Hydrogen gas can be explosive, making it often dangerous to use.


Producing hydrogen gas

There are many ways to produce gaseous hydrogen. The four main sources of commercially produced hydrogen are natural gas, oil, coal and electrolysis. To obtain gaseous hydrogen, the fossil fuels are ‘steam reformed’, a process which involves a reaction with steam at high pressure and temperature.

Electrolysis of water is another method that is used in hydrogen production. This method is 70-80% efficient. However, it often requires large amounts of energy, specifically in the form of heat. This heat can be sourced from waste heat produced by industrial plants. 

So, whats all this hot air about hydrogen? Source: Tedx Talks

An alternative method for producing hydrogen is via biohydrogen. Hydrogen gas can be produced by certain types of algae. This process involves fermentation of glucose. Some hydrogen is also produced in a form of photosynthesis by cyanobacteria. This process can be used on an industrial scale.

Overall, hydrogen technology, whether it be new developments, such as hydrogen fueled cars, or old, like the Haber process, remains critical to the chemical industry.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about one of the most abundant and most used elements, carbon!

Carbon-based life

Carbon could be called the element of life – it can be found in every living creature on Earth in a variety of different forms, from the backbone of your DNA, to the taste receptors in your tongue and the hormones controlling your hunger. Carbon-based chemistry surrounds us – in the air we breathe, in the food we eat and in the soil beneath our feet.

So, why is carbon so important to life? Carbon’s chemistry allows it to form large, intricate 3D structures, which are the basis of its interaction in biology – like jigsaw pieces that come together to build a tree, an elephant or a human being.

blossoming flower gif

Originally posted by sun-moon-and-roses

The study of carbon-based chemistry, or organic chemistry, has allowed us to better understand our living world and the interactions that occur, leading to development of better tasting food, higher yielding crops and more efficient medicines to improve our health. 

In the early 19th century, chemist Justus von Liebig began synthesising organic, carbon-based molecules and said: ‘The production of all organic substances no longer belongs just to living organisms.’ 

Since then, hundreds of organic compounds for medicinal use have been synthesised – from adrenaline to ibuprofen – and hundreds of unique synthesis pathways have been described.

 carbon

Organic chemistry – the study of carbon-based chemistry – has given us hundreds of modern medicines. 


Carbon in materials

Atoms of carbon can make four bonds, each with another carbon attached, to arrange themselves into different molecular structures and form completely different substances. These molecular structures, known as allotropes, can result in vast differences in the end-result material. 

For example, one allotrope, diamond, is the hardest and highest thermally conductive of any natural material, whereas another, graphite, is soft enough to be used in pencils, and is highly conductive of electricity.

Graphene is carbon allotrope that exists in thin, 2-dimensional layers, with the carbon atoms arranged in a honeycomb formation. Scientists had theorised its existence for years, but it was not isolated and characterised until 2004 by Andre Geim and Konstantin Novoselov at the University of Manchester, UK. The pair won the 2010 Nobel Prize in Physics for their work. 

 carbon atoms in graphene

The structure of carbon atoms in graphene.

Graphene is a highly conductive, flexible and transparent – this means it can be used in electronics, medical biotechnology, and a variety of other innovative solutions.

Another innovative material made from carbon is carbon fibre, which can then produce carbon-fibre reinforced polymer (CFRP). CFRP is a polymer interwoven with fibres of carbon, which is 5-10μm in diameter. The mixture of these two materials gives an extremely strong but lightweight material, useful in building products from aerospace and automotive, to sports equipment and technology.


Fueling the world

The name carbon comes from the Latin carbo meaning coal, and until recently most of our energy was generated by the consumption of carbon through the burning of naturally occurring carbon-based fuels, or fossil fuels. When these fuels, such as coal, natural gas and oil, are burnt, the combustion reaction generates carbon dioxide (CO2). 

 burning fossil fuels

CO2, produced by burning fossil fuels, is thought to be a contributor to climate change. Image: Pixabay

High production of the by-product CO2, and its release into the atmosphere, is considered to have a negative environmental impact and is thought to contribute to global warming and climate change. Fossil fuels are not a renewable resource and supplies are expected to diminish in the next 50-100 years. 

Consequently, there has been a movement towards more renewable energy, from wind, solar and hydropower, driving a move towards a low-carbon economy. These energy sources are generally considered to be better for the environment, with lower amounts of CO2 being produced.

Chemical engineer Jennifer Wilcox previews some amazing technology to scrub carbon from the air, using chemical reactions that capture and reuse CO2. Video: TED

In this strive for a low-carbon economy, new technology is being used that prevents the release of COinto the atmosphere in the first place. Carbon capture and storage (CCS) takes waste COfrom large-scale industrial processes and transports it to a storage facility. This CCS technology is one of the only proven, effective methods of decarbonisation currently available.



Agrifood

On Friday 11 May 2018, 20 delegates, ranging from Master’s students to post-docs, gathered at the SCI headquarters in London for a careers day in Agri-Food. 

This was the first event organised by the newly formed SCI Agri-Food Early Careers Forum, and had six speakers presenting the perspectives of varying careers – Prof Lin Field (Rothamsted Research), Rhianna Jones (Institute of Food Technologists), Prof Tim Benton (University of Leeds), Dr Rebecca Nesbit (Nobel Media), Dr Bertrand Emond (Campden BRI), and Dr Craig Duckam (CD R&D Consultancy Service). 

Delegates were treated to a variety of talks, ranging from advice on working within research to stepping outside of the research box into science communication or private consultancy. Over the course of the day, three common skills were covered by all leaders when discussing how they achieved success in their careers.

The first of these was networking. Every talk covered aspects of this, from going to conferences and events to being a good communicator. Building connections can be the key to getting job offers, learning about new opportunities, and even knowing where best to take your career. 

image

Professor Tim Benton Image: Cassie Sims

Prof Tim Benton spoke about the importance of working in teams, and of showing respect to other professionals, especially if they work in a different area. Dr Rebecca Nesbitt spoke about careers communicating science, specifically the broad range of media that can be used, and how to get involved. Rhianna Jones spoke about taking opportunities to be mentored, particularly from societies and professional organisations, such as SCI and the Institute of Food Technologists.

image

Lin Field, Rothamsted Research

The second skill that was covered in depth was adaptability. Initially, Prof Lin Field spoke about this in a practical context – building a set of laboratory and general scientific skills that can be carried across disciplines. 

However, each speaker had a different perspective. For example, Dr Craig Duckham spoke of learning new skills when setting up a private consultancy, such as accounting, business, and even web design and marketing. Prof Tim Benton summarised it well, stating we need to ‘look at the big picture’, and think strategically about where our skills can be used to better the world. He stated that we “need to be willing to re-invent ourselves”. Everyone agreed that we can achieve this by diversifying our portfolio of skills and taking as many opportunities as possible.

image

Lead, don’t follow

Each speaker spoke about being a leader, not a follower. This is a phrase that is used often in reference to achieving success, but is so important in every aspect of career development. Whether it is applying for a fellowship, or stepping out to start your own business, leadership skills will carry you through your career. A leader was described as someone who makes decisions, carves out a niche rather than following trends, and who sets an example that others follow naturally.

Overall, the speakers challenged delegates to consider what their idea of success is, and what skills they need to get there. The day was enjoyed by all delegates, and the advice given will help guide them throughout their future careers. The event could be summarised by this quote from Einstein, given by Prof. Benton on the day:

image

Try not to become a [person] of success, but rather try to become a [person] of value.

The event is planned to run for a second year in Spring 2019.


image

Agrifood

 Cassie Sims

Cassie Sims is a PhD researcher at Rothamsted Research in Harpenden, UK. Photo: Rothamsted

Rothamsted Research is the oldest agricultural research station in the world – we even have a Guinness World Record for the longest running continuous experiment! Established in 1843, next year we celebrate our 175th anniversary, and as a Chemistry PhD student at the institute today, I can’t wait to celebrate.

 Wheat samples2

Wheat samples from the record-breaking Broadbalk experiment. Photo: Cassie Sims

Rothamsted is known for many amazing scientific accomplishments, and it has a rich history, which I have explored through many of the exhibitions put on by the institute for the staff every month or so. 

 old labs set up

One of the old labs set up for the exhibitions we hold at Rothamsted. Photo: Cassie Sims

Working in what was the Biological Chemistry department, I am following in the footsteps of Chemists such as Michael Elliott, who developed a group of insecticides known as pyrethroids. These are one of the most prolific insecticides used in the world, still widely used today and researched here at Rothamsted – in particular, the now-prevalent insecticidal resistance to them. 

I was privileged to view an exhibit of Michael Elliott’s medals late last year at Rothamsted – one of the opportunities we are given as staff here. Recently, I was also able to view a collection of calculators and computers from the earliest mechanical ones, to Sir Ronald Fisher’s very own ‘Millionaire’ Calculator, which could multiply, add and subtract entirely mechanically.

 Sir Ronald Fishers Millionaire Calculator

Sir Ronald Fisher’s ‘Millionaire’ Calculator. Photo: Cassie Sims

In more recent times, Rothamsted has had an update (a little more than a lick of paint) with newer buildings, labs and equipment constantly being added. My office and lab are situated in the architecturally interesting Centenary building, which was built only 10 years ago. Some of the research has had an update too – plant science research is a bit more focused on molecular biology these days, and our chemistry has been significantly advanced over the last century by advances in analytical equipment. 

bug gif

Originally posted by fujinliow

A few years ago, Rothamsted was briefly the centre of media attention due to a ‘controversial’ GM field trial testing wheat made to emit (E)-β-farnesene, the aphid alarm pheromone, and whether the plants could repel aphids. 

SPOILER ALERT: 

…they couldn’t, but this was one of the first type of GM trials of its type, and it was an interesting study that combined many disciplines of science, from molecular biology and plant science, to entomology and chemical ecology.

sack race gif

Originally posted by southwestcollectionarchives

Rothamsted is not just about science, either – we have a few longstanding social traditions such as Hallowe’en parties and Harvest Festival, not forgetting of course my favourite; our summer Sports Day, which provides much entertainment in the form of serious research scientists participating in sack races to win some outstandingly tacky trophies. We also have an onsite bar (if that is what you could call it), which is a little more like a converted cricket club, and serves as a venue for most events, and has been the location of many of my great memories.

If I had to describe being a student at Rothamsted in one word, it would be weird! There is a lot of fun to be had, but we are also surrounded by an incredible history that we cannot forget as we forge a new path in our fields (literally and scientifically!).

 cassie sims2

I hope one day that I can leave some kind of mark here – but even if not, I will be happy to have been part of such a prestigious institute and to have worked alongside such great scientific minds.

What are the sustainability challenges being tackled by researchers at Rothamsted? Sir John Beddington, Chair of the Rothamsted Research Board gave this talk at SCI in London in September – part of our ongoing programme of free-to-attend public evening lectures.