Blog search results for Theme: Careers

Science & Innovation

How do you get large audiences to read about your work? Roger Highfield, Science Director of the Science Museum, and Steve Scott, Public Engagement Lead of UK Research and Innovation, shared their insights at a recent webinar organised by SCI.

‘When I talk to people about science writing – when I’m talking about the introduction – I ask them to practise on a long-suffering friend and read a couple of paragraphs of what they’ve written. If they reach for their phone, you’ve done something wrong.’

Some people’s observations should be taken with a liberal fistful of salt, but Roger Highfield is certainly worth listening to when it comes to connecting with the public. As Science Director of the Science Museum Group, he helped engage with more than five million visitors in 2019/20 alone and has written and edited thousands of articles as Science Editor of the Daily Telegraph and Editor of New Scientist.

SCIblog - 22 November 2021 - SCItalk: How to engage with millions of people - image of Roger Highfield

Roger Highfield, Science Director of the Science Museum

So, how can you reach large audiences with scientific content? First of all, salience is important. How does what you’re talking about have a material effect on people’s lives? As Roger Highfield noted dryly: ‘People will be very interested in asteroids when one’s bearing down on the Earth.’

Citizen science and the long form Q&A

Similarly, the public has been voracious in its consumption of Covid-19-related content despite the complicated nature of the virus and vaccine development. During lockdown, Roger Highfield’s long form Q&A blogs about Covid-19 were hugely popular because, as he said, ‘there was a public appetite for a deeper dive into the science’.

Aside from writing in a way that decongests heavy, complicated subjects, it also helps to get your research in front of the right people, namely communications specialists. ‘One lesson for mass engagement is to work with media organisations,’ he added. ‘It’s more than a platform – you’re dealing with experts in public engagement.’

For larger organisations, citizen science is an excellent way to engage people by making them part of a project. The Great Backyard Bird Count is a fine example of citizen science at its simple, effective best, with thousands of bird-watchers helping provide a real-time snapshot of bird populations around the world.

Highfield has engaged with the public in all manner of citizen science initiatives, from recent online cognition tests in which 110,000 people took part, all the way back to an experiment asking people about the catchiest song in the world. ‘At the time, it was The Spice Girls’ Wannabe,’ he said. ‘People recognised it in 2.5 seconds.’

At its best, citizen science doesn’t just help you to engage people in your work; it can be used as a valuable way to gather information and provide unique perspectives. ‘Citizen science is not just a flash in the pan. The role is changing,’ said Steve Scott, Public Engagement Lead at UK Research and Innovation (UKRI). ‘It’s an effective way of gaining knowledge… bringing different forms of knowledge and expertise into research.’

SCIblog - 22 November 2021 - SCItalk: How to engage with millions of people - image of Steve Scott

Steve Scott, Public Engagement Lead of UK Research and Innovation

Scott used the University of West London-led Homes Under the Microscope project to illustrate his point. As part of this project, people in Bristol and Bradford will detect and monitor airborne microplastic sources in their homes and feed this information back to the project organisers to help assess the prevalence of these substances.

A cultural shift

If you’d like more people to read about your research or product, it’s also worth thinking about the way people consume media. According to Scott, the general public tends to consume science through televisions and museums (for example, a visit to the zoo), and people are most likely to follow up on scientific matters having seen them on the news.

Many people learn about science through social media and YouTube, but other vehicles are worth considering too if you want to raise awareness. The UKRI views gaming as a significantly untapped area of public engagement and is investing in this area. Another intriguing way to raise awareness of innovative research is through awards, with the recent, well publicised Earthshot Awards providing a case in point. ‘They’ve taken research grants,’ Scott said, ‘and made them into the Oscars.’

Encouragingly, as the means of communication are changing, so too is the readiness of researchers to share their work. Both Highfield and Scott have seen a large shift over the past 15 years or so, with more and more scientists communicating their research. ‘It’s recognised as being an important part of being a researcher now,’ Scott said. ‘You’re excited about [your research]… Why would you not talk to the public about it?

The big takeaway

So, what is the most important takeaway from the talks, apart from that all-important Spice Girls fact? Fundamentally, when you are communicating your research or peddling your company’s wares, it helps to narrow your focus.

Indeed, Scott reminded us that the public is not a homogeneous group. ‘If we want to engage with millions of people, we need to think of audiences as more than just the general public,’ he said.

He said that 75 per cent of the potential UK audience – roughly 49 million people – falls into one of two groups: they don’t think science is for them, or they’re inactive. So, it’s worth taking an in-depth look at your target demographic and the places it goes to for news before sharing your work.

Earlier, Roger Highfield emphasised the same thing. He said: ‘If there’s one thing I want you to take from this talk, it’s to think about the audience.’

>> Watch How to engage with millions of people in full on our YouTube channel at: https://youtu.be/HSOMQd958EQ

Science & Innovation

Continuing our profiles of Black scientists, Dr Jeraime Griffith, Chair of SCI’s Agrisciences Group, shares how a simple classroom experiment set him on the journey that has led to him analysing complex data to safeguard UK food security.

Jeraime GriffithWould you mind giving us a brief outline of your current role:
I am a Data Scientist. I work with a team of Data Scientists at the Food Standards Agency to build tools that maintain, forecast and predict threats to the UK’s food security.

Right: Dr Jeraime Griffith

What was it that led you to study chemistry/science and ultimately develop a career in this field? Was this your first choice?
At about age 10, in primary school, I had a teacher who explained to us how the human digestive system and saliva break down starch into sugars. To demonstrate this, he got some bread from the school kitchen and asked us to chew it until we started noticing a slight sweet taste. I decided then to be a scientist. This wasn’t my first choice however. Prior to that moment, I wanted to be a pilot.

Was there any one person or group of people who you felt had a specific impact on your decision to pursue the career you are in?
My parents were super supportive. After announcing that I wanted to be a scientist, I got a science dictionary for my birthday. I also had great teachers, both at primary and secondary school. At 13, we were doing hands-on chemistry experiments and helping to tidy the lab at the end of the school year.

Could you outline the route that you took to get to where you are now, and how you were supported?
Following a BSc and a PhD, both in chemistry, I worked for ChemOvation, Argenta Discovery (now part of Charles River Laboratories) and briefly at Novartis. I then went off to New Zealand for a two-year postdoc at Massey University in early 2009 to work with my former PhD supervisor who had relocated there.

On returning to the UK, I worked at Imperial College London, first at the Centre for Synthetic Biology, then over in Chemistry with Professor Tom Welton. It was towards the end of my time with Professor Welton that I began learning the programming language Python, which led me to data science. I’m now a Data Scientist at Cognizant, working with the Food Standards Agency.

I was fully supported, both in industry and academia, but it was in academia that I was afforded the freedom to explore my interests – particularly to use 20% of my time to do whatever I wanted.

Aerial tractor spraying oil seed rape crop

Jeraime helps safeguard UK food security and Chairs SCI’s Agrisciences group
Considering your own career route, what message do you have for Black people who would like to follow in your footsteps?
Allow some flexibility in pursuing your career. When I was questioning myself and my goals, I came across ‘Obliquity’, a book by John Kay. Sometimes diversions are the best way to get to your goals.

Seek out mentors, and I would say regardless of race, who can help you get there. Don’t be afraid to email them and briefly talk about your interest in the work they’ve done, what you have done and are doing now. I’ve found people are genuinely interested in helping you. This is how I learned about the Agrisciences group at the Society for Chemical Industry, which I joined and now Chair.

As for getting into data science, I did a 13-week intensive bootcamp. These are not for everyone as they are expensive and have a high demand on your time. However, there are a lot of free courses available. With this availability, it can be hard to find the good ones. The knowledge of the crowd can help. I’ve found Twitter to be our modern day equivalent to Ask Jeeves.*

What do you think are the specific barriers that might be preventing young Black people from pursuing chemistry/science? 
Lack of representation I think is the number one barrier. Impostor syndrome is bad at the best of times, but worse still if there’s no representation in the ivory tower.

What steps do you think can be taken by academia and businesses to increase the number of Black people studying and pursuing chemistry/science as a career?
Recruit people of colour with less experience to positions of responsibility. Trust us to perform and have the support in place when we falter.

Business coach rearview man gesturing

The experience that most defined Jeraime’s career path… a great teacher

Science is at the centre of addressing many of the big global issues. Do you hope that this will lead to more young Black people wanting to get involved in science and develop solutions? 
Yes. A low entry point is data science. Most of the tools we use are open source. Data for your area of interest are, for the most part, freely available and the data science community is helpful and engaging.

Could you share one experience which has helped to define your career path? 
Where I am now began in that class in primary school when I first learned about the human digestive system. So, my defining experience would be having a great teacher.       

*Note from the editor: Some youngsters may need to look up what Ask Jeeves is!

Edited by Muriel Cozier. You can read more of her work here.

Careers

As we build up to the 3rd SCI-RSC symposium on antimicrobial drug discovery, we spoke to Dr Anita Shukla, Associate Professor of Engineering at Brown University, about designing drug delivery systems to treat infection, creating a positive atmosphere in her lab, the challenges facing professionals in her industry, and much more.

SCIblog - 9 November 2021 - Women in Chem: Anita Shukla - Image of Anita Shukla, Associate Professor of Engineering at Brown University

Anita Shukla, Associate Professor of Engineering at Brown University

Tell us a bit more about the work being done in your lab.
All of what my lab works on is very biomedically orientated. The major thing we focus on is treating bacterial and fungal infections. We have a lot of interest in designing drug delivery systems to treat all sorts of bacterial and fungal infections, from localised infections to more systemic infections. We design nanoparticles, polymeric nanoparticles, self-assembled structures, surface coatings and larger-scale materials such as hydrogels that can be used as bandages.

We work on the material design for delivering antimicrobial therapeutics – antibiotics, antifungals and other antimicrobial components – and we study a lot about the properties of these materials. What sets us apart is that we’re trying to make materials that are smart, that are in some way targeted or responsive to the presence of bacteria or fungi.

So, to give you an example, we are working on making hydrogel wound dressings. These wound dressings are smart and can respond to the presence of bacteria and fungus. They know when bacteria and fungi are present, based on the enzymes that are there in the localised local environment of the hydrogel. They actually degrade only in the presence of those enzymes and release encapsulated nanotherapeutics.

And that’s really important because of antimicrobial resistance. So, we are trying very hard to provide effective therapies but limit exposure to antimicrobial therapeutics only to times that they’re needed. That’s the kind of work we’ve been doing over the past five or six years.

You’ve done some really interesting work on pregnancy care too. Tell us more about that.
So, that work was inspired by a graduate student who was very interested in women’s health and prenatal health. What we noted was that a lot of pharmaceutical agents that you must use when you’re pregnant don’t have enough information associated with their potential toxic side effects on a growing fetus. A lot of that testing is very difficult to do, so we thought: ‘Can we come up with model systems that could be used for the testing of pharmaceutical agents, toxins, and toxicants?’

The placenta really is the interface between the fetus and the mother and a lot of the nutrient and waste exchange happens through this organ. We wanted to come up with a model system that represents a placenta that was cell free and didn’t involve using an animal. So, what we did was we first studied cells taken from a placenta and the lipid composition of these cells, and then we made lipid bilayers out of synthetic lipids that mimicked the composition of placental cells at different trimesters during the pregnancy. And then we looked at how different small molecules (some of them were actually antimicrobial therapeutics) interact with these synthetic lipid bilayer models.

We noted the differences between the different trimesters and compositions of the placental cells in terms of the lipid content and how these toxicants, small molecules and pharmaceutical agents interacted. It’s early stage work but that same technology could be adapted for the purpose of high throughput testing in a cell-free environment for a range of applications.

What you do in your lab has a real-world effect. How important is that?
We’re very real-world application driven. I think the science is great, and we do a lot of fundamental science in the lab too, but the purpose is to solve real-world problems. Right now, with the pandemic, the work we’re doing on antimicrobial drug delivery is very relevant. The data show that bacteria and fungal co-infections for patients that have Covid-19 are increasing greatly and that’s heavily problematic. The antimicrobial resistance issue is just going to be exacerbated because these patients can also receive antibiotics and antifungals at the same time.

SCIblog - 9 November 2021 - Women in Chem: Anita Shukla - Image of Anita Shukla finding solutions to real-life problems at the Shukla Lab

Finding solutions to real-life problems at the Shukla Lab. Image courtesy of Brown University School of Engineering

How did you get to this point in your career?
The one big factor in where I ended up is my family. My family has always supported me tremendously and I’ve had a very positive role model of an academic and researcher in my father. That definitely got me early exposure, which exemplifies and solidifies the fact that early exposure is really important, which can come from your family, friends, teachers, and other role models.

When I started my undergraduate studies at Carnegie Mellon University, I thought I wanted to go into medicine at first, but then when I got there. I really enjoyed designing solutions that physicians would use. As an undergrad, I didn’t really know what I wanted to do in terms of the exact field of research; so, every summer I did a different research experience. In the first summer, I worked at the University of Rhode Island in a Mechanical Engineering lab. For the second summer, I worked at MIT in a materials science lab. And for my third summer, I worked in Columbia University in applied physics and mathematics. I also did research at Carnegie Mellon University with a faculty member in chemical engineering and just tried to get mentors and different experiences under my belt so I could get better informed in what I wanted to do. I then went to MIT to study chemical engineering for my graduate degrees.

Did any specific people help you along the way?
I worked with a faculty member at MIT, Paula Hammond, who’s now the department Head in Chemical Engineering at MIT. She was really an amazing influence for me. I definitely had strong female role models as an undergrad, but my graduate supervisor at MIT happened to be a strong black female scientist and that was hugely influential to me – to see that you can be a minority in STEM, really successful, and do it all. At the same time, she was very open about challenges for women in chemical engineering and not afraid to talk about it at all. She did a great job in promoting us and making sure we had the right mentoring during the five years of my PhD. So, I’m very grateful to her.

I did my postdoc at Rice University in the bioengineering department, and I worked with another really strong female mentor there. My postdoctoral advisor, Jennifer West – who is now the Dean of Engineering at the University of Virginia – was really amazing. I learnt a whole new set of things from her. In all of this, I can pinpoint that I’ve had many mentors. I would highly advise that regardless of what you are interested in doing in life, find those people who are out there to support you.

How did you end up at Brown?
I ended up at Brown in the School of Engineering as a tenure track assistant professor in the summer of 2013. Since then, all the time has gone into setting up my lab and advancing our science. It’s pretty much flown by. I’ve been extremely lucky. I’ve had amazing students and postdocs in my lab. They really produce everything that comes out of it. I’m just the spokesperson.

I love working with them. We have a very inclusive environment. We talk about a lot of diversity, equity, and inclusion-related concerns. I think that’s really important. We try to self-educate and educate each other on these topics. We have a welcoming environment and genuinely care that everyone in the lab feels respected. Because you can only do good science and good work if you work in a place where you are happy and respected and can be yourself.

What does a given working day look like?
It varies. A given day is chaotic due to work and having two small kids. My husband is also a professor at Brown so we both have similar demands on our time but a lot of my time goes into research and proposal writing. We need to raise funds to run a lab so we definitely spend a lot of time on that. Paper writing to get out work out is also super important.

My favourite things are meeting with my grad students and postdocs about research. I love meeting with them and talking with them about their data and generating new ideas together. This semester I am also teaching a class about advances in biomedical engineering over the past couple of years. Preparing those classes and making sure I am devoting time to them is important to me.

SCIblog - 9 November 2021 - Women in Chem: Anita Shukla - Image of Anita Shukla and a colleague at Brown University

‘One thing I always tell students is don’t doubt yourself. Go ahead and try.’ Image courtesy of Brown University School of Engineering

What challenges have you had to overcome in your career?
I've been extremely lucky, but there has been the two-body situation. It’s essentially having a working spouse and trying to figure out how to make it work so that you both have the careers you want in the same location. That took me and my husband five years to figure out.

My husband was in Texas and I was in Rhode Island and I had two babies with me while doing this academic career on my own. That’s incredibly challenging, but it’s extremely common. In general, I think industry and academia need to work harder to make it easier for individuals to figure out this situation and smoothen the transition.

There are other little things that come up that are challenging. I do often feel that I have to prove myself to my older male colleagues at times when I shouldn't have to. If I get into an elevator with a male colleague who’s exactly the same age as me, a senior male colleague might ask that colleague about his research, and I might be asked about my kids. I often think it’s not intentional – and I try to give people the benefit of the doubt – but I think there’s a lot of education that still needs to be done.

>> Interested in the latest on antimicrobial drug discovery? Register to attend the 3rd SCI-RSC symposium on antimicrobial drug discovery on 15 and 16 November.

What’s the current state of play in your sector with respect to diversity, equality, and inclusion?
There's a lot to do but there’s a lot more awareness now. We’re far from where we need to be in terms of representation of all sorts of individuals in academia. Really, it’s ridiculously appalling if we look at numbers of black individuals, women in STEM academics, or the grant funding that goes to these individuals. But I have seen over the past two years or so that there’s just been more people talking about it. In biomedical engineering, a group of around 100 faculty or so academics around the US gets together periodically over Zoom to talk about these topics, and there’s more awareness and content in our scientific forums.

What’s the greatest challenge for people developing antimicrobial materials or in biomedical areas?
With therapeutics, it’s the FDA approval timeline. It’s years later by the time they’re used. A lot of the time people shy away from working in therapeutics because they know how hard it is going to be to commercialise something in that area.

On an academic level for me as an engineer, it’s critical to figure out what the important challenges and problems are. We’re very lucky at Brown that we have a great medical school so we can talk to clinicians, but cross-talk between disciplines is super important right now.

What advice would you give to young professionals in your area?
One thing I always tell students is don’t doubt yourself. Go ahead and try. You can’t win a game if you don’t play it. I constantly run into individuals who say: ‘I didn’t apply for that because I didn’t think I was qualified’. Basically, I just tell them to apply – you have nothing to lose.

What are you and your students working on that you’re most excited about at the moment?
I really love everything we are doing! I love the fact that we are designing materials that are smart, so they respond to the presence of microbes. I think that could be groundbreaking in terms of prolonging the lifetime of our existing antimicrobial drugs. We also have some really great work going on in treating biofilms, which are incredibly problematic in terms of infections. It’s very hard to answer. I’m proud of everything we do.

>> In recent months, we’ve spoken to inspiring women who work in science. Read more about the stories of materials scientist Rhys Archer and Jessica Jones, Applications Team Leader at Croda.

Careers

Our careers often take us in unforeseen directions. Dr Jessica Jones, Applications Team Leader at Croda, chatted to us about moving from research into management, the benefit of developing softer skills, and her unexpected mentor.

Tell me about your career to date.
I came through university in what is probably seen as the ‘traditional’ way. I did a Master’s degree in chemistry at the University of Liverpool, with a year working in industry, which I really enjoyed. And then after I finished my Master’s, I did a PhD in Inorganic Chemistry at the University of Nottingham. I always wanted to work in industry, but I really enjoyed research, so I decided to do the PhD as I thought the skills would be useful for either career path.

SCIblog - 8 November 2021 - Women in Chem – Jessica Jones - Image of Jessica Jones in the laboratory

Jessica Jones in the lab

Were you tempted by a career in academia?
No, I never felt like I was the kind of person who had what it takes to succeed in academia. I never felt like I could ever come up with the nucleus of a new idea. I always felt like someone could give me the slimmest thread of a thought and I could turn it into something, but I could never have that thread myself. From my perspective, academia can be a lonely career and I enjoy and benefit from working in a team with other people.

So, after I finished my PhD, I joined Croda in 2013 as a Research Scientist in our synthesis division, in a synthetic chemistry R&D role. Over seven years, I progressed from Research Scientist to Lead Research Scientist and then Team Leader. During that time, I moved around a bit. I worked at different manufacturing sites, in different research areas and did lots of different projects across multiple sectors.

In February 2020, I was asked if I wanted to go on secondment, as a Team Leader, to one of our applications teams in Energy Technologies. Energy Technologies focuses on lubricants, oil and gas, and batteries. I really enjoyed the secondment and after it came to an end, I chose to take it on as a permanent position rather than return to my old role.

What does this role entail?
My role entails managing a team of application and lead application scientists who work on a range of projects, from designing new products to supporting customers with specific problems and working with universities on more theoretical, developmental ideas.

At the moment, we’re working on a lot of what we call EV (electric vehicle)-friendly fluids. When you move from traditional combustion engines to electric vehicles, there’s quite a change in the properties needed for the fluids within the engine. We make the speciality additives that go into the base oils that support functions such as reduced engine wear and improved fuel efficiency.

The EV market is very different to the traditional car market, which is dominated by big lubricant manufacturers. EVs are so new that Croda has been at conception discussions with world leading EV companies. The whole sector is very data driven and, coming from a research scientist background, that appeals to me very much. It’s very exciting to be at the cutting-edge of innovation with what we’re doing within electrification and renewable energy.

Which projects are you working on at the moment?
I’ve got two long-term new development projects that are both progressing to the final stages of manufacturing. These are products that I designed the chemistry for when working in the synthesis team. It can take four or five years to get a new project through the development process, and I’ve continued to manage them throughout their timeline, even though I have moved into different roles. They are both speciality additives for crude oil to reduce the temperature at which impurities develop, to allow the more difficult oil fractions to be brought out of the ground without it solidifying in pipes when they transport it.

SCIblog - 8 November 2021 - Women in Chem – Jessica Jones - Quote of Jessica Jones 

What does a general working day involve?
There are eight people in our team, and I am responsible for managing six of them. There are two other senior technical specialists I work alongside. They have lots of experience in the industry and working with academia, and the three of us coordinate the projects across the team.

My role is to translate the pipeline and the strategy from our senior leaders into what we do in the lab every day. I have three projects that I'm running, which are new product launches. Alongside that, I coordinate the project pipeline and make sure everyone is able to manage their projects and progress them. I do a small amount of lab work, but I would say it makes up 5% of my time.

I always thought I would be a specialist when I joined Croda because of my PhD and lab experience. However, over the time I’ve worked here, I started to really enjoy working with other people; and I think I probably realised I had better skills at motivating other people, building up teams, and networking. So that became a lot more important, and I chose to move into the management side of things but still within a technical function.

Interpersonal skills are sometimes underrated in management. How do you approach this side of the job?
I think I am quite at ease around other people as I am very extroverted. I think that makes me different from a lot of people in my team. For example, my boss and I are the total opposite of each other, but it works really well because it means that we complement each other perfectly. He’s very strategic and he likes to take his time to make decisions. He likes to review all the data very methodically and is good at using detail to evaluate a project’s true value, whereas I’m much more about talking to people, bringing everyone together and acting quickly to get things done. But I think the balance of both works incredibly well for us as a team.

During lockdown we received a webinar on personal resilience, and the session was about your outward projection to other people. About 70% of how you are perceived by others is made up of how people see you and your ‘brand’. Your technical expertise and actual ability to do your job only makes up about 20% of how people view you and how successful you are. And I think as a scientist, you get a bit focused on delivering the project successfully, thinking that you need to be really amazing at delivering data, but people forget about the need to work on themselves to develop as well.

What part of your job motivates you most?
It’s a combination. The science we’re working on is very exciting, and I really enjoy getting all the projects together, making sure everything fits together and that everyone’s doing the right thing. But emotionally, it’s the team that gets me up in the morning – coming in, seeing what they do, how they have been. I’ve been really lucky over the past 12 months, being able to see some of my colleagues really develop. I’ve taken a lot of pride in realising the impact you can have on other people and allowing yourself to take credit for that.

>> What is life like as a materials scientist? Take a look at our thought-provoking conversation with Rhys Archer, founder of Women of Science.

Which mentors have helped you along the way?
There’s one person who stands out. I was asked to take on this extra role to become a European technical rep in one of our business areas. I’d never done anything like that before so the idea that I was going to be put out there, in front of customers, as the technical expert for the business was quite terrifying.

I was to work with the European Sales Manager of the business, and we ended up traveling a lot together. He was the opposite to me. He’s very experienced but had a reputation as a bit of a loud, burly Yorkshireman and I wasn’t sure how we would fit together, but we got on like an absolute house on fire. He was so helpful to me, not just in giving feedback on what I was doing in the role, but general conversations about career and life outside of work and personal support. Having that kind of professional relationship develop has made a massive difference. Just meeting someone like that and having a person to go to when I needed help, someone who I really trust to have my best interests at heart. It was very beneficial for the number of years that we worked together. Since then, we have moved on to different roles, but we still stay in touch, and it has taught me the value in reaching out to different people to help me to develop.

SCIblog - 8 November 2021 - Women in Chem – Jessica Jones - Image of Jessica with the first product she developed at Croda

Jessica with the first product she developed at Croda.

In terms of equality and diversity, do you think enough is being done in your sector?
I think there is always more that can be done but I’ve never felt my gender has hindered me in my career and I’ve always felt very supported at Croda. Sometimes people are in a rush to see change immediately, especially when the senior management at Croda and many other STEM organisations is still made up of a majority of white males.

I like to think that the support myself and others have been given will mean that, as we progress, there will be more representation in senior positions. I would always want to achieve something on merit rather than to tick a box for equality. If that means it will take time for the generation I am in now to get to those positions, then I can wait. Importantly, I genuinely think everything that’s being put in place at Croda, and more broadly across the STEM sector, will pave the way for more diverse representation in senior roles in the future.

Do you have any advice you’d give to someone starting out?
Having a mentor is very important. I never thought I needed one until accidently developing that relationship. Since moving into different roles, I’ve set out to deliberately engage with people for that purpose. I would encourage people to seek out those who are different from themselves and engage with them.

I also think it’s important not to be afraid to ask for things you want. If you want to get a promotion or seek out further development, it’s often tempting to ask permission. If you can demonstrate to people that you are ready, it is more effective.

Generally, I think people, especially women, really underestimate the value of self-promotion as they worry it can be perceived as arrogance. A lot of people think that if you simply do a good job, then you’ll be recognised for that. That would be amazing if it were true, but people will judge you on how you’re perceived and how you present yourself, as well as what you do.

I think you need to put yourself out there. Whether it’s getting involved in something outside of your day job or taking the lead in a particular task, it’s a great way to get recognised. Sometimes it won’t work out and it can be hard to take the criticism when that happens, but you always learn from the outcome. I always prefer to have given something a go, even if I fail, than never to try.

Finally, I think people should always be themselves because everyone has unique skills to offer. I don’t think people would look at me and think that I look like the manager of a technical team, but I’m comfortable with my own style and that makes other people comfortable with it too.

>> We’re always interested in hearing about different people’s diverse career paths into chemistry. If you’d like to share yours, get in touch with us at: eoin.redahan@soci.org

Science & Innovation

Continuing our series on Black pioneering scientists and inventors, we profile Garrett Augustus Morgan. His observations led him to upgrade the sewing machine, invent and upgrade life saving devices and develop personal care products for Black people, while championing civil rights and fighting for his own recognition.

SCIblog - 29 October 2021 - Black History Month: Garrett Augustus Morgan - image of Garrett A Morgan

Garrett Augustus Morgan | Image credit: Public domain image courtesy of: https://www.dvidshub.net/image/1165661

Garrett Augustus Morgan was born in 1877, in Kentucky, US. Like many Black students he left school at a young age to find work. However, while working as a handyman in Cincinnati, he was able to hire a tutor and continue his studies.

During 1895, Morgan moved to Cleveland, Ohio, and it is said that Morgan’s interest in how things worked was sparked while repairing sewing machines for a clothing manufacturer. It was during this time that Morgan’s first inventions were developed: a belt fastener for sewing machines and the attachment used for creating zigzag stitching. By 1905, Morgan had opened a sewing machine shop and then a shop making clothes, ultimately providing employment for more than 30 people.

It was also during this time that Morgan became involved in the establishment of the Cleveland Association of Coloured Men. In addition to his interest in ‘gadgets’, Morgan also patented hair care products for Black people.

The life-saving Safety Hood

Morgan is credited with several inventions that have been responsible for saving many lives. In 1912 he filed a patent for the Safety Hood, which was developed after he had seen fire fighters struggling from the smoke encountered while tackling blazes. On the back of his invention, Morgan was able to establish the National Safety Device Company, in 1914, to market the product. While Morgan was able to sell his safety device across the US, it is said that on some occasions he hired a White actor to take credit for the device, rather than revealing himself as the inventor.

Morgan’s Safety Hood was soon in use in various settings including hospitals and ammonia factories. Indeed, the Safety Hood was used to save many lives and by the start of World War I, the breathing device had been refined to carry its own air supply. The Safety Hood was awarded a gold medal by the International Association of Fire Chiefs.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 4 Garrett Morgan fact

>> Read more about trailblazing Black scientists here.

Morgan’s device reached national prominence when it was used in the rescue of survivors and victims of a tunnel explosion under Lake Erie in 1916. The accounts tell of Morgan being woken early in the morning of 24 July 1916, after two rescuers lost their lives following the explosion.

Morgan is said to have arrived on the scene in his pyjamas, with his brother and a number of Safety Hoods. To allay the fears of the sceptics about his Safety Hood, Morgan went into the tunnel and retrieved two victims. Others joined and several people were rescued. Morgan is reported to have made four trips, but this heroism affected his health for years after as a result of the fumes he encountered.

Sadly, Morgan’s bravery and the impact of his Safety Hood were not initially recognised by the local press or city officials. It was some time later that Morgan’s role was acknowledged; and in 1917 a group of citizens presented him with the gold medal.

SCIblog - 29 October 2021 - Black History Month: Garrett Augustus Morgan - image of Garrett A Morgan during the Lake Erie rescue 1916

Garrett A. Morgan rescues a man at the 1917 Lake Erie Crib Disaster | Creative Commons CC BY-SA 3.0 Image in the Public Domain

While orders for Morgan’s device increased following the incident, it is said that when his picture appeared in the national press, crediting him as the Safety Hood inventor, officials in a number of southern cities cancelled their orders. Morgan is quoted as saying; ‘I had but a little schooling, but I am a graduate from the school of hard knocks and cruel treatment. I have personally saved nine lives.’

Safety seemed to be an important area for Morgan, as he became alarmed about the number of accidents that were occurring as cars became more prevalent in America. Along with the cars, bicycles, animal-drawn carts and people were sharing ever more crowded roads.

After witnessing an accident at a junction, Morgan filed a patent for a traffic light device which incorporated a third warning position. The idea for the ‘all hold’ position or what is now known as the amber light was patented in 1923. Morgan sold the idea to General Electric for $40,000 the same year. It should be noted, however, that a three signal system had been invented in 1920.

Morgan is credited with establishing a newspaper, building a country club open to Black people, and running for a seat on the Cleveland City Council, among many notable achievements. Morgan died in July 1963. He has been recognised in Cleveland Ohio, with the Garrett A. Morgan Cleveland School of Science, and the Garrett A. Morgan Water Treatment Plant being named in his honour. In addition, a number of elementary schools and streets carry his name.

Science & Innovation

To celebrate Black History Month, we take a look back at some of the great Black scientists and innovators. From laser eye surgery to the gas mask, here are some of the seminal contributions made by these ingenious inventors.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - timeline infographic

[1] Lewis Howard Latimer – Image credit: Unknown author Unknown author, Public domain, via Wikimedia Commons
[2] Leonidas Berry - Image credit: Adundi, CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons
[3] Betty Harris – Image credit: https://www.blackpast.org/african-american-history/harris-betty-wright-1940/ - Fair use image
[4] Patricia Bath - Image credit: National Library of Medicine, Public domain, via Wikimedia Commons
[5] Philip Emeagwali - Image credit: SakaMese, CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons
SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 1 Johnson Powell fact

1880 – Johnson Powell
Have you ever used eye protectors to protect yourself against the glare of intense light? For those working in extreme environments such as fires and furnaces, Johnson Powell’s eye protectors will have been a sight for sore eyes.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 2 James Wormley fact

1881 – James Wormley
James Wormley invented a life-saving apparatus for boats. His contraption included a string of floats that extended from a ship’s side via a sliding rod with projecting arms. The famous hotelier was also said to be at President Abraham Lincoln’s bedside when he died.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 3 Lewis Howard Latimer fact
Image Credit: Unknown author, Public domain, via Wikimedia Commons

1882 – Lewis Howard Latimer
Lewis Howard Latimer is probably best known for inventing a durable carbon filament that was key to the success of the electric light bulb. Latimer also invented an evaporative air conditioner and even drafted the drawings to secure the patent for Alexander Graham Bell’s little known invention… the telephone.

>> Click here for more on Lewis Howard Latimer’s extraordinary contribution to science.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 4 Garrett Morgan fact

1912 – Garrett Morgan
Imagine using your own invention to save people’s lives? That’s exactly what Garrett Morgan did when he donned his patented smoke hood to rescue trapped men from a smoke-filled tunnel beneath Lake Erie. Morgan’s device later evolved into a gas mask, and he also invented a three-position traffic signal, hair straightening cream, and a self-extinguishing cigarette for good measure.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 5 Madeline M Turner fact

1916 – Madeline M. Turner
Madeline M. Turner’s ingenious invention was the fruit of her own frustration. Turner grew tired of squeezing oranges for her glass of juice, so she created the fruit press machine to solve the problem.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 6 Richard Spikes fact

1932 – Richard Spikes
It’s safe to say Richard Spikes was a polymath. The American inventor created an automatic gear shift device for cars, a pressurised beer tap, and a horizontally swinging barber’s chair – all while working as a teacher and barber and being a capable pianist and violinist.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 7 Leonidas Berry fact
Image Credit: Adundi, CC BY-SA 4.0, via Wikimedia Commons

1966 – Leonidas Berry
This doctor and civil rights advocate invented the Eder-Berry gastroscopy endoscope in 1955, which helped doctors to biopsy the inside of the stomach without surgery. According to the US National Library of Medicine, ‘the Eder-Berry biopsy attachment made the gastroscope the first direct-vision suction instrument used for taking tissue samples during gastroscopic examination’.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 8 Betty Harris fact
Image Credit: https://www.blackpast.org/african-american-history/harris-betty-wright-1940/ - fair use image

1984 – Betty Harris
Perhaps the most explosive discovery of all belongs to Betty Harris. Harris’ spot test for detecting 1,3,5-triamino-2,4,6-trinitrobenzene in the field is used by US Homeland Security today to check for nitroaromatic explosives. In her spare time, Harris has even found the time to work with the Girl Scouts to develop a badge based on Chemistry.


>> SCI is proud to support #BlackinChem. Take a look at some of our recent work.


SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 9 Patricia Bath fact
Image Credit: National Library of Medicine, Public domain, via Wikimedia Commons

1988 – Patricia Bath
Patricia Bath has helped return the gift of sight to thousands of people. The US ophthalmologist invented a quick and painless device that dissolves cataracts with a laser and cleans the eye, enabling the simple insertion of a new lens. Her laserphaco probe is still in use today.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 10 Philip Emeagwali fact
Image Credit: Philip Emeagwali - SakaMese, CC BY-SA 4.0, via Wikimedia Commons

1989 – Philip Emeagwali
Nigerian computer scientist Philip Emeagwali won the prestigious1989 Gordon Bell Prize in Price Performance for a high-performance computer application that used computational fluid dynamics in oil-reservoir modelling. In the same year, Emeagwali also claimed to perform the world’s fastest computation – 3.1 billion calculations per second – using just the power of the internet.

SCIblog - 25 October 2021 - Trailblazing Black Scientists - Image 11 Donald K Jones fact

2002 – Donald K. Jones
Donald K Jones made a notable contribution to medicine with his invention of a detachable balloon embolisation device that reduces the size of aneurysms (bulges in blood vessels). The endovascular occlusion device is implanted into the body, whereupon its clever balloon system and adhesive materials reduce the size of aneurysms.

>> Which barriers still block the way for Black chemists? Read Claudio Lourenco’s story.

Science & Innovation

We need to create more diverse paths into research and scientific innovation. Professor Dame Ottoline Leyser, Chief Executive of UK Research and Innovation, explains how industry clusters and a change of mindset could help.

What do you picture when someone mentions a chemist? Maybe you see someone like you working in a lab or office with your colleagues.

But what do people at the bus stop think? What would a secondary school student say? Do they see someone like them – or do they imagine an Einstein-like figure hidden away in a dark room with crazed hair and test tubes?

One of the most interesting messages from Professor Dame Ottoline Leyser’s Fuelling the Future: science, society and the research and innovation system talk on 29 September was the need to make sure science and technology are seen as viable careers for people throughout society.

SCIblog - 12 October 2021 - Making science and technology more accessible - image of Professor Dame Ottoline Leyser

Prof Dame Ottoline Leyser

You don’t need to be a genius to work in research and innovation. You don’t necessarily need to be a specialist, and you certainly don’t need to be hunched over a microscope with a jumble of figures and formulae on a board behind you. An array of different people, technical and non-technical, are needed to make the sector thrive.

 

The narrow pathway of talent

Part of Dame Ottoline’s job as Chief Executive of UK Research and Innovation (UKRI) is to improve access to these sectors and to make sure that great ideas aren’t lost due to daunting entry barriers.

‘It’s a huge challenge,’ she said. ‘A large part of the challenge is the narrow concept that we all have of what a researcher and innovator look like.’

Leyser spoke about the need to create diverse routes through the system rather than squeezing everyone through the same narrow path. ‘The assessment criteria we use for individuals have become narrower and narrower,’ she added. ‘Some of it, ironically, is to make the system fairer, but objectivity in creativity is a total pipe dream. You end up crushing creativity by narrowing the criteria.’

She noted that those with mixed careers – interwoven with varied experiences – are to be welcomed. ‘That’s nothing to do with compromising excellence,’ she said. ‘Real excellence comes in multiple forms.’

>> Would you like to attend more talks like this one? Check out our Events page.

 

Challenging times

However, Leyser also spoke of the need to level up the UK from a productivity perspective. One way to do this is through smart specialisation and industry clusters. She mentioned Lincoln as an area where this approach worked well. Lincoln is home to extensive agriculture and the multinational technology corporation Siemens. As such, it made sense to help make it a centre for agricultural robotics.

SCIblog - 12 October 2021 - Making science and technology more accessible - image of a wind turbine

UKRI is investing heavily in research and innovation into Net Zero energy solutions.

As the largest public funder of research and innovation in the UK, UKRI has a major role to play in funding such industry clusters and intelligent innovation. It has funded more than 54,000 researchers and innovators, and UKRI grants have generated almost 900 spinouts since 2004.

These include Oxford Nanopore, a biotech company whose DNA sequencing technology is now valued at £2.5bn. It has also cast an eye on the future, including delivering more than £1bn in R&D relevant to Artificial Intelligence and in excess of £1bn towards Net Zero energy solutions.

Leyser noted that the UKRI’s goal is to embed research and innovation more broadly across society – for it to be ‘by the people and for the people, rather than the exclusive domain of the privileged few’.

It is a grand challenge, but such sentiments are certainly encouraging.

Careers

Continuing our series on Black scientists, Dr George Okafo tells us about his journey from curious child, encouraged by family and mentors, to Global Director of Healthcare Data and Analytics with a leading pharmaceutical company.

SCIblog - 11 October 2021 - Celebrating Black scientists – Dr George Okafo

What is your current position?
I am Global Director, Healthcare Data and Analytics Unit at Boehringer Ingelheim, and have been in this role for the past 10 months.

Right: Dr George Okafo

Please give us a brief outline of your role.
To build an expert team of data stewards, data scientists and statistical geneticists tasked with accessing and ingesting population-scale healthcare biobanks and then deriving target, biomarker and disease insights from this data to transform clinical development and personalise the development of new medicines.

What was it that led you to study chemistry/science and ultimately develop a career in this field? Was this your first choice?
My interest in science stems from my parents. My father was a medical doctor, and my mother was a senior midwife. As a child, I was always very curious and wanted to know why and how things worked. This curiosity has stayed with me all my life and throughout my career at GlaxoSmithKline and now at Boehringer Ingelheim. In my current role, I am still asking the same types of questions from Big Data and these answers could have a profound impact in the development of new medicines.

Was there any one person or group of people who you felt had a specific impact on your decision to pursue the career you are in?
Yes, my father and mother, who supported, encouraged and gave me the confidence to be curious, to keep trying and to never give up.

SCIblog - 11 October 2021 - Celebrating Black scientists – Dr George Okafo - image of pipette and vials

Dr Okafo held senior director-level roles in drug discovery and development while at at GSK.

Could you outline the route that you took to get to where you are now, and how you were supported?
My career journey started at Dulwich College (London) where I studied Chemistry, Biology, Maths and Physics at A Level. This took me to Imperial College of Science, Technology and Medicine (London), where I completed my Joint BSc in Chemistry and Biochemistry and my PhD in Cancer Chemistry.

I then spent a year at the University of Toronto in Canada as a Postdoctoral Fellow, before embarking on my career in the Pharmaceutical Industry, starting at GlaxoSmithKline (GSK). I spent 30 years at GSK, where I held many senior director-level roles in drug discovery and development. During my time, I made it my mission to learn as much about the R&D process and used this knowledge to understand how innovation can impact and transform drug research.

I have been very fortunate in my career to be surrounded by many brilliant and inspirational people who had the patience to share their knowledge with me and answer my many questions.

>> Curious to read more about some of the great Black scientists from the past? Here’s our blog on Lewis Howard Latimer.

Considering your own career route, what message do you have for Black people who would like to follow in your footsteps?
Surround yourself with brilliant people who can inspire you. Look for people who you respect and can coach and mentor you. Don’t be afraid to fail. Work hard and keep trying.

What do you think are the specific barriers that might be preventing young Black people from pursuing chemistry/science?
No, I do not see colour as a barrier nor a hindrance to pursuing a career in science. I think it is important to look for role models from the same background to help inspire you, to answer your questions and to encourage you.

What steps do you think can be taken by academia and businesses to increase the number of Black people studying and pursuing chemistry/science as a career?
Have more role models from different backgrounds. This sends a very powerful message to young people studying science reinforcing the message… I can do that!

Could you share one experience which has helped to define your career path?
Not so much an experience, but a mindset – staying curious, inquisitive, always willing to learn something new, having courage that failure is not the end, but an opportunity to learn.

Careers

Marking Black History Month and following on from the #BlackInChem initiative, SCI is continuing its look back at some of the unsung Black scientists who pioneered, and made important contributions, to the advancement of science.

Today we profile Lewis Howard Latimer, much admired by his contemporaries; Alexander Graham Bell and Thomas Edison, but sadly a name, and story, that is not as well known.

SCIblog - 4 October 2021 - Black History Month: Lewis Howard Latimer - image of Lewis Howard Latimer

Lewis Howard Latimer | Image Credit: By Unknown author - http://www.lrc.rpi.edu/resources/news/pressReleases/img/Lewis.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2032528

Lewis Howard Latimer, the youngest of four children, was born in Chelsea, Massachusetts, on 4 September 1848. His father, George Latimer, a slave who had escaped, became something of a cause celebre when his owner recaptured him. However, abolitionists took his case to the Supreme Court and his freedom was secured.

Lewis proved to be an excellent student, with a particular flair for drawing, as well as writing poetry and stories, but lack of finance and restricted access to education meant that by 15 years of age, Lewis had joined the US Navy. The history books indicate that he was honourably discharged in 1865; when the Civil War ended.

Soon after, Latimer found work as an office boy with the patent firm Crosby, Halstead and Gould. It is here that combining his talent for drawing, and developing the skills of a draughtsman he was eventually promoted to the position of head draftsman. The history books record that Latimer’s first patent, in 1874 with colleague Charles Brown, was an improved toilet system for railroad cars.

SCIblog - 4 October 2021 - Black History Month: Lewis Howard Latimer - image of Alexander Graham Bell

Lewis Latimer was instrumental in helping Alexander Graham Bell file his patent for the telephone ahead of his competitors.

Latimer had many inventions, but it could be argued that his drawings for Alexander Graham Bell’s telephone, helped seal his place in science history. The story goes that Bell was in a race against time, as rivals were also looking to gain patent rights for a similar device. Bell hired Latimer who used his expertise in drawing and submitting patent applications to help Bell file his patent just hours, it said, before his rival in 1876.

By 1880 Latimer had taken up the post of mechanical draughtsman for the inventor Hiram Maxim, who was also the founder of the US Electric Lighting Company. Now focused on incandescent lighting, Latimer along with Joseph Nichols, invented a light bulb which used a carbon filament, an improvement on Thomas Edison’s paper filament. The invention, patented in 1881, was sold to the US Electric Lighting Company in the same year.

SCIblog - 4 October 2021 - Black History Month: Lewis Howard Latimer - image of light bulbs with carbon filaments

Latimer invented a process for making carbon filaments for light bulbs | Editorial credit: Claudio Zaccherini / Shutterstock.com

1A booklet by the Thomas Alva Edison Foundation noted; ‘Latimer invented and patented a process for making carbon filaments for light bulbs. He taught the process to company workers, and soon it was being used in factory production. Latimer also assisted in installing Maxim lighting systems in New York City, Philadelphia, Montreal and London. During the installation of lighting in Montreal, where a lot of people spoke only French, Latimer learned the language in order to competently instruct the workers. In London he set up the first factory for the Maxim-Weston Electric Light Company. That required him to teach the workmen all the processes for making Maxim lamps, including glass blowing. In just nine months Latimer had the factory in full production.’

In 1882 Latimer left Hiram Maxim and in 1884 joined the Edison Electric Light Company, where he was given the title draughtsman-engineer. In 1890 he joined the Edison Legal Department, and in 1893 testified in a case where the company said that its incandescent lamp patents had been infringed. In 1896 the Board of Patent Control of GE and Westinghouse was formed and Latimer became its Chief Draughtsman. He continued in that role until 1911 when he joined the consulting firm Edwin W Hammer.

On 24 January 1918, Latimer was named one of the 28 charter members – and the only African-American member – of the Edison Pioneers, ‘a distinguished group of people who worked to keep the ideals of Thomas Edison alive.’ The Edison Pioneers helped create the US’ electric power industry.

Latimer received patents for several inventions, including the safety elevator. He also had a passion for social justice. In a letter written in 1895 in support of the National Conference of Coloured Men, Latimer wrote: ‘I have faith to believe that the nation will respond to our plea for equality before the law, security under the law, and an opportunity, by and through maintenance of the law, to enjoy with our fellow citizens of all races and complexions the blessings guaranteed us under the constitution.’

Latimer died on 11 December 1928. Edison Pioneers historian and long time private secretary of Thomas Edison, William H. Meadowcroft wrote1 ‘Lewis Howard Latimer was of the coloured race, the only one in our organisation, and was one of those to respond to the initial call that led to the formation of the Edison Pioneers, January 24 1918. Broadmindedness, versatility in the accomplishment of things intellectual and cultural, a linguist, a devoted husband and father, all were characteristics of him, and his genial presence will be missed from our gatherings…We hardly mourn his inevitable going so much as we rejoice in pleasant memory at having being associated with him in a great work for all peoples under a great man.’

1For more information on Latimer’s life, work and legacy, see the Edison Electric Institute resource: Thomas Alva Edison Associate: Lewis Howard Latimer: A Black Inventor.

Careers

SCI’s America International group has awarded the 2021 Perkin Medal to Dr Jane Frommer. The 114th Perkin Medal was presented to Jane at the Bellevue Hotel in Philadelphia, Pennsylvania, in recognition of her outstanding contribution to chemistry.

SCIblog - 30 September 2021 - Jane Frommer awarded Perkin Medal - image of Jane Frommer

Dr Jane Frommer

Dr Frommer is renowned for her key contributions in electronically conducting polymers and scanning probe instrumentation. Her pioneering work with scanning probes paved the way for their use in chemistry, materials science and, eventually, in nanotechnology. According to SCI America, her nanoscopic analytic methods are vital to nanostructural research and are used across many industries.

Dr Frommer began her career in 1980 at Allied Corporate Laboratories (now Honeywell), where she created the solution state of electronically conducting organic polymers. In 1986, she joined IBM where, along with other instrumentalists, she demonstrated the ability to image and manipulate single molecules using scanning tunnelling microscopy. During her multi-year assignment at the University of Basel Physics Institute in the early 1990s, Dr Frommer’s team expanded the capability of scanning probes in measuring the functional properties of organic thin films with atomic force microscopy.

Since 2018, she has worked as a science advisor for Google. In this capacity, she has sought to increase the amount of open source data available in the physical and life sciences. She also helps Silicon Valley start-ups navigate the chemical and material challenges of nanotechnology and has mentored countless students and young scientists in high school, college, and in her laboratory in recent decades.

SCI Awards - Medals - Image for the Perkin Medal - social graphic

Previous recipients of the Perkin medal include Barbara Haviland Minor, of the Chemours Company, and Ann E Weber, of Kallyope Inc.

Dr Frommer has written more than 100 referred publications and is the co-inventor of more than 50 issued patents. With her extraordinary body of work spanning more than 40 years, she is a worthy recipient of the prestigious Perkin Medal.

The Perkin Medal is widely acknowledged as the highest honour in American industrial chemistry. It was established to commemorate the 50th anniversary of William Henry Perkin’s discovery of mauveine at the age of just 18. Perkin’s creation of mauveine, the world’s first synthetic aniline dye, revolutionised chemistry and opened up new frontiers in textiles, clothing, and other industries. Perkin was a founding member of SCI and this Medal was first presented to him in New York in 1906.

For more information on the Perkin Medal and the nomination process, visit: soci.org/awards/medals/perkin-medal

Careers

Life is busy for Rhys Archer. Outside of her work as EPSRC Doctoral Prize Fellow in Biomedical Materials at the University of Manchester, she founded Women of Science to share stories about real women working in science. She has championed STEM in schools in her spare time and received the Robert Perrin Medal from the Institute of Materials, Minerals, and Mining – all before her 30th birthday.

Rhys is also refreshingly forthright in her views. She took the time to speak to us about everything from attitudes towards disability in academia, the problem with STEM statistics, and finding that sense of belonging in science.

SCIblog - 9 September 2021 - Women of science: Rhys Archer - Profile photo of Rhys Archer

Would you mind telling me about your work at the University of Manchester and the research areas that interest you most?
My research interests have always been interdisciplinary – I am a bit of a magpie when it comes to research and I get excited by projects in different areas. Luckily, being a researcher in materials science means that I can apply my knowledge and skills in a wide array of areas and industries. I have recently finished my doctoral studies looking at how carbon fibre composites are damaged during impacts, and how to toughen them while keeping composites light weight, which is particularly useful in the aerospace industry. However, I have since moved over to research in biomedical materials, specifically within tissue engineering, where I am researching biocompatible composite scaffolds for tissue regeneration.

You set up Women of Science in 2016 to share stories about real people in science. How has this been?
When I set up Women of Science, I first looked at it as a personal project that could be of use in schools to young people. However, it became apparent fairly quickly that access to relatable role-models in STEM was needed, not just in schools but also for women across the STEM industry.

Since then, we have been fortunate to be awarded funding to grow the work we do and expand our audiences. One of the most important actions I have taken with Women of Science is to set up an advisory board (which includes a diverse range of women) to share ideas and to influence the direction and activities of Women of Science.

As well as the impact on others, Women of Science has had a huge impact on me personally. When I set up Women of Science I was going through a difficult period of feeling isolated, and found it difficult to feel a sense of belonging in science and in research. By reaching out and hearing other women’s stories – not just their achievements, but also their doubts, worries, and difficulties – I found that I did belong in STEM. I just had to search for it.

SCIblog - 9 September 2021 - Women of science: Rhys Archer - Group photo of Rhys Archer

Would you mind sharing some of the successes and challenges you’ve experienced in your own career?
At 29, towards the end of my PhD, I was diagnosed as autistic. Looking back, I can see that the challenges I faced, particularly because of depression, anxiety, and isolation, were due to my needs not being considered or met. Being disabled in academia is an ongoing challenge. It is still a fight to gain equitable working arrangements, opportunities, and acceptance.

However, I can also see how the successes I have had, such as setting up Women of Science, and being a part of other projects are a result of ‘being different’. My strongest quality is a diversity of perspective and experience and an eagerness to be a part of a range of different projects.

>> We’re keen to hear diverse perspectives from people working in the chemical industry. Get in touch with us at: eoin.redahan@soci.org

You have championed inclusivity in STEM. Do you think academic institutions and other workplaces could be more inclusive?
Yes. I think there is a huge amount of awareness and conversation about inclusivity in academia and industry, but not nearly as much action and intervention. Often I see workplaces with inclusive policies, but with little consideration of monitoring, evaluating, or reconsidering those policies. We must move past equity, diversity, and inclusivity being a checkbox exercise. The issues faced by women in the workplace are intersectional and complex, and so require well considered, complex solutions.

According to WISE, women now make up 24% of the STEM workforce in the UK. It estimates that this number could rise to 29% by 2030. What do you think about these figures?
While the number of women in STEM is a common metric when considering equality, this does not accurately portray issues surrounding inclusion and belonging. How are women treated? Do they have the opportunity to advance? Are there equitable policies and measures in place? This is particularly true of women in STEM who identify with other protected characteristics around race, disability, sexual orientation, and class. Once you dig into the statistics (where available) further, it is clear that the numbers given are not sufficient to describe the current situation for all women in STEM.

Also, the ‘leaky pipeline’ model is often considered, that is, that the number of women in STEM fall as we follow the statistics from school, to university, and onto the workplace. However, what is not always considered is that, as with a leaky pipeline, when more women are added, rather than ‘fixing’ the pipeline, the cracks become more obvious. Eventually, we reach a point when the pipeline is fractured. We must focus on repairing these cracks, not just increasing a numerical metric.

Additionally, in this current climate, it is incredibly difficult to make predictions as to what the future holds for the number of women in the STEM workforce. A couple of years ago, we could not foresee the impact that a global pandemic would have on women. When we consider the possible effects of climate change over the next decade, can we predict the burden that will be placed on women, or how this will affect women’s choices?

What’s next for you? Are you involved in any exciting projects?
With Women of Science, we have three projects that will be launched towards the end of the year, including a new website, flashcard activities for young people, and a report on the impact of the pandemic on women in STEM. Further ahead, I would love to expand the reach of Women of Science further, working with podcasting and film, as well as reaching out to policy makers. Personally, I am excited to get my teeth stuck into a new research project and see where that leads, as well as doing more teaching, consulting, and any other opportunities that come my way!

>> Are you interested in getting involved in Women of Science? Visit: www.womenofsci.com

Careers

Sarah Davidson has made impressive strides in a short space of time. She has risen to Group Sustainability Coordinator for global Research and Technology at speciality chemicals firm Croda and won the Young Ambassador Award at this year’s Chemical Industry Awards.

In the first blog in our Women in Chemistry series, we caught up with Sarah for a chat on embedding sustainability in the workplace, the need for more diversity in senior roles, and the best bit of advice she received.

SCIblog - Women in Chem - 27 August 2021 - Sarah Davidson Profile

Tell us about your career to date.
I loved chemistry at school, so I started off by doing a Master’s in Chemistry at the University of Sheffield. During the course I did a placement year, which was my first taste of working in industry. Once I finished my degree, I was torn between staying in academia and doing a PhD or going into industry. I chose to go into industry because I had enjoyed my placement year so much and saw where I could make an impact.

I was accepted onto Croda’s Graduate Development programme, where I had three placements around the business. Croda is a speciality chemicals company, so my placements included working as an applications scientist and synthetic chemist. However, it was my placement working with the Sustainability team that I loved the most.

After the Grad Scheme I became Group Sustainability Coordinator for Global R&D. This combined my experience in R&D and sustainability in a brand role that didn’t exist in Croda before. This role allows me to use my technical knowledge and understanding of the way the global team works to enable those responsible for Croda’s new product innovations to include sustainability as an integral pillar in new product development.

What does your day-to-day role involve?
In my role, my main focus is on getting our scientists to think about sustainability during product and process development. At a fundamental level this requires me to change their mindsets around sustainability, getting them to see it is important to what we do and understand what it means.

To do this, I have developed a number of tools including checklists, clearly defined procedures and training documents. I have been working to get these new procedures adopted over the global R&D team by fitting them into existing protocols. Another part of my role is to support our corporate targets and I am part of a number of working groups to do this.

One working group looks at how we define a consistent methodology for Life Cycle Assessments or LCA. In this group I have been doing research to understand the current methods around LCA, and what our customers want in terms of sustainability data. I also help gather data to show where we are up to with these goals, so we understand what actions we need to take to move forward. On a day-to-day basis I will have meetings to discuss the projects I am involved in, conduct research and reach out to other teams and functions to see what they are working on too.

Which aspects of your job motivate you most?
For me sustainability is the future, not only for the chemical industry but for the world. Knowing that I am having a positive impact on sustainability in my role is what motivates me the most. I try to live a sustainable life, and what I do at work is just an extension of that.

What personal challenges have you faced and how have you overcome them?
To embed sustainability into our ways of working, I need to change people’s mindsets, and subsequently their behaviour. Seeing this change in people is incredibly rewarding. However, it is also one of the biggest challenges. Some of our teams have been working in the same roles for decades without any change. So, it is my job to make these changes easier for them to adopt and persuade them of the benefits in doing so. To overcome this challenge, I have had to work on my influencing skills and know what will work with the audience I am speaking to.

What is the greatest future challenge for people in your industry and how could this be addressed.
Sustainability, and addressing the issues we face as a result of climate change, are some of the biggest challenges we will face as an industry. We are in a lucky position that we can achieve a competitive advantage with sustainability, but our main goal is to protect our planet. This gives us a big opportunity for collaboration where we may not have had one before. I think we can only solve this challenge by collaborating across the supply chain, across country borders, and between industry and academia.

SCIblog - Women in Chem - 27 August 2021 - Sarah Davidson at Croda

>> Not everyone takes the standard career path into chemistry. Take a read of Claudio Laurenco’s unusual, inspiring story.

Which mentors have helped you along the way and how did they make a difference?
I feel like I have a long list of mentors and am very lucky to be able to call on so many people for advice. The best thing I have learnt from them is to pursue what I enjoy most, as people will be able to see my passion. This will help me move forward in my career. Having mentors who have confidence in me and my ability has helped me build my own confidence, something which I can lack from time to time. My mentors are great sounding boards for ideas, whether that is to do with things I want to try in my job or on the direction of my career.

SCIblog - Women in Chem - 27 August 2021 - Sarah Davidson at work

What is the current state of play within your sector with respect to equality, diversity, and inclusion – and is enough being done to attract and retain diverse talent?
I don’t think so. We need to do more to attract and retain diverse talent. We seem to be relatively diverse and inclusive at an academic level, which disappears in industry. There must be a reason for this. There may be bias within recruitment processes, or within job descriptions for senior roles, which means there is less diversity as you move up in organisations. We need to make sure that there are equal opportunities within industry for everyone and make sure everyone has a path to progression that works for them.

Is there any advice you would give to young professionals starting out in your area, especially young women?
Understand where you are different and use that as your advantage. Everyone has a unique lived experience that they bring with them into all situations. As women we have a different perspective to men. This doesn’t mean it is less valuable, it is just different. When you feel like you are in a minority as a woman, or are not being listened to, it is important to remember that our opinions are equal regardless of our background, gender or ethnicity. You have the same right to share your views, as the majority do theirs.

>> We’re always keen to hear from women who are making a real difference in chemistry. If you know someone who you think we should cover, please get in touch with us at: eoin.redahan@soci.org.

Careers

SCI was pleased to support #BlackInChem, working alongside our Corporate Partners and members to amplify the voices of our Black chemists.

SCIblog - Black in Chem 2021 - image / graphic of SCI and BlackInChem logos

We have heard stories from several Black chemists who highlighted the steps being taken by many companies to increase diversity. But we can also see that there are many more steps that can be taken to encourage the next generation of budding Black chemists and scientists.

#BlackInChem has had support from Scott Bader, an SCI Corporate Partner, with both Damilola Adebayo and Luyanda Mbongwa sharing their perspectives as employees of Scott Bader. Elsewhere, Cláudio Laurenço gave a compelling account of his journey to become a post-doctoral research associate at a leading consumer goods company.

SCI Member - Claudio Lourenco

Cláudio Laurenço worked for free and was overlooked before eventually securing his PhD and starting his career in chemistry.

These chemists are following in the footsteps of some pioneering Black scientists such as Percy Lavone Julian, who has been profiled on the SCI Blog.

Many organisations have expressed their support and shared thoughts on what steps they are taking to encourage and ensure diversity. Indeed, #BlackInChem is a global effort and companies such as GSK have shown their support as well as numerous Black chemists talking about their experiences and achievements over the last week.

SCIblog - 9 August 2021 - #BlackinChem - celebrating Percy Lavon Julian - image of Percy Lavon Julian on a stamp

Percy Lavon Julian’s pioneering work enabled a step-change in the treatment of glaucoma | Editorial credit: spatuletail / Shutterstock.com

Over the coming months, we will be profiling other Black chemists, past and present, and continuing the dialogue around diversity.

>> We’re always keen to hear about diverse perspectives within chemistry. If you’d like to share your story, please contact: muriel.cozier@soci.org or eoin.redahan@soci.org.

Careers

For Cláudio Lourenço, the path from student to multidisciplinary scientist has been far from smooth. The Postdoctoral Research Associate reflects on the institutional challenges that almost made him give up, the mentor whose support was so important, and the barriers that block the way for young Black chemists.

Please give a brief outline of your role.
I work for a leading consumer goods company. I am a multi-disciplinary scientist contributing to the development of novel formulations for household products.

Why are you supporting #BlackInChem?
I’m supporting #BlackInChem because I am a champion for diversity. I believe that what we see from our windows in the street is what we must have inside our workplaces. In an ideal world we should all have the same opportunities, but unfortunately this is somehow far from the truth. We need to motivate our young Black chemists to aim for a career in science by providing welcoming environments and real opportunities instead of just ticking boxes. We need to showcase our Black chemists to show to the younger generation that they can also be one of us.

What was it that led you to study chemistry and ultimately develop a career in this field? Was this your first choice?
I have always been passionate about research and science. My father had a pharmacy, so I was always close to chemistry and was a very curious child. Yes, it was my first choice but the lack of opportunities and trust from universities and scholarship providers made it a long run. My motivation faded and I nearly gave up.

Was there any one person or group of people who had a specific impact on your decision to pursue your career path?
Yes, but after my degree I nearly gave up. It took me nearly two years and changing cities to find something (a voluntary position). I was always keen on taking up mentors to show me how to progress in my career. There were a few people who helped me by training me and teaching me how to navigate the scientific world and pursue a career in science.

I only got my first job (which I worked for free) because of Peter Stambrook, an American scholar from the University of Cincinnati, who I met through a friend while polishing glasses in a restaurant. This man was open and keen to put a word in for me at a leading university in the UK. He taught me so much on how to be a scientist and humbly grow up and make a career in science. Eventually, all his advice kept me on the right path.

What impact would you like to see #BlackInChem have over the coming year?
More Black students in postgraduate courses and an increase in role models to motivate the younger generations to pursue careers in chemistry.

Could you outline the route that you took to get to where you are now, and how you were supported?
Personally, my career path was far from easy. I only managed to get my PhD at 38 years of age. I needed to first prove myself. Despite all my efforts and dozens of applications, I was never considered a good candidate. I needed to work for free for two years to land a proper job in my field of choice. During that time I took on many odd jobs to support myself. I worked for a top 10 university for free and they never saw my worth or gave me an opportunity. With that experience I landed a proper job at a leading pharmaceutical company. After one year with them, they funded my PhD studies and now here I am with a career in science.

Considering your own career route, what message do you have for people who would like to follow in your footsteps?
Never ever give up - it is possible. Look for the right mentors and be humble. You do not need to reinvent the wheel, but only to find someone who can lend you theirs. Learn to grow from the experiences of others and be ready to fail a couple of times - we all do. Be open to learn and never be afraid of following your dreams.

SCI Member - Claudio Lourenco

>> At SCI, we’re proud to support #BlackinChem. Reach out to us with your stories.

What do you think are the specific barriers that might be preventing young black people from pursuing chemistry/science?
I think one of the biggest barriers that prevent people from pursuing careers in science is the lack of role models. If we only show advertisements for chemistry degrees with White people, it’s not encouraging for Black students to pursue a career there. The same goes for when we visit universities; role models are needed. No one wants to be the only Black person in the department. Universities need to embrace diversity at all levels. I understand that tradition sometimes prevents this, but we need to change and ignore tradition for a bit.

What steps do you think can be taken by academia and businesses to increase the number of Black people studying and pursuing chemistry/science as a career?

Showcase Black chemists and inventors to motivate the younger generations and show society that Black people are not only artists and musicians. Target extracurricular activities in schools where children are from disadvantaged backgrounds. Train your staff to be open. Create cultural events that not only target Black people but also for other people to learn and see that in the end we are all equal. We all need to learn to embrace our differences and grow together.

>> As we celebrate #BlackinChem, we mark the achievements of some inspirational chemists. Read more about the amazing career of Percy Lavon Julian.

Science & Innovation

This week SCI is joining with business and academia to mark #BlackInChem, an initiative to advance and promote a new generation of Black chemists.

Over the coming weeks, we shall be profiling past and present Black chemists, many of whom are unsung heroes, and whose work established the foundations on which some of our modern science is built. We start with the outstanding contribution made by Percy Lavon Julian (1899-1975).

Born on 11 April 1899 in Montgomery, Alabama, US, Percy L Julian was the son of a clerk at the United State Post Office and a teacher. He did well at school, and even though there were no public high schools for African Americans in Montgomery, he was accepted at DePauw University, Indiana, in 1916.

Due to segregation Julian had to live off campus, even struggling initially to find somewhere that would serve him food. As well as completing his studies, he worked to pay his college expenses. Excelling in his studies, he graduated with a BA in 1920.

Julian wanted to study chemistry, but with little encouragement to continue his education, based on the fact there were few job opportunities, he found a position as a chemistry instructor at Fisk University, Nashville, Tennessee.

In 1922 Julian won an Austin Fellowship to Harvard University and received his MA in 1923. With no job offers forthcoming, he served on the staff of predominantly Black colleges, first at West Virginia State College and in 1928 as head of the department of chemistry at Howard University.

In 1929 Julian received a Rockefeller Foundation grant and the chance to earn his doctorate in chemistry. He studied natural products chemistry with Ernst Späth, an Austrian chemist, at the University of Vienna and received his PhD in 1931. He returned to Howard University, but it is said that internal politics forced him to leave.

SCIblog - 9 August 2021 - #BlackinChem - celebrating Percy Lavon Julian - image of Physostigmine

Physostigmine was synthesised by Julian

Julian returned to DePauw University as a research fellow during 1933. Collaborating with fellow chemist and friend Josef Pikl, he completed research, in 1935, that resulted in the synthesis of physostigmine. His work was published in the Journal of the American Chemical Society.

Physostigmine, an alkaloid, was only available from its natural source, the Calabar bean, the seed of a leguminous plant native to tropical Africa. Julian’s research and synthesis process made the chemical readily available for the treatment of glaucoma. It is said that this development was the most significant chemical research publication to come from DePauw.

SCIblog - 9 August 2021 - #BlackinChem - celebrating Percy Lavon Julian - image of Calabar bean

Calabar bean

Once the grant funding had expired, and despite efforts of those who championed his work, the Board of Trustees at DePauw would not allow Julian to be promoted to teaching staff. He left to pursue a distinguished career in industry. It is said that he was denied one particular position as a town law forbid ‘housing of a Negro overnight.’ Other companies are also said to have rejected him because of his race.

However, in 1936 he was offered a position as director of research for soya products at Glidden in Chicago. Over the next 18 years, the results of his soybean protein research produced numerous patents and successful products for Glidden. These included a paper coating and a fire-retardant foam used widely in World War II to extinguish gasoline fires. Julian’s biomedical research made it possible to produce large quantities of synthetic progesterone and hydrocortisone at low cost.

SCIblog - 9 August 2021 - #BlackinChem - celebrating Percy Lavon Julian - image of Percy Lavon Julian on a stamp

Percy Lavon Julian | Editorial credit: spatuletail / Shutterstock.com

By 1953 Julian Laboratories had been established, an enterprise that he went on to sell for more than $2 million in 1961. He then established the Julian Research Institute, a non-profit research organisation. In 1967 he was appointed to the DePauw University Board of Trustees, and in 1973 he was elected to the National Academy of Sciences, the second African American to receive the honour.

He was also widely recognised as a steadfast advocate of human rights. Julian continued his private research studies and served as a consultant to major pharmaceutical companies until his death on 19 April 1975. Percy Lavon Julian is commemorated at DePauw University with the Percy L Julian Science and Mathematics Center named in his honour. During 1993 the United States Postal Service commemorated Julian on a stamp in recognition of his extraordinary contribution to science and society.

Careers

SCI has selected Harriet McNicholl from AstraZeneca as the 2021 National Undergraduate Placement Student of the Year.

The national undergraduate placement symposium brings together chemistry students undertaking industrial research placements each year. Students working in organic, biological, supramolecular, physical organic, medicinal chemistry and related fields are invited to submit posters. The finalists are then selected to present orally at the virtual symposium. This year’s applicants included students from organisations such as AstraZeneca, GlaxoSmithKline, UCB, Syngenta, Charles River and more.

SCIblog - 22 July 2021 - Undergraduate Placement Student of the Year - image of Harriet McNicholl in the lab

Harriet McNicholl’s chemistry will be used to manufacture drug products to support patients in phase-II clinical trials.

As part of this symposium, Harriet McNicholl from AstraZeneca was invited to present her research to develop a safe, inexpensive and commercially viable process towards AZD5991, a candidate therapeutic for the treatment of acute myeloid leukaemia.

Encapsulating AstraZeneca’s dynamic and data driven approach to turning molecules into medicines, Harriet highlighted how the SELECT criteria, automation and High Throughput Experimentation were used to design and optimise a process. Harriet’s work aimed to maximise efficiency and sustainability, and her chemistry will be used to manufacture drug products to support patients in phase-II clinical trials.

Harriet is in the third year of her chemistry integrated Master’s degree (MChem) at the University of Liverpool and is currently undertaking a synthetic chemistry industrial placement within Chemical Development (CD) at Macclesfield.

‘I have thoroughly enjoyed my placement year within Chemical Development at AstraZeneca,’ she said. ‘It has been incredibly rewarding knowing the science I’ve worked on has the potential to fundamentally transform oncology patients’ lives. This opportunity has enabled me to develop many of my technical and soft skills and motivated me to pursue a career within the pharmaceutical industry.’

Dave Ennis, Vice President of Chemical Development for AstraZeneca in Macclesfield, said: ‘Congratulations to Harriet who has made significant contributions to our development activities in Chemical Development. It is a reflection of the quality of students we attract to our sandwich student programme; I’m proud that we give our students a great insight to drug development by being active participants in our projects, and it is highly motivating for our scientists in helping to coach and develop others - a win-win for all involved.

‘Over the past 25 years, we have had a successful rolling programme of sandwich students from a variety of universities that has helped to attract the next generation of scientific talent to AstraZeneca and the wider industry. Looking forward to our next cohort in 2021, and I’m sure they will compete for the prize next year’.

SCIblog - 22 July 2021 - Undergraduate Placement Student of the Year - image of Harriet McNicholl's poster submission

Harriet’s poster submission

Dr Andrew Carnell, Director of Year in Industry Courses at the Department of Chemistry in the University of Liverpool, added: ‘I am delighted that Harriet has been awarded this prestigious prize for her work during her placement at AstraZeneca. She is a credit to the department and to the university. Our Year in Industry students gain a huge amount from their placements, not only in terms of practical experience and technical knowledge but increased confidence and employability. Students return to us highly motivated for their final year and often go on to secure excellent and rewarding positions in today’s competitive job market.’

As part of this event, keynote speaker James Douglas (Manager of AstraZeneca’s Catalysis, High Throughput and Synthesis Technologies team) noted that his career journey started with a placement year at GlaxoSmithKline in Stevenage. James went on to describe the benefits of doing a placement year and how the skills he gained from his year in industry helped him to secure a Ph.D. at the University of St Andrews and a postdoctoral position with Eli Lilly in the United States.

This year’s competition featured many strong entries. Congratulations to runners up Daniella Hares (AstraZeneca, University of Southampton) for her presentation outlining computational techniques for drug discovery and poster prize winner Jake Odger (Sosei Heptares, University of York). The competition was hosted and organised by the Society of Chemical Industry Young Chemists’ Panel

For more on this year’s National Undergraduate Placement Student of the Year competition, visit: https://istry.co.uk/postercompetition/4/

Careers

From genome mining and green synthesis, to tackling tuberculosis and computational methods to help cure malaria, the chemists of tomorrow have been busy showcasing their talents as part of the Society of Chemical Industry Young Chemists Panel’s National Undergraduate Online Poster Competition 2021.

A snapshot of these students’ talents is bottled below in their own words. So, which one of these 15 entries do you think contains the most potential?

1: Genome mining for myxobacterial natural products discovery

Emmanuelle Acs et al., University of Glasgow

Natural products have always had a privileged place in drug development programmes, but their discovery is long and tedious. Genome mining arises as a solution allowing the finding of compounds never seen before. Using an array of bioinformatic softwares, the myxobacterial genome was explored for new Ribosomally and Post-Translationally modified Peptides (RIPPs). Myxobacteria are soil-dwelling bacteria known for the number of secondary metabolites they produce, and they have proven to hide many more within their genome. Indeed, our analyses have led to the potential discovery of nine new myxobacterial natural products. The nature and class of these products is to be confirmed by biosynthesis in the laboratory.

2: De novo design of a lanthanide-binding peptide inspired by the methanol dehydrogenase enzyme active site

Olivia Baldwin et al., University of Birmingham

Lanthanides were thought to be biologically irrelevant until the discovery of bacteria containing the lanthanide-dependent methanol dehydrogenase (Ln-MDH) enzyme. There has been interest in exploiting the attractive properties of the lanthanides by the de novo design of artificial proteins, aiming to explore protein structures and functions not observed in biology. Here, a lanthanide-binding peptide, CS1-0, has been designed de novo and shown to bind to europium and pyrroloquinoline-quinone (PQQ), a key component of the Ln-MDH active site. This partial recreation of a biologically relevant lanthanide binding site is a step towards the ultimate goal of de novo design, to create functional artificial metalloproteins with simplified structures.

3: Template-directed synthesis of porphyrin nanorings: a computational and experimental study

Janko Hergenhahn et al., University of Oxford

Template-directed synthesis provides a route to achieve porphyrin nanorings by favouring ring-closure reaction over oligomerisation. A structurally new template with 12 binding sites has been proposed for the synthesis of novel porphyrin rings; however, initial unsuccessful reactions have raised questions about the binding efficiency of this template to the linear substrate. We have employed classical and quantum modelling together with experimental techniques to explore template-substrate binding in solution and shed light on this process. Titration experiments and modelling have enabled us to study the occupancy of different binding sites and quantify the influence of strain on binding, further guiding novel designs.

4: Transborylation enabled boron-catalysed hydrocyanation of enones

Kieran Benn et al., University of Edinburgh

Hydrocyanation offers an orthogonal route to synthetically ubiquitous amines. Current hydrocyanation methodologies are dominated by the use of acutely toxic hydrogen cyanide gas and transition metal catalysts. Here the application of main-group catalysis and transborylation is reported for the formal hydrocyanation of functionalised alkenes. The catalytic protocol was optimised and applied to a broad range of substrates (20 examples), including examples where chemoselectivity was demonstrated in the presence of reducible functionalities and Lewis basic groups. Mechanistic studies support a proposed catalytic cycle in which B–N/B–H transborylation was a key to catalyst turnover.

SCIblog - 1 July 2021 - image of a mosquito

Students at the University of Glasgow have used computational analysis to help tackle malaria.

5: Investigation of the structure-property relationship between hydrophobicity and the antimicrobial activity of AMP-mimic copolymers

Xiyue Leng et al., University of Birmingham

Antimicrobial peptides are increasingly employed as new-generation antibiotics, with their amphiphilic nature (contain both hydrophobic and cationic components) mimicked by polymers to enable a more cost-effective approach. However, there is a lack of a quantitative pre-experiment indicator to provide a prospect on their potency. The overall hydrophobicity represented by LogP/SA was proposed to rapidly identify candidates in future designing to reduce synthetic efforts. We show a comparison study between two computational tools used to calculate LogP/SA: ChemBio3D and Materials Studio, in terms of the predictive power and sensitivity, followed by the synthesis of copolymers with a different cationic side chain based on the calculation results.

6: Modelling potential SARS-CoV-2 VIRTAC warheads

Mirjam-Kim Rääbis et al., University of Glasgow

Traditional small molecule therapeutics in medicinal chemistry often require high doses to inhibit the target protein, leading to issues with safety and drug resistance. Proteolysis targeting chimeras (PROTACs) are a new class of molecule that combat these issues, as they can use the body’s own protein degradation systems to degrade targets even at low drug doses. Virus-targeting chimeras (VIRTACs) can use a similar mechanism to target viral proteins. This project uses molecular docking studies to explore potential VIRTAC warheads that target the papain-like protease of SARS-CoV-2, in an attempt to find a potential treatment to COVID-19 that would, among other benefits, offer a lower risk of antiviral resistance.

7: Design, synthesis and biological evaluation of anti-tubercular small molecules

Miriam Turner et al., Newcastle University

Tuberculosis remains one of the top 10 causes of death worldwide, therefore there exists an unmet clinical need for new and improved therapeutics that tackle increasing bacterial resistance and affordability issues. Previous studies indicate N-substituted amino acid hydrazides exhibit good activity against several strains of Mtb. Ongoing structure-activity relationship studies utilising isoniazid, a variety of amino acids, and the active imidazo[1,2-a]pyridine-3-carboxy moiety of clinical candidate Q203 have also demonstrated excellent activities. Herein we report the results of our continued evaluation of this architecture, using a scaffold hopping approach to explore the potential of this pharmacophore as a new anti-tubercular drug.

8: Towards a cure for malaria: computational analysis and design of PfCLK3 inhibitors

Skye Brettell et al., University of Glasgow

Malaria continues to pose a significant challenge to humanity. Resistance to several frontline antimalarials represents a considerable threat, marking the need for new drugs with novel mechanisms of action. Kinase inhibitors represent a potential new class of antimalarials. TCMDC-135051 is a hit compound with activity against malarial kinase PfCLK3 as well as potency in liver, blood and sexual stage parasites. During this project, sequential analysis of the PfCLK3 catalytic domain identified key structural differences between the target and its human orthologs. Molecular docking studies of TCMDC-135051 analogues using GOLD then yielded potential lead compounds with predicted high affinity for the target kinase.

9: Mind the gap! Through-space electronic stabilisation of dynamic azaacene-extended helicene diimides

Matteo Albino et al., University of York

The strain-induced contortion of non-planar, chiroptically-active helicenes caused by fjord steric repulsive interactions is well known. Fjord-mediated planarisation, on the other hand, is far less common and has typically only been achieved via inherently strong covalent bond formation. Herein, I present the properties and density functional theory (DFT) analysis of electroactive aza[5]helicenes exhibiting unexpected through-space π-electronic stabilisation in the reduced states as a result of non-covalent fjord bonding effects. Computational modelling of optical spectra and aromatic-induced current densities reveal that lone pair-repulsive nitrogens in the fjord promote favourable ring currents and reversible helicene planarisation.

10: Mitochondria targeted metal-chelators as potential therapeutic agents against Parkinson’s Disease

Sam Andrew Young et al., Northumbria University

The synthesis of metal chelating molecules, specifically hydroxypyridones (HOPOs), have been identified as potential therapeutic agents for treating Parkinson’s Disease (PD) as bidentate ligands at the two oxygen donor atoms. These ligands are selective for ferric iron in the body, which is expected to stop the reduction of this iron accumulated in the brains of PD sufferers, hindering the Haber-Weiss mechanism from taking place in the mitochondria of the cell and preventing the associated degeneration of the cells. The lipophilicity of these HOPOs is vital to the process, allowing the molecule to transverse the blood-brain barrier, the addition of a triphenylphosphonium group on the HOPO is thought to increase therapeutic effect.

SCIblog - 1 July 2021 - image of a close-up of a woman's skin

At Heriot Watt University, students have investigated the skin irritation potential of nanoclays using an IATA

11: Green synthesis of n-acetylcolchinol

Adelaide Lunga et al., Loughborough University

The aim of this project is to develop a short synthesis of N-acetylcolchinol using a greener and step-economical pathway. First, aldol condensation of 3-hydroxyacetophenone and 3,4,5-trimethoxybenzaldehye using ethanolic NaOH produced the respective chalcone. The product was reduced electrochemically in DMSO:MeOH (4:1) employing carbon electrodes and NEt4Cl to the saturated benzylic alcohol, which was converted to an acetamide via Ritter reaction using H2SO4 in MeCN. In the final step, the conditions were optimised to enable electrochemical oxidative coupling of the aromatic groups to give the desired N-acetylcolchinol. This novel four-steps reaction sequence avoids use of transition metal catalysts or toxic reagents.

12: Towards the synthesis of small-molecule probes to measure endosulfatase activity

Yi Xiao et al., University of Oxford

Human endosulfatases (SULFs) are enzymes on the cell surface and in the extracellular matrix that hydrolyse 6-O-sulfate on glucosamine units within heparan sulfate proteoglycans. SULFs are involved in growth and development, muscle regeneration and tumour growth via various signaling pathways, with untapped therapeutic and diagnostic potentials. However, profiling SULFs remains a challenge. Antibodies detect their presence, but do not indicate their activity state. The current activity assay is a global sulfatase assay and is not selective in a biological sample. We propose a novel small-molecule probe to profile SULF activity by exploiting the formation of 1,6-anhydrosugar, which can be potentially used in isolated proteins and in vitro.

13: Developing machine learning models to predict the Hansen solubility parameters

Alexander Pine et al., University of Greenwich

Solubility parameters are important for pharmaceutical formulations, paint formulations and new material development. There is a need to improve the accuracy of solubility calculations, and to be able to make rapid predictions of the solubility of new molecular structures. In this project, a range of Python plugins, and open-source codes have been used to develop a Lasso linear regression machine learning model to predict the Hansen solubility parameters (HSP) - δd, δp and δh, which represents dispersion forces, dipole-permanent dipole forces and hydrogen bonding respectively with the intention of making faster and more accurate prediction in solubility.

14: The cycloaddition between cyclononyne and mesyl azide

Alexander David Robertson et al., The University of Glasgow

This research considers computational modelling of a SPAAC reaction involving cyclononyne. DFT calculations were performed on the strain promoted reaction between cyclononyne and mesyl azide. Three low energy conformers of cyclononyne with Cs, C2 and C1 symmetry were found with similar energy. The transition structures for the corresponding cycloaddition with mesyl azide were found and the C2 conformer was the lowest in energy. Product structures were found leading to the identification of the thermodynamic product of the reaction. Distortion/interaction analysis showed that the cycloalkyne was already significantly pre-constrained to its reacting geometry.

15: The assessment of skin irritation potential of nanoclays using an IATA

Holly King et al., Heriot Watt university

Clays are natural nanomaterials consisting of mineral silicate layers. They have several functional uses in everyday life. An example of nanoclays that carry out a wide range of roles is smectites which include montmorillonite (MMT), bentonite and hectorite. These nanoclays can be used in cosmetics, altering their appearance and in pharmaceuticals as drug carriers and wound dressings. Integrated approach to testing and assessment (IATA) aim to collect all relevant data into one easy to understand format that can be used to group materials. Using an IATA dedicated to skin irritation/corrosion it was found that MMT was safe for use. However, hectorite was found to be toxic at high doses indicating that it is a possible irritant to the skin.

Many thanks to the sponsors of this year’s competition: GSK, AstraZeneca, TeledyneIsco. The event runs until 9 July, so let us know what you think of the entries on Twitter at #SCIPosterComp.

If you’d like to see these students’ full posters, go to: https://istry.co.uk/postercompetition/5/?date_example=2021-06-28

Careers

In the latest blog in our SCI Mid-Career group series, Dr Jessica Gould, Applications Team Leader of Energy Technologies at Croda International, speaks about finding time for career development and the importance of taking on responsibilities outside her normal job role.SCI Members - Mid-Career Perspective - Jessica Gould

Please tell us about yourself and your career journey.
I started off my chemistry career with a Master’s degree in Chemistry from the University of Liverpool, during which I spent a year working in the chemical industry at Cognis Ltd. Following my undergraduate degree, I began a PhD at the University of Nottingham that looked at developing novel coordination polymers for hydrogen storage as part of the Engineering and Physical Sciences Research Council’s Centre for Doctoral Training in Hydrogen, Fuels Cells and their Applications.

After completing my PhD, I started work at Croda in 2013. I have predominantly worked as a research scientist in the UK Synthesis team, specialising in acrylic polymerisation. However, in early 2020 I changed roles to work as the Team Leader of our Energy Technologies Applications team. This area focuses on developing additives for the renewable energy sector, looking at electric vehicles, EV fluids, wind turbines and battery additives.

What are your keys to managing your career at this stage?
Compared to early career development, where the focus is on learning the key skills required for your job, at a mid-career stage other skills such as networking become more important. I do this by attending events both inside and outside my workplace. I also use various online platforms such as Microsoft Teams and LinkedIn to maintain and foster relationships within my network.

I also think that taking on responsibilities from outside your normal job role is important in managing your career at the mid-stage level. This allows you to continue to learn new skills even if you feel you are well settled in your main role. My manager helps me identify these opportunities and manage them within my current job role. My organisation also provides training courses that allow me to further develop these skills.

What challenges are there around mid-career support?
From my perspective, the challenge around mid-career support is finding time within your existing schedule for career development. People can often feel like they’ve stagnated if it takes a long time to progress or if they see limited job opportunities above them. Training, courses, networks and other experiences can help them learn and feel challenged. These provide an excellent way to maintain development at a mid-career level.

What additional support could SCI give to mid-career professionals?
Mentoring is an excellent way for people to feel supported in their career development. Expanding and continuing our mentoring scheme would be a great way for SCI to support its members.

Related Links:

Careers

In this blog series, members of the SCI Mid-Career group offer advice on career management and how to overcome career challenges.

SCI Committee - Mid-Careers - Dan Smith

In our latest interview, we hear from Dan Smith, Head of Portfolio at CatSci Ltd.

Please tell us about yourself and your career journey.
I have more than six years’ experience at CatSci, an SME that specialises in process development for the drug development programmes of our partners. In my current role as Head of Portfolio, I oversee the delivery of our customer projects and support the technical qualification of new business and resourcing across our technical team. Previously, as Principal Scientist I led projects focused on route optimisation for Phase I-II and greatly enjoyed contributing to CatSci’s growth from four practical lab scientists to a current team of 24.

Prior to CatSci, I focused on both applied catalysis and fundamental research in both the UK and US as a postdoc for five years, including at the University of York and Texas A&M University. This provided an opportunity to explore and develop a range of skills such as computational modelling and basic programming that I have found useful since. In terms of earlier education, I have both PhD and Master’s degrees in Chemistry from Durham University.

What are your keys to managing your career at this stage?
As one begins to specialise or diversify at the mid-career stage, often there is a less well defined path. However, that comes with a multitude of possibilities. A lot of my current learning is focused on broadening my skillset across disciplines, such as finance, that help contextualise a wide range of business activities. Relative to early career development, there can be fewer individuals to draw on for their greater experience, especially in smaller departments or organisations. Instead, actively engaging those outside of one’s day-to-day environment for their views can be very helpful.

What challenges are there around mid-career support?
One of the biggest challenges is around time, and setting aside time to reflect on larger strategic objectives. Ring fencing time is often difficult. However, conferences can provide this free space to focus on opportunities and engage others for different perspectives.

What additional support could SCI give to mid-career professionals?
In the evolving shift to a more virtual world, change has accelerated due to the pandemic, and digital technology is of even greater importance to virtually all areas of work. SCI members may benefit from support in these areas, specifically in relation to new ways of working in the chemical industry.

Related Links:

Careers

In this new series, members of the SCI Mid-Career group offer advice on career management and how to overcome career challenges.

SCI Member David Freeman

In our latest interview, we hear from David Freeman, Research & Technology Director for Croda’s Energy Technologies business.

Please tell us about yourself and your career journey.
After a PhD in organic chemistry, I started my career with ICI Paints in Slough in 1998, working in a product development role. Within a couple of years, I moved to another ICI business, Uniqema, and had various technical roles around the chemical synthesis or process development of new materials.

These early roles – and the people I worked with during this time – had a big impact on me in terms of ways of working and how to deal with people. I subsequently joined Croda in 2006 and have since had further technical roles – initially around the technical management of Synthesis programmes in Croda, then technical management of Applications programmes, and finally on to my current role of R&T Director for Croda’s Energy Technologies business.

This last transition was probably the most interesting and challenging as it forced me to think much more strategically about the “what” rather than the “how” and what leadership versus management was all about. I see this area as being hugely important to the Mid-Career group.

What are your keys to managing your career at this stage?
Development remains really important to me from a personal perspective. I have always driven my own development, but been well supported by the organisations I’ve worked for: both by technical management teams and HR teams. At the mid-careers stage, there are lots of important things to think about but I consider the following to be key:

  • (i) Self-understanding and feedback: make sure you understand your strengths and weaknesses and how these manifest themselves with colleagues by seeking open and honest feedback
  • (ii) Get external perspectives on your areas of interest and expertise. This for me is really key in challenging thinking and bringing new ways of working and innovation to your role
  • (iii) Understand the big picture: make sure you’re clear about what’s going on in the world at a high level and the part you and your organisation have to play in meeting these challenges.

What challenges are there around mid-career support?
I feel very fortunate to have worked for organisations where development is extremely important – support is always on hand when I need it. The key challenge is a personal one and it’s about making enough time to focus on the right development areas. We are all busy but if we want to develop ourselves enough, then we will find that time!

Related Links:

Science & Innovation

The Organisation for Economic Cooperation and Development (OECD) has published its Science Technology and Innovation Outlook 2021: Time of Crises and Opportunity report.

Published at the beginning of 2021, the report focuses on the ‘unparalleled mobilisation of the scientific and innovation community’ in response to the covid-19 pandemic. The report indicates that newly funded research initiatives have been established by public research agencies and organisations, private foundations and charities, while the health sector has similarly invested in an array of research programmes worth billions of dollars in record time.

SCIblog 4th January 2021 - image of double exposure, medical professional concept

The pandemic has led an unprecedented mobilisation of the scientific and innovation community

However, the report also exposes gaps in overall system resilience to future crises. ‘It’s a wake-up call that highlights the need to recalibrate science, technology and innovation (STI) policies, so that they better orient research and innovation efforts towards sustainability, inclusivity and resiliency goals,’ the report asserts.

Highlighting the rapid response by governments around the world, the report indicates that in the first few months of the pandemic, national research funding bodies spent around $5 billion on emergency financial support. This includes $300 million in Asia-Pacific, excluding China, over $850 million in Europe and more than $3.5 billion in North America. At the same time, research efforts led to around 75,000 scientific publications on covid-19 being released between January and November 2020, the report says. The largest share came from the US, followed by China and the UK. Research databases and scientific publishers removed paywalls so that covid-19 related information could be quickly shared.

SCIblog 4th January 2021 - image of a pencil on a pack of notes

Research efforts led to around 75,000 scientific publications on covid-19 being released between January and November 2020

‘These developments mark important changes that could accelerate the transition to a more open science in the longer run,’ the report says. It is also noted that not only have researchers continued their work with more than three quarters of scientists indicating that they had shifted to working from home at some point in 2020, but almost two thirds experienced, or expected to see, an increase in the use of digital tools for research as a consequence of the crisis. The report also mentions the contribution of the general public, with so called ‘frugal innovations’ in response to shortages of medical equipment and emergency supplies.

Looking to the future of the research community, the report says that postgraduate training regimes require reform to support a diversity of career paths. ‘The crisis has shown that the need for STI expertise is not limited to the public laboratory; it is also important for business, government and NGOs […] Reforming PhD and post-doctoral training to support a diversity of career paths is essential for improving societies’ ability to react to crises like covid-19 and to deal with long-term challenges like climate change that demand science-based responses […] There has been a 25% increase in the number of people with PhDs in OECD countries over the past decade with no corresponding increase in academic posts. The pandemic is expected to make matters worse, more than half of the scientists participating in the OECD Science Flash Survey expect the crisis to negatively affect their job security and career opportunities,’ the report says.

SCIblog 4th January 2021 - image of young scientists in a laboratory

Post-graduate training regimes require reform to support a diversity of career paths

While still in the midst of the pandemic, the report stresses that STI policies now need to be reoriented to tackle the challenges of sustainability, inclusivity and resiliency. ‘In the short-term governments should continue their support for science and innovation activities that aim to develop solutions to the pandemic and mitigate its negative impacts, while paying attention to its uneven distributional effects. Science for policy will remain in the spotlight as governments seek to strike the right balance in their response to covid-19. This will effect public perceptions of science that could have long term implications for science-society relations.’

The report concludes that governments now have the task of developing public sector capabilities to deliver more ambitious STI policy. This will require engagement from stakeholders and citizens in order to capture a diversity of knowledge and values.

DOI:10.1787/75f79015-en

Science & Innovation

Galen (129-216 CE) is one of the most famous and influential medical practitioners in history but he was also a scientist, an author, a philosopher, and a celebrity. He wrote hundreds of treatises, travelled and studied widely, was the physician to three emperors, and left a legacy of scientific thought that lasted for fifteen hundred years — even today, his work has an influence.

Header image Editorial credit: Eray Adiguzel / Shutterstock.com

He grew up in Pergamum, an intellectual centre of the Mediterranean world, in a wealthy family that encouraged him to pursue academia and funded his travels to learn in the best environments available, acquiring the latest techniques in medicine and healing.

He understood that diet, exercise, and hygiene were essential for good health and put that into practice in the four years he spent working for the High Priest of Pergamum's Gladiator School. This was a high profile and high pressure role and we know he reduced the death rate dramatically in his four years there. The recommendation he got helped secure him a position in Rome, capital of the empire.

He was not popular in the city — at one point, he seems to have been chased out by the local physicians, who strenuously disagreed with his methods — but he was eventually summoned by the emperor Marcus Aurelius to be his personal physician. He was described by the emperor as, “First among doctors and unique among philosophers".

SCIblog 2nd February 2021 - Galen - line drawing image of Galen

Galen; Line engraving | Credit: Wellcome Images, Wikimedia Commons

Galen continued to navigate the difficult political environment of the imperial capital and was personal physician to two more emperors, while publishing prolifically and becoming one of the most well-known figures in the Roman Empire. Much of his work is lost to us but we still know a great deal about him, including that he had a flair for showmanship and controversy.

In the Greek world where he grew up, dissections had been common — of animals and humans. In Rome, this was not the case. In fact, human dissections were banned across the empire shortly before Galen arrived in the city. Undaunted, he gave a number of public anatomical demonstrations using pigs, monkeys, sheep, and goats to show his new city what they were missing (this was one of many incidents that contributed to local dislike of his methods as well as his increasing fame).

His legacy was huge, both because he recorded and critiqued the work of others in his field and because of the huge volumes of his own observations and theories. His texts were the foundation for much of medical education in the Islamic, Byzantine, and European worlds until the 17th Century.

The ban on human dissection likely limited his progress in some areas and many of his theories have (eventually) been disproved, such as the theory of the four humours — blood, black bile, yellow bile, and phlegm — based on Hippocrates' system and elaborated, as well as the efficacy of bloodletting.

SCIblog 2nd February 2021 - Galen - image of an eye close-up

Galen observed that cataracts could be removed.

In other areas, however, he was remarkably successful. He observed that the heart has four valves that allow blood to flow in only one direction, that a patient's pulse or urine held clues to their disease, that urine forms in kidneys (previously thought to be the bladder), that arteries carry liquid blood (previously thought to be air), that cataracts could be removed from patients' eyes, among others. He also identified seven of the 12 cranial nerves, including the optic and acoustic nerves.

His focus on practical methods such as direct observation, dissection, and vivisection is obviously still relevant to modern medical research. Indeed, scientists who disproved his theories, such as Andreas Vesalius and Michael Servetus in the 16th century, did so using Galen's own methods.

The study of his work remains hugely important to the history and understanding of medicine and science, as well as the ancient world. The Galenic formulation, which deals with the principles of preparing and compounding medicines in order to optimise their absorption, is named after him.

Agrifood

Today we chat to Joe Oddy about his life as a Plant Sciences PhD Student at Rothamsted Research.  

Joe Oddy 

Give us a summary of your research, Joe!

I study how levels of the amino acid asparagine in wheat are controlled by genetics and the environment. Asparagine levels in wheat grain determine the levels of acrylamide, a probable carcinogen, in certain foods. We are hoping to better understand the biology of asparagine to mitigate this risk.

What does a day in the life of a Plant Sciences PhD Student look like?

My schedule is quite variable depending on what analysis I am doing. I could have whole days in the lab doing molecular work or whole days at the computer analysing and writing up data. Most of the time it is probably somewhere in between!

via GIPHY

How did your education prepare you for this experience?  

I think I had a good grounding in basic principles from my undergraduate degree, but the training they gave in R stands out as being particularly useful. In my degree program I also worked for a year in research, which really helped prepare me for this kind of project work.

What are some of the highlights so far?

Being able to go outside to check plants in the field or in the glasshouse makes a nice break if you have been doing computer work all day! Finishing up some analysis after a lot of data collection is also quite cathartic, as long as it works…

What is one of the biggest challenges faced in a PhD?

In my project so far, the biggest challenge has just been trying to decide what research questions to focus on since there are so many interesting options available. I realise I am probably quite fortunate to have this be my biggest challenge!

What advice would you give to someone considering a PhD?

My undergraduate university actually gave me this advice. They said that the most important part of choosing a project was not the university or the project itself, but the supervisor. I think this is true in a lot of cases, and at least for me.

via GIPHY

How have things been different for you because of the global pandemic?

I wasn’t able to go into the labs for a while but thankfully my plants in the field and glasshouse were maintained. By the time they finished growing the lockdown had been partially eased. At last, a long growing season has helped rather than hindered a PhD project.

What are you hoping to do after your research?

I’d like to go into research either in academia or industry, but beyond that I’m not sure. The landscape is always changing and I would probably be open to anything that seems interesting!

Joe Oddy is a PhD Student at Rothamsted Research and a member of SCI’s Agri-Food Early Career Committee and SCI’s Agriscences Committee

Careers

My research aims to help farmers in the tropics whilst discovering how plants, pests and microbes interact. Brambles, biological control organisms, bananas and now, sweet potatoes.

I joined SCI after receiving the David Miller Travel Bursary to attend the International Banana Congress in Miami in 2019. Now, I am the new Secretary of the Horticulture committee and I am part of the Agri-Food Early Careers  Committee.

Undergraduate Beginnings

started my undergraduate studies in Marine Biology as a bit of rebellion against my plant pathologist father. After living with Nepalese farmers in 2017, I switched universities to study Plant Biology. Last year, I started an PhD to work with a banana disease in Costa Rica, but I decided to exit the Doctoral Training Program with an MRes due to concerns about the lab environment. Next week, I will (re)start my PhD at the University of Southampton which will involve working with subsistence farmers in Papua New Guinea.

It sounds like my life is a bit of a roller-coaster. It is. I love it.

 

 Juniper with other students

 

In 2017, another scholarship took Juniper to Nepal to visit plant clinics and live with farmers.

Whilst I received “Top Student” awards for graduating with a high average – I never really studied from textbooks. I worked as a technician in labs and attended as many conferences as I could with scholarships. Often, I was the only undergraduate at international conferences or symposiums but that is where I learnt the behind-the-scenes stories of how scientists question how the world works.

Moments of random kindness, spare-of-the-moment dancing at conferences, and ridiculous situations I put myself in are the highlights of my scientific career – so far.

PhD Tips and Reflections

Personally, the workload of a PhD is not that scary, and I find it exciting to lead my own project. The biggest challenge of my PhD last year was to put my foot down and say that I did not feel comfortable around some colleagues. My pre-PhD advice would be to choose people over projects, be honest with yourself why you would like to do a PhD to begin with, and what skills you need to gain for post-PhD jobs.

 

 a student working

 

“The workload of a PhD isn’t that scary”

The COVID-19 pandemic put a halt on my rotation project at the Eden Project (Cornwall) in March and it is hard to predict when I will be able to travel to Papua New Guinea. I have been attending online events, panel discussions and conferences every week spring lockdown which have been a fantastic way to keep feeling engaged with the scientific community.

Whilst starting a PhD in a pandemic is strange – I am very excited about my project. I will be exploring options for working with local technicians remotely. I am planning on studying nutritional and social aspects of food security which has been inspired by an interview with an ethnobotanist and virtual conferences.

If there is one opportunity in this pandemic, it is to reflect on our behaviour, choices, and responsibility to live in harmony with nature and bring each other along. 

Juniper Kiss is a NERC INSPIRE DTP student at the University of Southampton, and a member of SCI’s Agri-Food Early Career Committee and SCI’s Horticulture Group

Careers

Today we chat to SCI member Luca Steel about her life as a plant pathology PhD student in 2020.

Can you please provide a brief summary of your research?

Zymoseptoria tritici is a fungal pathogen of wheat which can cause yield losses of up to 50%. We’re investigating an effector protein secreted by Z. tritici which acts as a ‘mask’, hiding the pathogen from host immune receptors and avoiding immune response.

What does a day in the life of a plant pathology PhD Student look like?

My days are very varied – from sowing wheat seeds to swabbing pathogenic spores onto their leaves, imaging symptoms, discussing results with my supervisor and lab team, and of course lots of reading. It doesn’t always go to plan - I recently attempted to make some wheat leaf broth, which involved lots of messy blending and ended up turning into a swampy mess in the autoclave!

 plants growing

Wheat in the incubator!

How did your education prepare you for this experience?  

The most valuable preparation was my placement year at GSK and my final year project at university. Being in the lab and having my own project to work on made me confident that I wanted to do a PhD – even if it was a totally different research area (I studied epigenetics/immunoinflammation at GSK!).

What are some of the highlights so far?

My highlight was probably attending the European Conference on Fungal Genetics in Rome earlier this year. It was great to hear about so much exciting work going on – and it was an added bonus that we got to explore Rome. I’ve also loved getting to know my colleagues and being able to do science every day.

What is one of the biggest challenges faced in a PhD?

My biggest challenge so far has probably been working from home during lockdown. Although I am very privileged to have a distraction-free space and good internet connection, it was difficult to adjust to working from my kitchen! It was sad abandoning unfinished experiments, and I missed being in the lab – so I’m glad to be back now.

 working on a laptop

Pandemic Workstations

What advice would you give to someone considering a PhD?

If you’re sure you want to do one, then absolutely go for it and don’t be afraid to sell yourself! If not, I’d recommend spending some time working in a lab before you apply and chatting to any prospective labs. If you don’t get a reply from the PI, existing students/post-docs in the group are often very happy to talk and give honest opinions.

How have things been different for you because of the global pandemic?

I was lucky that the pandemic came early on in my PhD, so I had a lot of flexibility to change what I was working on. I switched from lab work involving lots of bioimaging, towards a more bioinformatic approach. My poor laptop will be glad when I’m back to using my computer at work!



Careers

On the week of 10th-16th August, 2020, scientists across Twitter came together to celebrate the Black scientists working in Chemistry. The community event included a range of chemistry themes, from Organic to Physical Chemistry, showcasing a diverse range of research, and even garnered support from celebrities such as MC Hammer and Michael B. Jordan.

#BlackinChem was started by a group of early career researchers, following on from other successful weeks, who wanted to highlight the incredible range of science that Black chemists do.

 #BlackInChem group organisers

#BlackinChem wouldn’t be what it is without these amazing people!@That_Astro_Chic @onlyayanna_ @KathinatedDrink @NatRodLopes1 @blackinthelab @hi_d_nq 🧪❤️ pic.twitter.com/4A7qztEsT2

The main tweets of he week were by Black chemists highlighting their research interests.

 sonja the electrochemist

Hi everyone! #BlackinChemRollCall I’m Sonja, an Electrochemist, and a Chem lecturer at Princeton U. I worked on bimetallic/alloy electrocatalysts for fuel cells and CO2 reduction and now interested in academic support interventions. Looking forward to to #BlackInChem week! pic.twitter.com/GpTNpFnIaK

 Kelly from Aakeroy lab

#BlackinChem Kelly here 🇿🇼. I’m a grad student @KStateChemistry in the Aakeroy lab. My work focuses on crystal engineering and inorganic chemistry to modify properties of agrochemicals, fragrances and energetics :from fundamentals to applications.Cobalt girl…#BlackinInorganic pic.twitter.com/8OQM40zVgm

The week also included online events, panels and socials throughout the week.

Issues surrounding diversity in science, particularly representation of Black scientists, was discussed.

 #BlackInChem stats

1,656 U.S. citizens and permanent residents received a Master’s degree in chemistry in 2016.
Only 89 were Black. That’s less than 5.4%. #BlackinChem #BlackinChemRepresentation #BlackinChemGradStudent (Source: NSF NCSES) pic.twitter.com/7vd4GZBRJZ

There were even a few celebrity shout outs! Yes, this is MC Hammer tweeting about MOFs!

 Mesoporous stilbene

Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics - Dalton Transactions (RSC Publishing) #BlackinOrganic #BlackinChemRollCall https://t.co/qhlMLv9Dod

Overall, it was an incredibly successful week. A massive congratulations to everyone involved, and especially to the organisers.

Find out more about #BlackInChem here.

 a chemistry gif

Careers

Since the start of 2020 the world has been a different place. During March the UK Government instigated a lock down, with those who could required to work from home, this included scientists. Completing my PhD studying insect olfaction during a global pandemic was not something I expected, but how did I spend my days?

Computational Working

As a scientist I spend a portion, if not the majority of my time in a lab doing experiments. Pausing this work created several challenges, and as a final year student induced a serious amount of panic! To adapt, I focused more on computational experiments and extensive data analysis. Thankfully, I had some small computational projects already, which could be extended and explored further. This also included attending online courses and webinars to develop new skills – I really enjoyed SCI’s webinar series on computational chemistry and found it useful when completing my protein docking experiments!

 A phd student working

Writing, Writing, Writing

As a final year PhD student, there was one task at the beginning of this year that was high on the agenda – writing my thesis. Many past PhD students will tell horror stories about how they were rushing to finish lab work and writing up in a mad dash at the end. Being forced to give up lab work, and having no social activities, meant a lot more focus was put on writing during this time. Personally, I have been privileged to be in a house with other final year PhD students, creating a distraction free zone, and managed to crack down on thesis writing!

 A phd student working

Online Events

Despite in-person events, including many large international conferences, being cancelled, many organisers were quick to move meetings online. This made so many events more accessible. Though I am sad to have missed out on a trip to San Francisco, during lockdown I have attended numerous webinars, online seminars, two international conferences and even given outreach talks to the public and school children.

 People on a remote video call

Getting back to ‘normal’

It is safe to say the world, and the way science works, is never going to be the same. But scientists are slowly migrating back to the lab, adorned with a new item of PPE. On top of our lab coats, goggles and gloves we can add…a mask. Despite the stressful time,  I managed to get my thesis finished handing it in with a lot more computational work included than I had initially planned!

 

Science & Innovation

June 27th 2020 marked the fourth Micro-, Small and Medium-sized Enterprise (MSME) day, established by the International Council for Small Businesses (ICSB).

Along with online events, the ICSB published its annual report highlighting not only the importance of MSMEs as they relate to the United Nations Sustainable Development Goals but also calling for further political and regulatory support for the sector as the global economy looks to make a recovery.

 Concept of a green economy

Concept of a green economy 

Ahmed Osman, President of the ICSB, used the annual report to share his perspectives on the future for MSMEs in the post pandemic world and posed the question ‘What is the new normal for MSMEs?’  

‘There are six key factors every MSME or start-up needs to keep in mind post Covid-19,’ Osman stated, the first of these being financial assessment and security. Encouraging MSMEs to put in place a financial action plan, obtaining information about government relief packages and getting a clear picture of investor expectations, Osman said;  ‘Once this financial risk assessment and support ecosystem are in place, one can execute the plan. This may involve deciding on a potential pay cut, pull back on investments related to infrastructure or expansion, halting new recruitment etc…’

 Digital Business and Technology Concept

Digital Business and Technology Concept 

Having secured the financial footing the next factor was to re-evaluate the business plan in light of the new conditions. Osman stressed the importance of involving all stakeholders to come up with a mutually agreed set of new targets. The third factor to consider, according to Osman, was creating a ‘strong digital ecosystem.’ ‘If there is one thing that Covid-19 has taught businesses. It is the power of digital engagement. Even as an MSME, it helps to be present and active on digital media…Additionally, a digitally enabled internal ecosystem also needs to be in place that can accommodate remote working…without compromising data  security or productivity of employees.’

The fourth factor Osman highlighted was adoption of the fourth revolution for business. ‘…This is also time to leverage the new age technology innovations and adopt the fourth revolution for business. While most SMEs and MSMEs look at this as an ‘out of league’ investment, it is actually very simple and can be incorporated for a higher ROI in the long run. Be it automation, CRM, ERP, IoT, a well planned strategy to scale to technology-enabled, highly productive next generation business can be worked out with a two to three year plan,’ Osman said.

 Bulb future technology

Bulb future technology

Less reliance on physical space was the fifth factor Osman highlighted, anticipating a reversal in the trend that led to increasing the number of people in an office and home working becoming more normal.

The final factor Osman highlighted was the need to have a crisis management strategy in place. ‘It is vital to chalk up an effective crisis management plan that will take into consideration both immediate and long-term impact,’ he said.

Encouraging MSMEs to take stock, Osman asked ‘How did you help in the great pandemic? Quantify what you did for your employees, customers, community and country. Leverage the opportunity to build a better business, have credible solutions to the new major challenge and think globally act locally.’


Science & Innovation

In this round-up we will be looking at some of the developments and challenges surrounding artificial intelligence.

Development and Collaborations 

The Organisation for Economic Development (OECD) has launched its Artificial Intelligence (AI) Observatory, which aims to help countries encourage, nurture and monitor the responsible development of trustworthy AI systems for the benefit of society.

The Observatory works with policy communities across and beyond the OECD - from the digital economy and science and technology policy, to employment, health, consumer protection, education and transport policy – considering the opportunities and challenges posed by current and future AI developments in a coherent, holistic manner. 

The AI Observatory is being built on evidence-based analysis and provides a centre for the collection and sharing of information on AI, leveraging the OECD’s reputation for measurement methodologies. The Observatory will also engage a wide spectrum of stakeholders from the technical community, the private sector, academia, civil society and other international organisations, providing a hub for dialogue and collaboration.

According to a report produced by the European Institute of Innovation and Technology (EIT) Health and The McKinsey Centre for Government (MCG), AI can increase productivity and the efficiency of care delivery, allowing healthcare systems to provide better outcomes for patients.

The WHO estimates that by 2030 the world will be short of 9.9 million doctors, nurses and midwives, which adds to the challenges faced by an already overburdened healthcare system. Supporting the widespread adoption and scaling of AI could help alleviate this shortfall, the report says, by streamlining or even eliminating administrative tasks, which can occupy up to 70% of a healthcare professional’s time. 

The issues highlighted, among others, means that ‘AI is now ‘top-of-mind’ for healthcare decision makers, governments, investors and innovators and the EU itself,’ the report states.₁

To fully unlock the potential and capabilities of AI, there is an urgent need to attract and up-skill a generation of data-literate healthcare professionals. 

 Sustainable Development

Sustainable Development 

Artificial intelligence (AI) is influencing larger trends in global sustainability. Many communities in developing nations do not have access to clean water, which impacts health and has economic and environmental implications. 

AI has the capacity and ability to adapt and process large amounts of data in real time. This makes it an ideal tool for managing water resource, whereby utility managers can maximise current revenue, effectively forecasting and planning for the years ahead.

Currently, the development of AI is accelerating, but legal and ethical guidelines are yet to be implemented. In order to prepare the future generations of business leaders and national and international policy makers, the academic community will be playing a large role in this. 

president macron

Originally posted by nikazabini

For more information, click here. 

Reference: 

1. Transforming healthcare with AI: The impact on the workforce and organisations 


Careers

In this third article in our ‘How to…’ series, we reflect on what we learned from Martin Curry, STEM Healthcare, in his training session on managing the money.

What is a profit and loss table?

A table detailing all business transactions showing all incoming and outgoing cash activity. This will inform potential investors and credit sources how your business will generate its income and manage its costs. Documenting this information is important to show the progression (improvement) over a period and to forecast whether your business is set to make a future profit or loss.

 profit loss forecasting

So why is forecasting important?

A profit and loss table give businesses an idea of where the business is headed financially.

If your forecast suggests that profit levels will be low and therefore capital will be limited, it can help you to become more cautious with your credit and supply chain arrangements. Having this level of insight can help you to manage your risks and allow you to rethink your strategy in order to reduce loss and increase profitability.

 Manufacturing costs

Manufacturing costs

Monitoring your manufacturing costs is critical in order to represent the efficiency of the production process. There are two types of costs: fixed and variable.

Fixed: rent, rates, employee, insurance,

Variable: raw materials, transport, utilities,

Keeping track of the manufacturing costs will allow you to review the expenses associated with all the resources spent in the process of making the finished goods. To maximise the productivity of each unit of materials you use in the manufacturing process, ensure you review your procedures, materials and ensure waste is reduced to its minimum during the process.

 Financial awareness

Financial awareness

Awareness of the market is key to impressing potential investors; knowing what the key drivers are and understanding the risks and the market demand. Having this information enables you to provide evidence that you can effectively evaluate the commerciality of the project.

In summary, investors will be able to learn a great deal from the financial figures of a business. Thus, preparing a profit and loss account (detailing the business transactions) is critical to providing an insight of the business’s overall position within the market.


Science & Innovation

In this second article in our ‘How to…’ series, we reflect on what we learned from Mugdha Joshi, IP & Licensing expert at Kings College London, in her training session on Intellectual Property.

What is Intellectual Property?

Intellectual Property (IP) is a term that refers to the ‘creations of the mind’ such as inventions, works of art and symbols, names and images used in commerce.

 lightbulb

Types of IP

Patents - Works to prevent another person from being able to use the same invention. They cover how inventions work, how they do it, what they are made of and how they are made. A patent lasts for 20 years and it must be renewed on its fourth anniversary. It then must be renewed every year. After 20 years the patent is given to the public. To qualify for a patent, the invention needs to meet the following criteria:

- The invention needs to be undisclosed and not in the public domain before the date of filing. However, any disclosure under a non-disclosure agreement is fine.

- Your idea needs an inventive step that is not obvious to someone with knowledge of the subject.

- It must be a solution to a problem.

- It must be something that can be made and not just speculative.

Copyrights – Protects work created by their author. It must be the author’s own intellectual creation and not have been copied from somewhere else.

Designs – This refers to the aesthetic aspects of an article. It protects 3D objects, or the designs applied to them.

Trademarks – A distinctive sign that identifies certain goods or properties provided by an individual or a company.

 patent graphic

Commercialisation of IP

The commercialisation process involves:

Market analysis - What does your product solve? Why is it better than your competition? Who wants it and why? What are its limitations? What is the development time? (Click here for more on marketing).

Due Diligence - In-depth research of your company and invention and will include schedules of patents, copyrights and trademarks

IP protection -  Prior art search and patent attorney. You must ensure there is no evidence of your idea already being known.

Proof of concept fund

Marketing - Reaching out to companies and sending non-confidential flyers

Licensing - What’s down the pipeline? Exclusive or non-exclusive licence? What obligations are there, e.g. development milestones?

Spit-out creation - What do venture capitalists look for? They will want to see all your documentation that demonstrates that you meet various requirements. They will want to see your granted patents. It is a good idea to have a portfolio with multiple aspects of the product covered. They want to see that your product and company is professionally managed and that there are no issues of contested ownership or opposition.

 IP graphic

The Bright SCIdea Challenge 2020 Final

SCI are unable to protect any intellectual property submitted as part of the competition. It is in your best interest to not disclose any information that could give away key aspects of your innovation for others to reproduce.


Careers

This latest instalment of SCI Energy Group’s blog delves deeper into the working life of another one of its own members – Peter Reineck.

Peter is currently a consultant working alongside technology developers. Throughout this article, he shares insights into his career to date.

 Peter Reineck

Figure 1- Peter Reineck

Peter, can you please provide a brief introduction about yourself? 

I worked with a number of chemical and environmental service companies in the UK and Canada in commercial operations roles.

I now work as a consultant with technology developers to support market and business development.

Can you please explain how your job is aligned with the energy sector? 

I have a particular interest in advanced combustion systems with CO2 capture.

Most recently, I became involved in a new project to produce bio-based plastic that would replace fossil-based plastics in packaging and other applications.

Bio-based plastic has the advantage of producing biogenic CO2 if composted or sent for energy recovery at end of life.

In your current role, what are your typical day-to-day tasks?

Typically, my work involves communicating with stakeholders by phone and email and in meetings, assessing their responses and planning developments accordingly.

 chemicals in vials

Figure 2 - A knowledge of science is particularly helpful

How has your education/previous experience prepared you for this role?

I would say that English language skills and a knowledge of science and chemistry in particular have been the most helpful in my career.

What is your favourite aspect of your current job role?

Consultancy works well for me as the focus is on business development activities; as well, the hours are flexible.

What is the most challenging part of your job? 

A high degree of self-discipline is required in order to meet deadlines.

So far, what is your biggest accomplishment/ achievement throughout your career? 

The most satisfying were moving a number of businesses forward into new markets and applications.

 hourglass

Figure 3 - Self-discipline is required to meet deadlines

In your opinion, what do you think is the biggest problem faced in this field of work at present? 

I think the biggest problem is regulatory changes which affect the potential market for new technologies for packaging and power generation.

These changes are governmental responses to activist claims which are not based on a holistic interpretation of a complete set of data.

What advice would you give someone who is seeking / about to enter the same field of work? 

A practical understanding of science and statistics is essential. Combined with, an ability to translate new technologies into solutions which are economically viable.


Careers

On 6 December 2019 SCI held its entrepreneurial training day for this year’s Bright SCIdea Challenge. The first article in our How to series will take a look at what we learned from Neil Simpson, R&D Director at Borchers, in his training session on how to market and brand your idea.

In order to successfully promote a product or service, it is essential to understand the customer and the market. It is important to be more effective than your competitors in creating, delivering and communicating your idea.

Segmentation, Targeting and Positioning (STP) is a useful tool to help you to define your product and customer base.

When segmenting your customer base, consider the demographics including age, income and gender, as well as their geographical location and behavioural traits.

Once you have segmented your customer base, you will be able to identify which groups are the most suited for your product.

After you have considered which segments to target, you need to take into consideration what your product solves for these people – what is your unique selling point?

 Marketing Mix

The 4 Ps – Marketing Mix

Once you have used the STP framework to define your product and customer base, you can use the 4 Ps Marketing Mix to develop a strategy to bring your product to the market.

Product – This can be a tangible product, for example clothing, or a service. You should consider: What does your product stand for? What needs does it satisfy? How does it differ to your competitors?

Price – It is vital to think carefully about the pricing of your product. Do you compete on price or quality? Consider the perceived value of your product, along with supply costs and competitors’ prices. Pricing your product too high or too low could harm your sales and reputation.

Place – Where is the best location to provide your product to your customer base, and how do you distribute it to them? If you understand your customer base, you will be able to answer important questions such as: Where do your target customers shop? Do they buy online, or in high street shops?

Promotion – What is the most effective way to market your product and which channels should you use? Will you run a social media and email campaign? Would you benefit from attending conferences and exhibitions?

 laptop
Use SWOT to summarise your position

Finally, a useful tool to analyse your current position is the SWOT model. SWOT stands for Strengths, Weaknesses, Opportunities and Threats.

Strengths – How are you perceived by your customer base? What separates you from your competitors?

Weaknesses – What do others see as your weaknesses? What do your competitors do better than you?

Opportunities – What are current market trends? Are there any funding opportunities you could apply for? Are there any gaps in the market?

Threats – Are there any emerging competitors? Do you have any negative media or press coverage?

Using STP, the 4 Ps, and SWOT will be invaluable when it comes to completing your business plan. The more you understand your product, your customer base, where you sell it, and how you sell it, the more successful you will be!

 ipad graphic



image
Use SWOT to summarise your position

image
Use SWOT to summarise your position


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on Nickel.

Nickel, a silvery-white lustrous metal with a slight golden tinge may be commonly known as a US five cent coin, however, today nickel is one of the most widely used metals. According to the Nickel Institute, the metal is used in over 300,000 various products. It is also commonly used as a catalyst for hydrogeneration, cathodes for batteries and metal surface treatments.

 nickel coins

Nickel in batteries:

Historically, nickel has been widely used in batteries; nickel cadmium (NiCd) and in nickel metal hydride (NiMH) rechargeable batteries. These batteries were used in power tools and early digital cameras. Their success as batteries in portable devices became a stepping stone that led to the significant use of NiMH batteries in car vehicles, such as the Toyota Prius.

 nickel battery

The demand for nickel will increase even further as we move away from fossil fuel energy. More energy wll need to be stored in the cathode part of lithium-ion batteries as a result.

Socio-economic data on nickel demonstrates the importance the nickel value chain has on industries, which includes mining through end use to recycling.

The data reflects that globally, the nickel value chain supports a large number of jobs, primarily ones in manufacturing and chemical engineering. The output generated by nickel related industries is approximately €130bn, providing around 750,000 jobs.

 nickel machine

Nickel is fully recyclable without its qualities being downgraded, making it very sustainable. It is difficult to destroy and its qualities – corrosion resistance, high-temperature stability, strength, recyclability, and catalytic and electromagnetic properties are enabling qualities required for sustainability.

reduce reuse recycle gif

Originally posted by thesustainer


Science & Innovation

Congratulations to Hallam Wheatley, voted Young Ambassador of 2019/2020!

Can you tell us about your early involvement in the chemical industry?

My career in the chemical industry began at the age of 18 as an advanced apprentice. I spent two years completing my laboratory-based apprenticeship with Lotte Chemical on Teesside, where my passion for chemistry really materialised. Applying chemical principles into the world of work gave me a great appreciation for just how big a role chemistry plays in our everyday lives. After finishing my apprenticeship, I began studying part-time, for my degree in Chemistry.

 chemistry set

Can you tell about your work as a research chemist?

In 2017, I began working in SABIC’s research department, this really put me on the front line of the innovative technology that is being developed in the world today. As a research chemist, my main responsibilities revolve around supporting SABIC’s assets, and any chemistry related issues they may have. During my time, that’s mainly revolved around catalyst research. When I’m not helping with plant support, I work on sustainability issues, that will help answer some of the world’s toughest questions, relating to the chemical recycling of plastic waste, or helping to implement a hydrogen economy, to help reduce carbon emissions.

 CO2 dial

How do you feel to be named Young Ambassador of the year?

I was in shock when my name was called! The standard of applicants was really high, so to be named the Young Ambassador this year was a real honour.

I do feel that the award won’t mean a thing if I don’t make the most of my time as the Young Ambassador. It’s important to carry on the great work from last year and try and help the Future Forum continue to grow.

I know that task won’t be easy, but it’s really great that a lot of the short-listed finalists, have agreed to join the Leadership team this year, so I’m really excited to work with them, and I’m excited for the year ahead!

 hands on hands

What are your plans for the year ahead as Young Ambassador and with the Future Forum?

As Young Ambassador, I’m really hoping to continue the great work that Jennifer did last year. I want to build up a resource to help Future Forum members old and new alike.

I think it’s important that as a network we communicate effectively with each other to not only get an understanding of how young people are feeling in the industry, but also to identify some of the challenges their facing, as well as offering support from within the network.

I want to make the Future Forum something that people want to join, not because it looks good on a CV, but because it will offer people real opportunities to develop and network. This won’t be easy, but through help from Jennifer and this year’s Leadership Team, I think we’ll be able to lay strong foundations, so that moving forward, to Future Forum can be more than just a young professional networking platform.

 young ambassador network

What advice would you give someone starting out their career as a research chemist?

Look around!! Whilst I knew that I had a passion for Chemistry, I wasn’t so sold on the idea of university at 18 and after college. I decided to see what my best route into the industry that was on my doorstep was, and I was fortunate enough to find an apprenticeship that suited me. The apprenticeship gave me the grounding knowledge and understanding to progress, and two years later, I felt ready to tackle the challenge of a degree.

I do know, that whilst the apprenticeship route worked for me, it won’t work for everyone, but I think it’s important that students of all ages understand that there’s multiple choices that they may not have heard. Over the coming year, I’m hoping to use the Future Forum as a tool to best showcase some of the options to get a career within the Chemical Industry.

One thing I would recommend for all students though, is email local chemical companies, ask HR departments for advice about careers, and ask about the opportunities to come in and shadow, even if it’s only for a day! You’ll learn a lot, but you never know what it might lead to!


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on tungsten.

History

Over three centuries ago, this metal was first used by porcelain makers in China. They used a tungsten pigment to incorporate a peach colour into their art work. In 1781, Wilhelm Scheele examined a metal containing tungsten and successfully isolated an acidic white oxide, deducing the oxide of the new metal. In 1783, Wilhelm’s brothers produced the same acidic metal oxide, and upon heating it with carbon, they successfully reduced it to tungsten.

 tungsten

Health concerns

Tungsten raises concerns regarding the health effects associated with its levels of toxicity. Initially, tungsten was perceived to be immobile in the environment and therefore used as a viable replacement for lead and uranium in military applications. However, reports showed traces of tungsten detected in soil and potable water sources, increasing the risk to human exposure. According to public health reports, it is unlikely that tungsten present in consumer products poses a hazard or causes any long-term health effects. Therefore, further assessment on the potential long-term health effects of tungsten exposure is still required.

 tungsten pot

Properties

Tungsten is a refractory metal and as it has the highest melting temperature of all metals, it is used across a range of applications. Tungsten is alloyed with other metals to strengthen them. This makes them useful to many high-temperature applications, including arc-welding electrodes.

 hazard assessment form

Properties

Tungsten is a refractory metal and as it has the highest melting temperature of all metals, it is used across a range of applications. Tungsten is alloyed with other metals to strengthen them. This makes them useful to many high-temperature applications, including arc-welding electrodes.

the simpsons gif - heat wave causes ink to fall off newspaper

Originally posted by everythingstarstuff

It is used as a novel material for glass parts due to its superior thermochemical stability. As it is a good electric conductor, it is also used in solar energy devices. Tungsten compounds act as catalysts for energy converting reactions, leading many manufacturers to investigate further uses of tungsten.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. 

Discovery of this noble gas:

In 1894 argon was discovered by chemists Sir William Ramsay and Lord Rayleigh. Ramsay believed the presence of a heavy impurity in the ‘atmospheric’ nitrogen could be responsible for giving nitrogen a higher density when isolated from the air. Both scientists worked to discover this unrecognised new element hiding in the air, winning a Nobel Prize in 1904, primarily for their role in the discovery of argon.

Facts

Argon makes up 1% of the earth’s atmosphere and it is the most plentiful of the rare gases. Argon can be both used in its gaseous state and its liquid form. In its liquid state, argon can be stored and transported more easily, affording a cost-effective way to deliver product supply.

image

Argon as a narcotic agent

One of the most well-known biological effects of argon gas is in its narcotic capabilities. Sea divers normally develop narcotic symptoms under high pressure with normal respiratory air. These symptoms include slowed mental cognition and psychological instability. Argon exerts this narcotic effect in a physical way rather than in a chemical way, as argon, an inert gas, does not undergo chemical reactions in the body.

sea diver gif

Originally posted by gajo1987

3-D Printing

During the heating and cooling of printing materials, argon provides several benefits to this process. The gas reduces oxidation of the metal preventing reactions and keeping out impurities. This creates a stable printing environment as a constant pressure is maintained.

 3d printer

Future of argon

Argon as a clinical utility tool has received maximum attention. Although the potential benefits are still in the experimental stages, argon could be the ideal neuroprotective agent. Studies have shown that argon could improve cell survival, brain structural integrity and neurological recovery. These protective effects are also efficient when delivered up to 72 hours after brain injury.


Careers

This latest instalment of SCI Energy Group’s blog delves deeper into the working life of one of its own members and SCI ambassador – Reace Edwards. She is currently pursuing an industry funded PhD in Chemical Engineering at the University of Chester and, through this blog, answers some questions to shed some light on her experience so far.

 Reace Edwards

Reace Edwards: Head shot 

Can you please provide a brief summary of your research?

My research is concerned with the establishment of a hydrogen gas network, in the North West, as a method of large-scale decarbonisation. This cross-disciplinary work will examine different elements of the hydrogen economy from production to end-use and explore the opportunities and barriers possessed by the region. Whilst technical and economic considerations are key components of this, policy, regulatory and social aspects will also be explored.

 Reace Edwards on bike

Reace Edwards: Riding a bike that generates hydrogen from pedalling

What does a day in the life of a Chemical Engineering PhD Student look like?

“It’s hard to define a typical day for a PhD student as no one day is ever the same.

At the beginning of the PhD, I spent a lot of time reading literature to help contextualise my research and appreciate its importance at a local, national and international scale.  

Within time, I began to not only read but review and analyse this literature, which ultimately led to the construction of my literature review (this is regularly updated still)! Through this process, I identified research gaps, helping me focus my research questions, and inspired my field research and methodology.

Since then, I have applied for, and gained, ethical approval.  At my current stage, I have chosen semi-structured interviews for data collection. So, now, my typical day consists of conducting interviews and transcribing the recordings.

Alongside this, there have always been ample opportunities to attend conferences and networking events, which, provides another form of skills development. So, there’s lots going on. But, what’s for sure, is that though each day is busy, the results are definitely rewarding.” 

How did your education prepare you for this experience?  

“In 2018, I graduated, from the University of Chester, with a first-class bachelor’s degree in Chemical Engineering. Therefore, I was eligible to apply for the PhD studentship when it was advertised.”

 reace edwards graduation

Reace Edwards: Graduation 

What are some of the highlights so far?

For me, one of my main highlights had been to travel abroad to deliver a presentation on my work at an international conference.

Another highlight was the opportunity to co-author a conference article with a colleague from my industrial sponsor, and others, which was presented at another major, international conference.

In addition to this, I’ve done a TEDx talk and appeared on the BBC politics show. Where, on both accounts, I have discussed the opportunities for hydrogen.

Without doing this PhD, none of this would have even been possible!

 reace edwards tedx

Reace Edwards: After delivering TEDx talk 

What is one of the biggest challenges faced in a PhD?

Time management is definitely a challenge, from two different perspectives.

Firstly, there are many different things that you can be tasked with at one time. Therefore, it’s important to learn how to prioritise these things and assign your time accordingly.

But, as well as that, because of your passion for the research, it can be very tempting to work exceedingly long hours. Whilst this may be necessary at times, it is important to give yourself some rest to avoid becoming run down.

 reace edwards interview

Reace Edwards: Whilst being interviewed by BBC 

What advice would you give to someone considering a PhD?

“If you’re passionate about the subject – do it!

You won’t regret it


Careers

Nearly two years ago, while attending admissions day in the Department of Chemical Engineering at Imperial College London, I was asked, ‘Why Chemical Engineering?’ That is also the question I will attempt to answer today, before beginning my second year at Imperial.

sheldon gif

Originally posted by keep-calm-and-allons-y-whovians

1.  ChemEng is everywhere

If you look around, you will see countless things whose production involved chemical engineers. From a plastic bottle on your desk, through cosmetics and medicines, to the fuel that your car uses – all those products involve complex chemical processes designed and improved by engineers. I see chemical engineering as a job full of opportunities – and of many diverse ones, as well.

Not only are there numerous industry sectors to work in, but also possibilities beyond the scope of ChemEng. For example, other areas of employment stretch across research, finance and management, as chemical engineering equips students with many useful transferrable skills, such as problem-solving abilities or analytical thinking.

monica gif

Originally posted by livelovecaliforniadreams

2.      Chemical engineers can make the world a better place

It may sound like a slogan, but I really believe it’s true. Today’s society faces serious problems, some of which are caused by human activity. It is hard to ignore the changes in the natural environment and the problems such as climate change, but chemical engineers are here to find a way to fight it.

Nowadays, the focus in designing chemical processes is increasingly shifting towards environmental sustainability. Even our department has a carbon capture pilot plant, and when implemented on a chemical plant, carbon capture is aimed at reducing CO2 emissions. Chemical engineers can make production processes more eco-friendly and help to develop clean energy generation, which is crucial for today’s world.

 CO2 emissions graphic

Another big challenge of the 21st century is ageing society. It results in increased occurrence of diseases such as cancer, cardiovascular diseases, and many other types of illnesses. Subsequently, this increases the demand for various kinds of medicines, increases the consequent development of pharma industries, and thus, more opportunities for chemical engineers to benefit society.

 yoga stance

3.      ChemEng is fun!

To be perfectly honest, this course can be challenging at times. But at the same time, I find it really exciting and rewarding. Its multidisciplinary nature is what makes it interesting; we study elements of maths, physics, mechanics, some elementary programming and different branches of chemistry. It is also a course full of practical work – lab experiments and group projects, which develop co-operation skills and the ability to solve real-life problems, but it is also a fun way to learn and to meet new people!

Originally posted by kane52630

The most important thing is to enjoy what you study, and ChemEng is an ideal fit for those enjoying STEM subjects and willing to solve practical problems. And that is probably why I am so excited to come back to uni and start second year.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on titanium and its various uses in industries.

 titanium

What is titanium?

Titanium is a silver- coloured transition metal, exhibiting low density, high strength and a strong resistance to corrosion from water and chlorine. Suitably, titanium delivers many uses to various industries with approximately 6.6 million tonnes produced annually. 

Titanium Dioxide 

Titanium Dioxide is the most popular usage of titanium, composed of approximately of 90%. It is a white powder with high opacity; its properties have been made for a broad range of applications in paints, plastic good, inks and papers. Titanium dioxide is manufactured through the chloride process or the sulphate process. The sulphate process is the more popular process making up 70% of the production within the EU. 

 titanium in production

Aerospace industry 

Titanium’s characteristics - lightweight, strong and versatile, make titanium a valuable metal in the aerospace industry. In order for aircrafts to be safely airborne, the aerospace industry need parts which are both light and strong, and at the same time safe. Thus, titanium is seen as the most ideal match for these specifications.

 Aircraft

Dentistry

Titanium implants have been used with success, becoming a promising material in dentistry. As a result of its features, including its physiological inertia, resistance to corrosion, and biocompatibility, titanium plays an important role in the dental market.

 titanium dentistry

However, despite this, the technologies and systems used in the machining, casting and welding of titanium is slow and expensive. Despite the wide availability of these technologies and systems used in the process of creating dental prosthesis from titanium, it does depend on the technological advancements and the availability of resources, to create a more profitable and efficient manufacturing process.


Health & Wellbeing

On 8th March, I hosted my company’s first International Women’s Day event. Here’s what inspired me to do it…

1.       We need to talk about the lack of women in science

There are a lot of factors at play as to why women are underrepresented in science – it’s a complex issue and there’s been a rise in efforts to tackle it, which is great to see. We need to challenge the idea of what a ‘scientist’ looks like.

Simply by making people aware of stereotype threat and inherent bias, we can begin to break the rigid mould of what it means to be a ‘scientist’. We can’t face it if we never talk about it, and dedicated events are a way of opening up the conversation.

A ‘leaky pipeline’ has actually been coined in science – women ‘trickle out’ as they go up the career ladder. If we’re making an effort to encourage younger girls to study science subjects, we need to question why they’re not being retained at more senior levels. This effort needs to come from businesses.

 women in stem graphic
 women in management graphic

WISE (Women in Science and Engineering) reports the science workforce gender split in 2018Source: WISE

2.       There’s a difference between diversity and inclusion

When we think about the ‘leaky pipeline’, we need to address the difference between diversity and inclusion.

Diversity is important, but it’s not enough. Diversity is the who and what; inclusion is the how. It’s not just about who’s being recruited, or who gets a seat at the table. It’s about creating behaviours that embrace the diverse voices of these people. Diversity without inclusion is just a box-ticking exercise. We need to acknowledge our differences and show a commitment to changing company culture to embrace them.

Hosting events like International Women’s Day is a good start to demonstrating this commitment and dedicating a day for women to be heard.

 funny gif 2

Image: BrandisEGO

3.       I want to celebrate my colleagues

I’m lucky to work with some amazing scientists, some of whom happen to be women. I wanted to take a day to celebrate their accomplishments and those of all the women who are breaking glass ceilings in science. When people feel seen and recognised for their work it creates a healthier work environment. By having this day in place, we can dedicate a day each year to celebrate and congratulate women on their achievements. Plenty of my female colleagues were keen to get involved and help, and I was inspired to hear all their stories and ideas.

funny gif 3

Originally posted by kngoftheclouds

4.       It’s a win-win

I suggested this event because I thought it was a great fit for my company and could benefit us in many tangible ways. Workplace diversity can actually boost performance - a report found that when employees “think their organisation is committed to and supportive of diversity, and they feel included”, their ability to innovate increases by 83%. It also makes perfect sense to me that, by including all genders equally, we have access to a greater pool of talent and a wider range of mentors available for junior talent. Plus, it’s a brand-booster to show that we are bringing ourselves into the future and being socially conscious.

funny gif 4

Originally posted by beamlyus

5.       It’s just the beginning

We’re starting to talk more about gender issues in the workplace, but women are not the only people who are affected by discrimination. We need inclusion for everyone.

For example, most people are aware of the gender pay gap and companies are now obliged to publish their data on this, but in the UK, black male graduates earn almost £4 less per hour than their white peers.  Another study found that almost a third of LGBT+ physical scientists had considered leaving their workplace because of discrimination. These are issues that need to be openly talked about and acknowledged before we can even think about solving them. Science should be for everyone and I’m really excited to host more events to encourage this.

 funny gif 5

Image: Tiffany Pollard


Careers

The David Miller Travel Bursary Award aims to give early career plant scientists or horticulturists the opportunity of overseas travel in connection with their horticultural careers. 

Juan Carlos De la Concepcion was awarded one of the 2018 David Miller Travel Bursaries to attend the International Congress of Plant Pathology (ICPP) 2018: Plant Health in A Global Economy, which was held in Boston, US. Here, he details his experience attending the international conference and the opportunities it provided.

 Juan Carlos De la Concepcion

I’m currently completing the third-year of my rotation PhD in Plant and Microbial Science at the John Innes Centre in Norwich, UK. My work addresses how plant pathogens cause devastating diseases that affect food security worldwide, and how plants can recognise them and organise an immune response to keep themselves healthy. 

Because of the tremendous damage that plant diseases cause in agricultural and horticulturally relevant species, this topic has become central to achieving the UN Zero Hunger challenge.

Originally posted by thingsfromthedirt

Thanks to the David Miller Award, I was able to participate in the International Congress of Plant Pathology (ICPP) 2018: Plant Health in A Global Economy held in Boston, US. This event is the major international conference in the plant pathology field and only occurs once every five years. 

This year, the conference gathered together over 2,700 attendees, representing the broad international community of plant pathologist across the globe. In this conference, the leading experts in the different aspects of the field presented the latest advances and innovations. 

 rice plant

Juan’s current research looks at the rice plant’s immune response to pathogens.

These experts are setting a vision and future directions for tackling some of the most damaging plant diseases in the agriculture and horticulture industries, ensuring enough food productivity in a global economy.

Careers

Jenny Gracie was awarded a Messel Travel Bursary for an internship with the Naked Scientists based at the University of Cambridge. Here she describes how her internship has helped her to develop her skills and confidence in science communication, which she can now use to help shape her future career.

 Jenny in The Naked Scientists studio

Jenny in The Naked Scientists studio.


I am currently in the final year of a PhD in Chemistry at the University of Strathclyde. My project seeks to better treat cardiovascular disease, which is still the world’s leading cause of death. I am working towards a drug delivery system which utilises hollow gold nanoparticles as a ‘vehicle’ for delivering statins to the fatty plaques that block the arteries. Although I’m still interested in my research project, I’ve developed a real enthusiasm for science communication over the last few years and would like pursue a career in this field.

As a STEM ambassador I have attended fairs, festivals and schools to help spark a curiosity in science among children. During my PhD, the opportunity of an eight-week internship with The Naked Scientists came up, and I simply couldn’t let it pass. Without the funding support from SCI I could not have taken the internship, and so I am extremely grateful for the Messel Travel Bursary, and I know that this contribution helped make this transformative career experience a reality.

funny gif

Originally posted by healthyhappysexywealthy

The Naked Scientists are an award-winning science production group based at the University of Cambridge. They create one of the world’s most popular science shows, achieving over 50m downloads in the last five years. They broadcast weekly on BBC Cambridgeshire, BBC 5Live, ABC National Radio in Australia and also publish a podcast of the show. Podcasts are free, available on-demand and are a widely accessible source of science information to the general public. The Naked Scientist internship programme develops the skill set of early career communicators and provides first-hand experience in the world of science media communication.

Podcast production has grown exponentially in the last few years, however chemistry still remains underrepresented compared to the other traditional physical sciences, like physics and biology. As a chemist who is interested in a career in science communication, this role has allowed me to gain the necessary skills to make my own podcasts in the future.

chemistry gif

Originally posted by luciela-marche

As an intern I was part of the production team from the first day! It was a catapult into the world of radio broadcast and podcast production, but perfect for understanding how a show is produced from scratch. Our weekly show consisted of two parts – one half would cover the news and recently published articles, and the second half would cover a specific topic within science.

Media privileges gave me access to all the journals to be published that week, with them sealed under embargo until publication. We tended to pick articles that have a global impact and capture the interest of the listener. Each team member would be assigned an article, and we would then have to contact the authors to scope the story and arrange a recorded interview. The skills I required to organise and execute a good interview improved over the course of the eight weeks. I could see a real development in both my style and confidence.

funny gif

Originally posted by itslilky

During the internship I also learned how to use software to edit audio, and stitch together multiple tracks to create build pieces with music and sound effects. To accompany the interview, each week we also wrote a short article on the research. This required converting high-level science into a form that could be understood by the general public… something that is much harder than it sounds!


Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and sciblog.com.

 child running gif

As part of my PhD programme – the BBSRC Doctoral Training Partnership (DTP) with the University of Nottingham – I have had the opportunity to do a 12-week internship in something different to research. Today, I am going to tell you why I think every PhD student should step outside their comfort zone and do an internship.


1.       Expand your community

Doing a PhD internship allows you to temporarily leave the academic bubble, and meet some new and different people. During my internship, I had the opportunity to engage with members of SCI’s community, including a range of industrial partners, academics and other early career scientists.

black panther gif

Originally posted by brodiel

Attending events at SCI HQ has given me the chance to network with people I may never have met otherwise, gaining valuable connections and career advice. I was also able to see the range of work that goes on in chemistry and the chemical industry, including the variety of different career paths that are available.

Taking a step back from the practical side of science can also allow you to gain an appreciation for other areas of science. Learning about science in journalism and digital media will inform my decisions when trying to communicate my research to the general public in the future.

 reading newspaper gif

2.       Gain transferable skills

Undertaking an internship in an area that you are unfamiliar with will diversify your skills. Digital media has taught me many new skills, such as social media and Photoshop, but also refined skills that are valuable and transferable.

The main skills I have worked on are my writing and editing capabilities. I have found my flow for writing, learnt about proofreading, and refreshed my memory in grammar and spelling. These skills will be incredibly useful when trying to write a PhD thesis, and my experience will shine on my CV when applying for future jobs.

 friends gif

3.       A break from the lab

A PhD can be an overwhelming experience; sometimes it can feel like you are drowning in lab work and data analysis. Doing an internship means you can take a few months to escape, allowing you the chance to free your mind from data and reactions.

During my internship, I have had time to think about my research in more depth, considering options and planning, instead of rushing into things. The opportunity to take a step back means I will be re-entering the lab with clear, coherent plans and a new-found energy.

 phone gif

Although I have missed the rush of scientific research, my internship has taught me useful skills and allowed me to meet so many interesting people. I have really enjoyed my time in the SCI Digital Media team, and I would urge anyone considering an internship to take the leap. 

I hope to continue working with SCI through the Agri-Food Early Careers Committee and other SCI activities that I am involved with.


Policy

 Bright SCIdea Challenge 1

All Images: Andrew Lunn/SCI

On 19 March 2019, SCI hosted the second annual final of the Bright SCIdea Challenge, bringing together some of the brightest business minds of the future to pitch their science-based innovation to a panel of expert judges and a captivated audience.

As an opportunity to support UK/ROI students interested in commercialising their ideas and developing their business skills, the final included talks and training from our judges and networking with industry professionals.

 Bright SCIdea Challenge

The day started with a poster session and networking, including posters from teams Glubiotech, Online Analytics, HappiAppi and NovaCAT.

 Bright SCIdea Challenge
 Bright SCIdea Challenge

Training sessions came next, with Neil Wakemen from Alderley Park Accelerator speaking first on launching a successful science start-up.

 Bright SCIdea Challenge

Lucinda Bruce-Gardyne from Genius Foods spoke next on her personal business story, going from the kitchen to lab to supermarket shelves.

 Bright SCIdea Challenge

Participants could catch a glimpse of the trophies before giving their pitches.

 Bright SCIdea Challenge
 Bright SCIdea Challenge

The first team to pitch were Team Seta from UCL, with their idea for a high-throughput synthetic biology approach for biomaterials.

 Bright SCIdea Challenge
 Bright SCIdea Challenge

Team Plastech Innovation from Durham University presented their sustainable plastic-based concrete.

 Bright SCIdea Challenge 11
 

Closing the first session, Team DayDreamers. pitched their AI-driven mental wellness app.

 

The break was filled with networking between delegates and industry professionals.

 
 

Opening the second session, Team BRISL Antimicrobials, from UCL, showcased their innovative light-activated antimicrobial bristles that could be used in toothbrushes.

 
 

The final pitch of the day was from Team OxiGen, from the University of St Andrews, presenting their designer cell line for optimised protein expression.

 

After asking lots of questions during each pitch, the judges were left with the difficult task of deciding a winner.

 

Team HappiAppi, from Durham University, were voted the best poster by the audience!

 

The second runner-up was Team Seta!

 

The first runner-up was Team BRISL Antimicrobials!

 

Congratulations to the winners Team Plastech Innovation!! They win £5000 towards their idea.


We would like to thank our participating teams, sponsors (INEOS and Synthomer), guest speakers and judges (Lucinda Bruce-Gardyne, Robin Harrison, Inna Baigozina-Goreli, Ian Howell & Dave Freeman).


Science & Innovation

On 15 March 2019, chemists from across the UK country came to compete in the 6th National SCI/RSC Retrosynthesis Competition at SCI HQ in London.

 6th national SCI RSC competition

All images: Andrew Lunn/SCI

The event, organised by SCI’s Young Chemists Panel and Fine Chemicals Group, alongside RSC’s Heterocycle and Synthesis Group and Organic Division Council, saw 11 teams from across academia and industry to showcase their synthetic prowess.

At the event, the teams presented their synthetic routes for the novel sulfonated alkaloid Aconicarmisulfonine A. After their presentations, teams were questioned by the judges and audience on their synthetic route selections.

Scroll down to experience the day…

 

Chair of the Retrosynthesis Competition Organising Committee, Jason Camp, opens proceedings.

 
 

Live and Let Diene from Concept Life Sciences kick off the day’s pitches.

 

The Tryptophantastic Four from the University of Bristol followed.

 
 

Total Synthesisers from the University of Manchester deliver their synthesis model to a packed audience.

 

The Bloomsbury Group from the University of Manchester close the first session of the day.

 

During breaks, the competitors networked with senior scientists and our company exhibitors.

 

SygTeamTwo from Sygnature Discovery take to the podium.

 
 

The judges seem impressed with this year’s teams as Shawshank Reduction from the University of Oxford pitch next. 

 

Next up is In Tsuji We Trost from Evotec.

 
 

Totally Disconnected from the University of Strathclyde close the second session.

 
 

The competition gets more competitive and popular each year! SCI and RSC members discuss the teams so far.

 

Hold Me Closer Vinyl Dancer from the University of Cambridge are up.

 

Flower Power from Syngenta give an intriguing talk.

 

The second University of Oxford Team, Reflux and Chill?, finish the day’s impressive set of pitches.

 

Audience members then casted their votes for the Audience Vote winner…

 

…which went to In Tsuji We Trost!

 

Our 3rd place finalists were SygTeamTwo…

 

Oxford team Shawshank Reduction took 2nd place…

 

Congratulations to 2019 winners, Flower Power!


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. British scientists, engineers and inventors have played a significant role in developing engines and the automotive industry that stemmed from them.

steam train gif

Originally posted by suffocating-in-the-void

Steam power

Before the internal combustion engine, steam power was revolutionary in progressing industry in Britain. 

The first practical steam engine was designed by English inventor Thomas Newcomen in 1712 and was later adapted by Scotsman James Watt in 1765. Watt’s steam engine was the first to make use of steam at an above atmospheric pressure.

The Steam Engine - How Does It Work? Video: Real Engineering  

In 1804, the first locomotive-hauled railway journey was made by a steam locomotive design by Richard Trevithick, an inventor and mining engineer from Cornwall, UK. 

After this, steam trains took off and the steam engine was used in many ways such as powering the SS Great Britain, designed by Isambard Kingdom Brunel and launched in 1843.

 SS Great Britain
The SS Great Britain in Bristol, UK, today.

Engines at the ready

The conception and refinement of the internal combustion engine involved many inventors from around the world, including British ones. 

The automobile, using the internal combustion engine, was been invented in the United States, and Britain picked up on this emerging industry very quickly. These brands are among the most famous and abundant cars on the road today; Aston Martin, Mini, Jaguar, Land Rover and Rolls Royce may come to mind.  

 car engine

By the 1950s, the UK was the second-largest manufacturer of cars in the world (after the United States) and the largest exporter.

In 1930, the jet engine was patented by Sr Frank Whittle. He was an aviation engineer and pilot who started his career as an apprentice in the Royal Air Force (RAF). The jet engine became critical after the outbreak of World War II.

raf jet

Originally posted by aviationgifs

Great Britain are still major players in the aviation industry, and engineering innovations continue to be a major part of the British economy. British inventors have gone on to invent the hovercraft, hundreds of different jet designs and a variety of military vehicles.


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. Discoveries made by British physicists have changed the way we see the world, and are still used and celebrated today.

One of the world’s most recognisable scientists is mathematician and physicist Isaac Newton (1643-1727), who is credited with the discovery of the law of gravitation.

It is scientific legend that during one afternoon in his garden in 1666, during which Newton was sat under an apple tree, that an apple fell on his head. This led to a moment of inspiration from which he based his theory of gravity.

Gravity is an invisible force that pulls objects towards each other – anything with mass is affected by gravity – and is the reason why we don’t float off into space and why objects fall when you throw or drop them.

 Isaac Newton

An illustration of Isaac Newton in 1962.

The Earth’s gravity comes from its mass, which ultimately determines your weight. As the different plants in our universe are different masses, our weight on Earth is different to what it would be on Saturn or Uranus.

Whilst Newton’s theory has since been superseded by Einstein’s theory of relativity, it remains an important breakthrough in scientific history. The apple tree that supposedly led to his theory can still be found at Newton’s childhood home, Woolsthorpe Manor, in Grantham, UK.

 Newtons apple tree

Newton’s apple tree. Image: Martin Pettitt/Flickr


The Higgs boson

As a Senior Research Fellow at the University of Edinburgh, physicist Peter Higgs hypothesised that when the universe began, all particles had no mass. This changed a second later when they came into contact with a theoretical field – later named the Higgs field – and each particle gained mass.

The more a particle interacts with the field, the more mass it acquires and therefore the heavier it is, he postulated. The Higgs boson is a physical manifestation of the field.

 higgs boson

A computer generated rendering of the Higgs boson.

Back in 2012, the scientific community celebrated an important discovery made by researchers at CERN using the Large Hadron Collider – the world’s most powerful particle accelerator. 

After years of theorised work, they found a particle that behaved the way that the Higgs boson supposedly behaved.

The celebration was warranted, as the discovery of the Higgs boson verified the Standard Model of Particle Physics, which states that the Higgs boson gives everything in the universe its mass. It has been estimated that it cost $13.25bn to find the Higgs boson.  

 Large Hadron Collider

Inside the Large Hadron Collider at CERN in Switzerland. Image: Thomas Cizauskas/Flickr

In 2013, Higgs was presented with the Nobel Prize in Physics, which he shared with Belgian researcher Franҫois Englert, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles’.

Having avoided the limelight and media since his retirement, Higgs found out about his win from an ex-neighbour on his way home as he did not have a mobile phone!

Beyond the Higgs: What’s Next for the LHC? Video: The Royal Institution

The success of British physics isn’t slowing down either. It was in Manchester that two Russian scientists discovered graphene, which has influenced a wave of new research and investment into the use of this versatile material set to be a cornerstone for the fourth Industrial Revolution.


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. First, we are delving into genetics and molecular biology – from Darwin’s legacy, to the structure of DNA and now modern molecular techniques.

The theory of evolution by natural selection is one of the most famous scientific theories in biology to come from Britain. Before Charles Darwin famously published this theory, several classical philosophers considered how some traits may have occurred and survived, including works where Aristotle pondered the shape of teeth. 

These ideas were forgotten until the 18th century, when they were re-introduced by philosophers and scientists including Darwin’s own grandfather, Erasmus Darwin.

 colorful bird

Darwin used birds, particularly pigeons and finches to demonstrate his theories. Image: Pixabay

In 1859, Darwin first set out his theory of evolution by natural selection to explain adaptation and speciation. He was inspired by observations made on his second voyage of HM Beagle, along with the work of political economist Thomas Robert Malthus on population.

Darwin coined the term ‘natural selection’, thinking of it as like the artificial selection imposed by farmers and breeders. After publishing a series of papers with Alfred Russel Wallace, followed by On the Origin of Species, the concept of evolution was widely accepted.

 darwin gif

Although many initially contested the idea of natural selection, Darwin was ahead of his time, and further evidence was yet to come in the form of genetics.


Double Helix

Gregor Mendel first discovered genetics whilst working on peas and inheritance in the late 19th century. The unraveling of the molecular processes that were involved in this inheritance, however, allowed scientists to study inheritance and genetics in a high level of detail, ultimately advancing the field dramatically. 

A major discovery in the history of genetics was the determination of the structure of deoxyribose nucleic acid (DNA).

 double helix

DNA was first isolated by Swiss scientists, and it’s general structure – four bases, a sugar and a phosphate chain – was elucidated by researchers from the United States. It was a British team that managed to make the leap to the three-dimensional (3D)structure of DNA.

Using x-ray diffraction techniques, Rosalind Franklin, a British chemist, discovered that the bases of DNA were paired. This lead to the first accurate model of DNA’s molecular structure by James Watson and Francis Crick. The work was initially published in Nature in 1953, and would later win them a Nobel Prize.

The age of genetic wonder. Source: TED

By understanding the structure of DNA, further advances in the field were made. This has lead to a wide range of innovations, from Crispr/CAS9 gene editing to targeted gene therapies. The British-born science has been utilised by British pharmaceutical companies – pharma-giants GlaxoSmithKline (GSK) and AstraZeneca use this science today in driving new innovations.


Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and soci.org/blog.

funny gif internship blog

Originally posted by a-little-bit-of-thisandthat

Undertaking an internship in digital media has exposed me to a completely new part of science. As a young scientist, we are regularly taught the value of communicating our work, but often we are not taught how to best do this. 

There are many nuances and tricks to getting digital media to be the most engaging it can be, and here are a few that I have learnt over the last couple of months.


Know your audience

Before you start producing any kind of content, you need to know your audience. Are they scientists or the general public, early- or late-career, students or professionals? Understanding your target demographic can help you make informed decisions about the media or topic you choose, and how you write the piece.

 child chemist

It is crucial to know who your audience is!

It is important to keep your audience in mind at every stage of the process, from conception of the idea, to writing, presentation and marketing. By targeting your piece, you will produce a higher quality piece of content and have much more engagement overall.


Image is important

When presenting a piece of work to the world, be in a long-read article or just a Tweet, image is crucial. Choosing images or photographs to best display your message takes time and careful curation. 

Images can be obtained from a wide variety of sources, from stock photo websites, such as Shutterstock or Pixabay, to original images you may have designed or photographed. Remember to always give credit where appropriate. 

emoji gif

Originally posted by darokin

At SCI we are big fans of gifs and emojis. When targeting a younger audience, or using more informal media like out blog, these can engage and draw the eye much more than a standard image. This again requires meticulous decision-making skills, and it can be crucial to know the meanings behind each emoji.


Trust your gut

A large part of science communication is choosing which science to communicate. This involves selecting topics and editing to the most critical and interesting information.

 At SCI, we release innovation news pieces on a regular basis, where we choose the most exciting science news from the week. This involves looking through press releases, and sometimes selecting one piece from hundreds can be a daunting task.

funny gif internship blog

Originally posted by onlyonepisode

One thing I have learnt during my time at SCI is to trust that I can select something that people will want to read. When pitching ideas for articles and blog pieces, I have learnt to value my own opinion in what is engaging and relevant science that our members and the broader public might want to read about.


Careers

 ivalina minova

Ivalina Minova is an SCI Ambassador, 2018 SCI Scholar, and a third-year PhD student at the University of St Andrews, Scotland, UK, where her research involves the development of new techniques to help understand and improve industrially important reactions.

In this article, she discusses four aspects that have helped with her success as an early career scientist and the invaluable support resources she has benefited from.

Her last blog ‘How the SCI Early Careers programme helped me’ can be found here.


Mark your milestones

As a student at the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT), one of the milestones outlined in my four-year PhD training programme is to complete a three-month industrial placement abroad.

Having a clear goal and timeline is critical in early career development. I started thinking about potential placement visit options early and took the initiative in setting up an arrangement with a chemical company, Johnson Matthey (JM).


Find a mentor

cartoon phone gif

Originally posted by fluffywhitecloud

Having a mentor in industry can significantly benefit you in the early stages of your career, especially if you are working in academia. I was determined to find influential people who could help me to achieve my goals.

Part of this mission was being awarded an SCI scholarship in July 2018, which will support my three-month research placement visit at JM, a pioneering chemical company in sustainable technologies. I had built links with JM through my MChem studies at Durham University.

These have developed throughout my PhD, as I have initiated several catch-up meetings with research teams and R&D managers to discuss my research. In one of those meetings last year, I asked about the possibility of completing a placement visit at their US site, to which they agreed!


Look for funding opportunities

cartoon counting money gif

Originally posted by excitementshewrote

Once I had identified my desired placement visit abroad, I focused on applying for various funding opportunities to help fund my trip. Although my PhD programme provides financial support towards such placement visits, the costs of going to the US would exceed my budget.

There are a number of mobility grants and scholarship opportunities that I applied for listed below, that have allowed me to secure sufficient funding for this placement:

I was successful in obtaining the last two of those three.


The power of networking

garfield gif

Originally posted by various-cartoon-awesomeness

I attended a lot of conferences early on in my studies and was not shy to give oral talks, where my confidence in giving presentations on my research naturally grew.

Some of my personal highlights include presenting at the 6th International Congress in Operando Spectroscopy in Spain and being awarded an SCI Messel Travel Bursary to present my first manuscript on ‘Unravelling the mechanism of direct alkene formation from methoxy groups in H-ZSM-5, as revealed by synchrotron infrared microspectroscopy’ at the ACS Spring 2019 National Meeting and Exposition in Orlando, US, in March 2019.

Overall, I found these four key things beneficial to me in advancing my early career research and I hope that this blog will inspire others to take initiative as they move towards their next career step.

 

Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and soci.org/blog.

 sci staff pass

The SCI staff pass makes a change from the conference lanyards I am used to.

I am studying for my PhD as part of the Biotechnology and Biological Sciences Research Council (BBSRC) and University of Nottingham Doctoral Training Programme (DTP). I’m currently stationed at Rothamsted Research, a research institute in Hertfordshire, studying insect olfaction, specifically in aphids. 

A DTP involves completing rotations in different labs, a variety of training days and an internship, alongside your PhD studies. The internship is expected to be three months working in a role not directly applicable to your PhD studies, and is designed to give you a break from the lab to explore different potential career options.

 digital media

Working in digital media is a big contrast from my usual lab work.

When choosing where to undertake my internship, I was presented with a world of possibilities. There was working in industry, policy, marketing or for a charity. Prior to even considering an internship, I had done a lot of volunteering with the Society of Chemical Industry, being a member of their Agrisciences Group and Agrifood Early Career Committees. 

I had even previously written for the blog about experiences as PhD student. Having really enjoyed my prior work with them, it seemed logical to ask whether they would host me for my internship – and they said yes! I was accepted to do a three-month internship in the digital media team starting in January 2019.

cat gif

Originally posted by usedpimpa

My first month working with SCI has been a whirlwind of activity. There have been lots of opportunities already, from writing for the website and SCI Blog, to running their social media accounts. Recently, I was asked to help cover an SCI conference, which presented an entirely different experience to that which I had had with conferences before. 

The conference was on formulation – an area of chemistry I am completely unfamiliar with – and there was a wide-range of talks from academics to industry partners. It was a unique experience to listen to technical talks in something you have never studied, and the variety of real-world applications piqued my interest.

 sci building

Commuting to London everyday takes some getting used to, but it is a privilege to work in such a beautiful building.

There are huge differences between working at SCI and Rothamsted. Aside from the obvious differences in the work, there’s the London commute, dressing smart, and most importantly, the exposure to the wide variety of science covered across the chemical industry. 

Coming from an academic science background, my brain has been filled with new knowledge, particularly in relation to the intersection of industry and policy, such as the Chemistry Council and Industrial Strategy. This new knowledge, along with my training in digital media, will certainly be beneficial to my future scientific career.


Careers

Ivalina Minova is an SCI Ambassador, 2018 SCI Scholar, and a third-year PhD student at the University of St Andrews, Scotland, UK, where her research involves the development of new techniques to help understand and improve industrially important reactions.

 Ivalina Minova with SCIs Early Careers Committee Chair

Ivalina Minova with SCI’s Early Careers Committee Chair, Alan Heaton. Image: SCI

As an SCI member, she is actively involved with the Scotland Group and has attended a number of early career events, which have helped with her career development and she has detailed in this blog.

Her last blog, about her experience working at Diamond Light Source, can be found here.

College of Scholars’ Day

SCI scholarships 

SCI award three scholarships a year. Image: SCI

Presenting at SCI’s College of Scholar’s Day on 19 November 2018 was a memorable and enjoyable experience, which introduced me to the larger network of SCI Scholars, both current and past. I was able to gain valuable insights from hearing about the progress and achievements of other Scholars.

Some of my personal highlights from the day included speaking with Dr Alex O’Malley, who has successfully launched his independent career at Cardiff University, Wales, UK, supported by a Ramsey Fellowship, which is given to early career scientists looking to build their own programme of original research.

During the event, I also volunteered to help organise a post-graduate event at the SCI AGM meeting on 3 July 2019 initiated by the SCI Early Careers Committee, which will help students like me.

You can read more about the College of Scholar’s Day here.

You’re Hired!

handshake gif

Originally posted by gacktova

This day-long event – held in Glasgow on 30 November 2018 – was aimed at PhD students and post-doctoral early career researchers. There was a diverse programme of invited speakers who gave talks on their current roles. This included an industrial research scientist from Johnson Matthey and a patent attorney.

There was an intriguing talk from a CEO and entrepreneur, Dr Paul Colborn, who founded his own university spin-out company. It was interesting to hear about the risks he took in starting his own business and the successful expansion of Liverpool ChiroChem, a chemistry-based CRO that produces chiral small molecules for biotech/pharmaceutical R&D.

I was also impressed by a talk from a senior manager from Syngenta that described how she had progressed up the career ladder after completing her PhD.

The event closed with a Q&A panel, which allowed us to ask more specific questions, followed by a wine reception and more networking opportunities. During the wine reception I approached one of the speakers from industry and was able to set up a mentoring scheme arrangement within the umbrella of the SCI mentoring scheme, which I’m sure will be a valuable experience.

Bright SCIdea: Business innovation and entrepreneurship training

 students working

Team of students with an innovate idea will compete for £5,000 in March. Image: SCI

I joined the Bright SCIdea Challenge 2019 with the motivation to learn more about business and entrepreneurial skills. The training day event on 7 December 2018 at SCI HQ provided the necessary training for writing a business plan and included talks on entrepreneurial skills, IP, finances, marketing and pitching.

I particularly enjoyed a talk on marketing given by David Prest, an experienced scientist from Drochaid Research Services, a recently established service-based company that provides research support to industry.


Careers

University students from across the UK came to SCI HQ in London on Friday 7 December 2018 for a day of face-to-face business and innovation and entrepreneurship training, which was exclusively available to entrants to the Bright SCIdea Challenge 2019.

The students heard from experts in their fields on topics such as ‘Managing the Money’, ‘Defining the Market’, Intellectual Property (IP) and ‘How to Pitch’.

 The 2019 Bright SCIdea Challenge 1
 The 2019 Bright SCIdea Challenge 2

Sharon Todd, SCI’s Executive Director, introduces the students to SCI and the Bright SCIdea Challenge.  

 The 2019 Bright SCIdea Challenge 3
 The 2019 Bright SCIdea Challenge 4

David Prest, from our corporate supporter Drochaid Research Services, talks to delegates about defining the market and taking their product from lab to the market.

 The 2019 Bright SCIdea Challenge 5
 The 2019 Bright SCIdea Challenge 6
 

Our Bright SCIdea applicants learnt about IP from Charlotte Crowhurst, a patent lawyer and partner from Potter Clarkson.

 The 2019 Bright SCIdea Challenge 8
 The 2019 Bright SCIdea Challenge 9

Martin Curry from our sponsor STEM Healthcare teaches the audience about managing the money of a business.

 The 2019 Bright SCIdea Challenge 10
 The 2019 Bright SCIdea Challenge 11

Libby Linfied – one-third of our 2018 UCL winners Team Glucoguard – spoke about her experience and journey to last year’s final. 

 The 2019 Bright SCIdea Challenge 12

Victor Christou, CEO of Cambridge Innovation Capital and 2018 Head Judge, ran an interactive session on how to pitch. 

 The 2019 Bright SCIdea Challenge 13
 The 2019 Bright SCIdea Challenge 14

Groups were given everyday objects to pitch to Victor.

 The 2019 Bright SCIdea Challenge 15
 The 2019 Bright SCIdea Challenge 16
 The 2019 Bright SCIdea Challenge 17
 The 2019 Bright SCIdea Challenge 18

The students made compelling arguments for a plug adapter, hi-vis vest, ‘phone pillow’ and lunchbox.

 The 2019 Bright SCIdea Challenge 19
 The 2019 Bright SCIdea Challenge 20
 The 2019 Bright SCIdea Challenge 21
 The 2019 Bright SCIdea Challenge 22

Delegates and trainers mingled at a wine reception in the evening.


The Bright SCIdea Challenge 2019 final will take place on Tuesday 19 March 2019 at SCI HQ in London. Teams will compete for a chance to win £5,000!


Careers

Each year SCI’s Scotland group runs a competition where students are invited to write a short article describing how their PhD research relates to SCI’s strapline: where science meets business.

Jack Washington (right), a Pure and Applied Chemistry PhD student at the University of Strathclyde, was the overall winner of this year’s competition. His article ‘Clavulanic acid - The fight against antibiotic resistance’ is reproduced here:

Clavulanic acid - The fight against antibiotic resistance

 The molecular structure of clavulanic acid

The molecular structure of clavulanic acid. Image: Wikimedia Commons

If you were to say that cancer is the biggest threat to public health you would be wrong.

One of the most pre-eminent risks to human existence is antibiotic resistance. Antibiotics are medicines used to fight bacterial infections. However, bacteria are fighting back at an alarming rate. Without effective antibiotics, we could live in a world where infections borne from a simple wound could be deadly. Routine surgeries would no longer be possible. Whilst this bacterial apocalypse seems drastic, it’s a very real possibility, and one we could face in the near future.

 Alexander Fleming

Alexander Fleming. Image: Wikimedia Commons

Antibiotics are part of a multibillion-pound industry and are essential for life as we know it today. In 1928, the scientist Alexander Fleming, from Ayrshire in Scotland, serendipitously discovered penicillin. This chance discovery revolutionised the treatment of bacterial infections and spurred a wealth of antibiotic research. 88 years later, in the nearby town of Irvine, I started my PhD project in this field.

Penicillin is a β-lactam antibiotic, which made up of molecules containing a chemical entity known as a β-lactam. This β-lactam is a covalent warhead – a harpoon that grips its bacterial victim and doesn’t let go. This harpoon interrupts bacterial cell wall formation, causing the bacteria to rupture and die. 

Maryn McKenna: What do we do when antibiotics don’t work any more? Video: TED

However, bacteria can retaliate by producing aggressive enzymes that destroy this warhead. Another member of the β-lactam family, clavulanic acid, can thwart these enzymes. Clavulanic acid has weak antibiotic activity on its own so is used in a double act with another antibiotic, amoxicillin, to fight antibiotic-resistant bacteria as a team.

 

Careers

2018 SCI Scholar, Ivalina Minova, explains what it’s like researching catalysts at the UK’s national synchrotron.

2018 SCI Scholar Ivalina Minova

A catalyst is a substance that reduces the energy input required for a reaction – many industrial processes use a catalyst to make them feasible and economic.

There are many types of catalysts for different applications, and zeolite catalysts are used commercially to reduce the negative effects of exhaust fumes from diesel engines and produce fuels more efficiently. Catalysts can be studied with light, in a process called spectroscopy, to help understand how they work.

My PhD research has greatly benefitted from the use of synchrotron radiation. It helped me to gain detailed mechanistic insight into how the zeolite catalyst works. To date, I have completed four scientific visits at the Diamond Light Source, which is the UK’s national synchrotron facility, located in Oxfordshire.

Diamond Light Source is the UK’s national synchrotron science facility, located in Oxfordshire. It was opened in June 2014 to support industrial and academic research.

What is a synchrotron?

 Diamond Light Source

Diamond Light Source. Image credit: Diamond Light Source

A synchrotron generates very bright beams of light by accelerating electrons close to the speed of light and bending them through multiple magnets. The broad spectrum of light produced, ranging from X-rays to infrared (IR) light, is selectively filtered at the experimental laboratories (beamlines), where a specific region of the electromagnetic spectrum is utilised. My work uses the IR part of the electromagnetic spectrum. IR light has the right energy to probe bond stretches and deformations, allowing molecular observations and determination.

A highlight from last year has been attending a joint beamtime session with Prof Russell Howe and Prof Paul Wright at Diamond’s IR beamline (MIRIAM, B22). The MIRIAM beamline is managed by Dr Gianfelice Cinque and Dr Mark Frogley.

The synchrotron enables us to capture the catalyst in action during the methanol to hydrocarbons reaction. The changes in the zeolite hydroxyl stretches we observe correlate with the detection of the first hydrocarbon species downstream.

 A cartoon illustration of the evolution of the zeolite hydroxyl

A cartoon illustration of the evolution of the zeolite hydroxyl stretch band during the methanol to hydrocarbons process. Image credit: Ivalina Minova

What is it like researching at Diamond?

My access to Diamond is typically spread over six-month intervals. To secure beamtime, we have to submit a two-page research proposal. This is assessed by a scientific peer review panel and allocated three or four days to complete the proposed experiments.


Careers

 

Interested in the pharmaceutical industry and research community? Take a look at this short video to see how we bring science and business together. 

Careers

Dr Helen Sharman always knew that she wanted to study science at university, and considered biology, medicine, and physics before deciding on chemistry.

‘After – well, in fact, during – my degree, I always knew I wanted to go into industry,’ Dr Sharman said, as she began her fully booked evening lecture at SCI’s London headquarters. ‘I just thought chemistry was going to be a fabulous way of keeping my options open.’

How right she was – Dr Helen Sharman’s CV reads like an especially far-fetched answer to the question, ‘What would you like to be when you grow up?’

 space

Before taking the job for which she became best known, Helen Sharman worked for General Electric, developing screens and coatings for electronics; and then as a chemist for the confectioner Mars, where she was part of the team that developed the innovative Mars Ice Cream – a canny solution to the seasonal dip in chocolate bar sales over summer.

 mars ice cream

‘I then moved on in my job to the next department – the chocolate department,’ she continued, a smattering of oohs and aahs returning from the audience.

‘One of the tasks I had to do every day was to trundle down to the production line and take samples of chocolate and’ – she whispered – ‘taste it’.

‘There I was, using my chemistry, in industry, in a production environment, tasting chocolate. I loved it.

‘What better job could anybody have?’

There can’t be many. But one day, while driving home, Helen Sharman heard five words on a radio advert that could tempt her away even from her dream job at a chocolate factory.

‘Astronaut wanted: no experience necessary’.

astronaut gif

Originally posted by 1cyberpunkboy

No experience necessary

The advert was for Project Juno, the private British space programme to select the country’s first ever astronaut, who would join three Russian astronauts on the Mir Space Station for eight days.

‘They were looking for people who were qualified in something like science, engineering, medicine – something technical – and someone who did a practical job with their hands, because the ultimate astronaut was going to need to do experiments in space,’ Dr Sharman explained.

The astronaut would also need learn Russian in preparation for 18 months of training in Star City, near Moscow, before embarking on an eight-day mission orbiting Earth on the Mir Space Station with three Russian astronauts.

astronaut gif 2

Originally posted by weed-and-poetry

Finally, Dr Sharman explained, the successful applicant had to be reasonably physically fit, or more specifically, healthy – ‘You can train a certain fitness if you’ve got an internal health’, she said.

Of the 13,000 initial applicants, Helen Sharman made it to the final two. She and RAF Major Timothy Mace would not find out until three months before departure who was first choice and who was backup.

Meanwhile, the two prospective astronauts underwent rigorous training and tests, flight simulations, and experienced the illusion of weightlessness (achieved through parabolic flight in an aeroplane) – ‘This is the part of the training that every astronaut agrees, by far, is the best bit’, Dr Sharman said.

Experiments in space

Of course, it was Helen Sharman who was selected, and on 18 May 1991, she boarded the Soyuz TM-12 mission to the Mir Space Station with Soviet cosmonauts Anatoly Artsebarsky and Sergei Krikalyov, experiencing 3G of acceleration on launch and in 530 seconds – less than nine minutes – was 400km away from the earth’s surface. The Soyuz capsule orbited the planet for two days before manually docking with Mir.

With no time to waste, she began work on the experiments she was there to do for the next eight days…

 

Careers

For over thirty years, SCI has supported and recognised the excellence of early career people, by aiding their studies in the form of an SCI Scholarship.

Since 1985 around 74 scholarships have been awarded which have not only given the recipients financial assistance, but have enabled them to broaden their network, and strengthen their skills and knowledge. SCI Scholars receive access to publishing and mentoring opportunities and are given a platform to present their work amongst esteemed scientists and industrialists, thus raising their profile within the scientific community.

In the past ten years alone, SCI has generously bequeathed over £115,000 of its charitable funds to SCI Scholars and the scientists of the future.


Emma Grant

 emma grant

Upon completing my degree I wanted to pursue a PhD which sits at the interface of two disciplines, synthetic organic chemistry and molecular biology, and the collaborative PhD programme between the University of Strathclyde and GlaxoSmithKline provided me with this opportunity. My project falls within the realm of chemical biology, a rapidly evolving discipline which has the potential to revolutionise our vision of molecular pathways and the complex mechanisms of life.

My research on the design and synthesis of photoactivatable probes to study protein-ligand interactions, aims to develop a new platform of drug discovery. I am designing a photoactivatable fragment library which has the potential to mitigate the limitations of traditional drug discovery, primarily by covering a wider chemical space with compounds of higher ligand efficiency.

Genome Editing with CRISPR-Cas9. Video: McGovern Institute for Brain Research at MIT

This platform could provide an alternative technique to traditional screening, by broadening the chemical space available to discover novel binding ligands, and so leading to higher quality medicines.


Jona Ramadani

 Jona Ramadani

For my PhD I am studying surfactant migration on polymeric substrates. Surfactants are commonly used to modify the surface chemistry of many materials including polymers. In the manufacture of non-woven fabrics formed from polyethylene and polypropylene blends, which are used extensively in the personal care industry, non-ionic and cationic surfactants are commonly used to improve surface hydrophilicity via simple coating processes.

This surfactant loss process will be investigated by measuring key physicochemical properties of substrates treated with surfactants under different environmental conditions and as a function of time. The two primary objectives for the project are to confirm, quantify and visualise surfactant distributions on the surface of non-woven fabrics, and to develop a fundamental understanding of the surfactant loss process(es).

 surfactants

Common uses for surfactants include sanitary products and disposable nappies. Image: Shutterstock

The SCI scholarship will afford me great networking opportunities. In addition, it will help fund travel to relevant conferences such as the 8th Pacific Basin Conference on Adsorption Science and Technology to be held in September 2018 in Japan, to which I have been invited to present my work.


Ivalina Minova

 Ivalina Minova

I am investigating important zeolite-catalysed reactions including the production of fuels and emission control from diesel exhaust gases. This work is being carried out in collaboration with Prof. Russell Howe and Prof. Andy Beale along with the Catalysis Hub and beam scientists at the Diamond Light Source (B22, UK). The synchrotron at Diamond can generate a bright infrared source that allows us to obtain detailed mechanistic insight and interpret structure activity relationships for the development of improved catalytic materials.

I’m now entering the second year of my PhD and I am really enjoying it so far. I have gained a great deal of practical experience and have recently attended the 6th International Congress on Operando Spectroscopy in Spain to learn more about this subject. Earlier this year, I gave a talk at the 4th UK Catalysis Conference in Loughborough and my first scientific paper as lead author is now in preparation. 

 A diesel exhaust

A diesel exhaust. Image: Shutterstock

The funding and support offered by my SCI Scholarship will provide a valuable resource to help me extend my research to new areas of industrial importance and support my continual attendance at conferences and training courses relevant to my project work.


Agrifood

On Friday 11 May 2018, 20 delegates, ranging from Master’s students to post-docs, gathered at the SCI headquarters in London for a careers day in Agri-Food. 

This was the first event organised by the newly formed SCI Agri-Food Early Careers Forum, and had six speakers presenting the perspectives of varying careers – Prof Lin Field (Rothamsted Research), Rhianna Jones (Institute of Food Technologists), Prof Tim Benton (University of Leeds), Dr Rebecca Nesbit (Nobel Media), Dr Bertrand Emond (Campden BRI), and Dr Craig Duckam (CD R&D Consultancy Service). 

Delegates were treated to a variety of talks, ranging from advice on working within research to stepping outside of the research box into science communication or private consultancy. Over the course of the day, three common skills were covered by all leaders when discussing how they achieved success in their careers.

The first of these was networking. Every talk covered aspects of this, from going to conferences and events to being a good communicator. Building connections can be the key to getting job offers, learning about new opportunities, and even knowing where best to take your career. 

image

Professor Tim Benton Image: Cassie Sims

Prof Tim Benton spoke about the importance of working in teams, and of showing respect to other professionals, especially if they work in a different area. Dr Rebecca Nesbitt spoke about careers communicating science, specifically the broad range of media that can be used, and how to get involved. Rhianna Jones spoke about taking opportunities to be mentored, particularly from societies and professional organisations, such as SCI and the Institute of Food Technologists.

image

Lin Field, Rothamsted Research

The second skill that was covered in depth was adaptability. Initially, Prof Lin Field spoke about this in a practical context – building a set of laboratory and general scientific skills that can be carried across disciplines. 

However, each speaker had a different perspective. For example, Dr Craig Duckham spoke of learning new skills when setting up a private consultancy, such as accounting, business, and even web design and marketing. Prof Tim Benton summarised it well, stating we need to ‘look at the big picture’, and think strategically about where our skills can be used to better the world. He stated that we “need to be willing to re-invent ourselves”. Everyone agreed that we can achieve this by diversifying our portfolio of skills and taking as many opportunities as possible.

image

Lead, don’t follow

Each speaker spoke about being a leader, not a follower. This is a phrase that is used often in reference to achieving success, but is so important in every aspect of career development. Whether it is applying for a fellowship, or stepping out to start your own business, leadership skills will carry you through your career. A leader was described as someone who makes decisions, carves out a niche rather than following trends, and who sets an example that others follow naturally.

Overall, the speakers challenged delegates to consider what their idea of success is, and what skills they need to get there. The day was enjoyed by all delegates, and the advice given will help guide them throughout their future careers. The event could be summarised by this quote from Einstein, given by Prof. Benton on the day:

image

Try not to become a [person] of success, but rather try to become a [person] of value.

The event is planned to run for a second year in Spring 2019.


image

Policy

 

💡In 2018, we launched the #BrightSCIdea Challenge – an opportunity for students with a science-based innovation to gain expert training in developing an idea into a business. 💡

💡The response was incredible, and we invited six fantastic teams to pitch their innovation at the very first final. The winning team walked away with £1,000… 💡

💡Now, we’re taking entries for 2019, and we’re offering the winners not double, not treble, but five times the prize! To find out more and register your interest for the 2019 #BrightSCIdea Challenge, visit www.soci.org/brightscidea 💡

💡Show us you mean business!💡

Policy

 SCIdea challenge

Check out a report on the SCIdea challenge here

Careers

 Heliang Shi2

Check out Heliang Shi on Twitter

 “#Bridght SCIdea Challenge#Glad to make a pitch in London last week, and honored to be a membership of SCI now, thanks for the team work, thanks for the organizer @graemepaton007 @UoABioSci @SCIupdate”

 

twitter.com

 
 

Careers

 

💡 bit.ly/SCIdea2018 💡 Bright SCIdea Challenge – show us you mean business. Watch to find out about our competition, for students with a bright idea for a science-based business. There’s a £1,000 prize! 💡

Careers

 

 

Bright SCIdea Challenge – register now to access exclusive training materials! from SCI on Vimeo.

Are you a UK or ROI-based student with a bright idea for a science-based innovation? Want to gain experience in developing that idea into a business plan? Put together a team and join SCI’s Bright SCIdea Challenge for a series of training videos from science-based industry experts and you could be selected to pitch your business to our expert panel, with the winning team walking away with £1,000! Register now to access free training materials! For full details, visit bit.ly/SCIdea2018

 

Careers

 

Bright SCIdea Challenge – pitch your business plan to our expert panel! from SCI on Vimeo.

Are you a UK or ROI-based student with a bright idea for a science-based innovation? Want to gain experience in developing that idea into a business plan? Put together a team and join SCI’s Bright SCIdea Challenge for a series of training videos from science-based industry experts and you could be selected to pitch your business to our expert panel, with the winning team walking away with £1,000! For full details, visit bit.ly/SCIdea2018

Science & Innovation

The second annual Huxley Summit, run by the British Science Association, aimed to explore The will of the people? Science and innovation in a post-truth world. The leadership event invites delegates from political, academic, and corporate backgrounds to debate key scientific themes that present social challenges for the 21st Century.

A running debate throughout the day was the use of big data and the rise of artificial intelligence, with a panel of experts ready to discuss the problems of the present and the immediate future.


Protect your privacy

image

Online shopping is one of the ways consumers share their personal information. Image: Shutterstock

Big data is a topic that the public engages with every day, sometimes without knowing it. Each time you buy some new shoes, even book an appointment at the GP online, you are sharing data.

Banks can now reportedly predict when a couple is about to get divorced, based on how much a husband lowers his wife’s credit limit in the months leading to the split, said Pippa Malmgren, founder of H Robotics.

image

Originally posted by hollywoodmarcia

While a funny anecdote, facts like this are part of ongoing concerns over the ethics of data use. Should artificial intelligence be programmed to find facts like these if a person isn’t willing for their data to be used in this way?

The lack of regulation of big data and understanding of the importance of our personal information means data can sometimes be misused. ‘PayPal’s data agreement is 36,000 words. All of Hamlet is 30,000. So the quick click we do to accept T&C’s makes all of us liars,’ said Richard Thomas, who was the UK’s first Information Commissioner, from 2002-09.


Data breach

Chi Onwurah speaking at the 2017 Huxley Summit. Video: British Science Association

There are arguments that we are too late in the game when implementing data regulations, said the panel. After years of sharing data, it is only now, after several major controversies, that the government is seriously considering penalties for companies that do not inform customers about data breaches.

Uber’s recent infamous coverup and the security breach of all 3 billion Yahoo accounts are just two well-known examples. Companies should no doubt be responsible for informing their customers when they have been hacked, agreed the panel, but are they liable for the breach itself? These are the questions that need to be explored immediately, said Chi Onwurah, Shadow Science Minister.

image

The Uber hack reportedly affected 57,000 customers and drivers. Image: Wikimedia Commons 

So, ‘how do we deal with the politics of data?’ said Azeem Azhar, a strategist and analyst known for his technology newsletter Exponential View. ‘And how do we make sure that these automated systems facilitate to build a world that we want from the data we’ve given it, not merely reinforce the world that we have?’


A better world

One of the great advantages of data sharing will be in healthcare, said Azhar. It has been reported that the average human body contains nearly 150tr GB of information – the equivalent of 75bn 16GB iPads.

How big data could transform the healthcare industry. Video: HuffPost

With greater access to this huge data resource, healthcare experts could develop systems that can accurately predict the occurrence of disease and revolutionise treatments for patients. The NHS already has a running data management hub – a collaborate effort funded by the National Institute for Health Research, among others – that researchers and staff use to access secure data for R&D.

While a costly and time-consuming task today, it is these breakthroughs that will make the difference in the societies of the future.

Careers

The second annual Huxley Summit, run by the British Science Association, aimed to explore The will of the people? Science and innovation in a post-truth world. The leadership event invites delegates from political, academic, and corporate backgrounds to debate key scientific themes that present social challenges for the 21st Century.

A running debate throughout the day was the use of big data and the rise of artificial intelligence, with a panel of experts ready to discuss the problems of the present and the immediate future.


Protect your privacy

 Online shopping

Online shopping is one of the ways consumers share their personal information. Image: Shutterstock

Big data is a topic that the public engages with every day, sometimes without knowing it. Each time you buy some new shoes, even book an appointment at the GP online, you are sharing data.

Banks can now reportedly predict when a couple is about to get divorced, based on how much a husband lowers his wife’s credit limit in the months leading to the split, said Pippa Malmgren, founder of H Robotics.

phone call gif

Originally posted by hollywoodmarcia

While a funny anecdote, facts like this are part of ongoing concerns over the ethics of data use. Should artificial intelligence be programmed to find facts like these if a person isn’t willing for their data to be used in this way?

The lack of regulation of big data and understanding of the importance of our personal information means data can sometimes be misused. ‘PayPal’s data agreement is 36,000 words. All of Hamlet is 30,000. So the quick click we do to accept T&C’s makes all of us liars,’ said Richard Thomas, who was the UK’s first Information Commissioner, from 2002-09.


Data breach

Chi Onwurah speaking at the 2017 Huxley Summit. Video: British Science Association

There are arguments that we are too late in the game when implementing data regulations, said the panel. After years of sharing data, it is only now, after several major controversies, that the government is seriously considering penalties for companies that do not inform customers about data breaches.

Uber’s recent infamous coverup and the security breach of all 3 billion Yahoo accounts are just two well-known examples. Companies should no doubt be responsible for informing their customers when they have been hacked, agreed the panel, but are they liable for the breach itself? These are the questions that need to be explored immediately, said Chi Onwurah, Shadow Science Minister.

 The Uber hack

The Uber hack reportedly affected 57,000 customers and drivers. Image: Wikimedia Commons 

So, ‘how do we deal with the politics of data?’ said Azeem Azhar, a strategist and analyst known for his technology newsletter Exponential View. ‘And how do we make sure that these automated systems facilitate to build a world that we want from the data we’ve given it, not merely reinforce the world that we have?’


A better world

One of the great advantages of data sharing will be in healthcare, said Azhar. It has been reported that the average human body contains nearly 150tr GB of information – the equivalent of 75bn 16GB iPads.

How big data could transform the healthcare industry. Video: HuffPost

With greater access to this huge data resource, healthcare experts could develop systems that can accurately predict the occurrence of disease and revolutionise treatments for patients. The NHS already has a running data management hub – a collaborate effort funded by the National Institute for Health Research, among others – that researchers and staff use to access secure data for R&D.

While a costly and time-consuming task today, it is these breakthroughs that will make the difference in the societies of the future.

Careers

 christmas tree table

 

Check out SCI on Twitter here

“One of the highlights of SCI's office decorating competition #wheresciencemeetschristmas ... not that they'll beat us in digital media!"😉🎅🏻🎄”

Careers

plant gif

Originally posted by thereefuncovered

As another phenomenal Sir David Attenborough-narrated nature documentary draws to a close, many in the UK will be wondering what to do with themselves. The long-awaited Blue Planet II brought viewers on an enchanting journey through the oceans, with jaw-dropping photography capturing this hidden world, from the darkest depths to coral reefs and coasts.

In the final episode, we met Dr Jon Copley, who is Associate Professor in Ocean Exploration & Public Engagement at the University of Southampton. Jon was scientific advisor for Episode 2 (The Deep), which included providing some of the footage shown of deep-sea vent animals, from NERC research projects he was involved with. 

 Dr Jon Copley

Dr Jon Copley pictured during the Blue Planet II expedition to the Antarctic. Image: Jon Copley

Jon also took part in a month-long shoot in the Antarctic, which was shown in the incredible opening of The Deep episode, where Jon and his fellow researchers travelled in a minisub 1km deep into the Antarctic ocean

We caught up with Jon to find out about the real-world benefits of exploring our oceans, why communicating science matters, and more.


SCISome 16 years after the first Blue Planet series was broadcast, viewers were given the opportunity to visit the deep Antarctic ocean in Blue Planet II. What are the challenges in sending a manned craft to the deep Antarctic?

JC: We’ve actually had the technology to explore the Antarctic deep sea with human-occupied vehicles for several decades – Cousteau went there in the early 1970s with his ‘flying saucer’ minisub, which had a depth limit of 400 metres.

But dives by human-occupied vehicles depend on a fairly narrow window of wind, sea, and ice conditions. So the cost of sending such technology to the Antarctic can be a gamble – there’s a risk of not getting many suitable days for sub dives.

 

Fortunately, better information from satellites monitoring wind, sea, and ice conditions throughout the area allows more careful and adaptive planning of operations – and we depended on that during the Blue Planet II expedition. By being able to choose dive targets in more protected areas, there were only a couple of days when conditions prevented us from launching the subs. And of course the experience and professionalism of the ship’s crew and sub team were key to that success.

SCI: What are the real-world benefits of exploring the deep oceans?

JC: We can learn from the ingenuity of nature in the deep ocean – for example, an antifreeze protein now synthesised to improve storage of ice cream products comes from a deep-sea eelpout fish; materials scientists are investigating the damage-resisting properties of the shell of the ‘scaly-foot snail’ (a new species that I was co-author in describing) to design better crash-helmets, body armour and pipeline protection; there’s a new treatment for early-stage prostate cancer based on the light-sensitive behaviour of bacteria from the ocean floor; and possibly even eye drops in development to treat night blindness, from studying how dragonfish hunt in the inky depths.

 nighthunting dragonfish

Eye drops inspired by the night-hunting dragonfish are under development to prevent night blindness. Image: Marcus Karlsson

SCI: What can we do in our daily lives to protect our oceans, and what role does industry have to play in this?

JC: We don’t each have to become paragons of virtue – just a simple change or two that we can easily make into new habits will help to make a difference for the future of our blue planet. Those changes can be things like carrying your own drinks mug with you instead of needing single-use cups, or getting the ‘sustainable fish app’ from the Marine Conservation Society to help to decide which fish to eat.

But it’s more challenging where our everyday lives are more connected to the oceans than we realise. For example, an average family car produces around 40 milligrams of microplastics per kilometre from tyre wear, and some of those microplastics inevitably end up in waterways and the ocean. So a public transport policy that gives people real alternatives to personal car use, in terms of cost and convenience, is also a policy for a healthy ocean. And employers who support teleworking where possible or appropriate are also actually supporting a healthier ocean.

car gif2

Originally posted by alex-eugen

Industry can play a vital role for ensuring healthy oceans by innovating products and processes that give us real choices and alternatives to old ways of doing things that we now know have an impact on the oceans.  And I think we’re starting to see that there is real consumer demand for those choices and alternatives.

SCI: You co-founded SciConnect, a company to train scientists to share their research with the wider public. Do you think that scientists are more conscious today of the importance of communicating their science to a broad audience – and is the public more engaged with science?

JC: Being able to share specialist knowledge with people outside your specialism is essential for scientists to work with colleagues in different disciplines, interact with people in other roles across organisations, report to stakeholders and clients, inform policymakers and practitioners, engage with the media, inspire the next generation – if anything, it’s a more common activity in most scientific careers than just sharing research with peers in your own field. So I think that scientists today are very aware of the value of developing the underlying skills for all those applications.

But it’s a set of skills that are not routinely taught by experienced practitioners as part of scientific training, which is why I co-founded a company to do that, with colleagues who work day-to-day in science communication as writers, broadcasters, and presenters, and who have backgrounds in science so that they appreciate the needs and perspective of those they are training.

Fundamentally, engaging people with your research involves understanding your target audience – for example, the approach that you would take to inform policymakers about the consequences of a research finding is different to how you might try to inspire young people’s interest in science through your work, which makes us realise that there isn’t really a homogeneous ‘public’; outside our own area of specialism, we’re all members of ‘the public’ when it comes to finding out about research in another field.

turtle gif

Originally posted by davignola

SCI: Now that the Blue Planet II is over, how would you recommend bereft viewers fill the void?

JC: There are some great ways for anyone to continue pursuing their interest in marine life – for example, there’s the Capturing Our Coast project, which is building a nationwide community of volunteers who get together to survey shores, which helps to monitor changes in distributions of species around the UK. 

The University of Southampton also runs a free ‘Massive Open Online Course’ about Exploring Our Oceans, which covers the history, science, and relevance of the oceans to our everyday lives. It’s not a formal course, so there aren’t any exams, and no science background is required – just an interest in finding out more about our ocean world.


So, there you have it – from crash helmets to cancer treatments, exploring the deep allows us not only to learn more about the blue planet, but to improve life for us landlubbers, too! 

If you’re interested in learning about how our water and waste is analysed and treated, SCI’s Environment, Health and Safety group is running this event at our London headquarters in March 2018. Early bird fees available until 30 January

Science & Innovation

In 1942 the Leverhulme Trust endowed a lecture in memory of the first Viscount Leverhulme, founder of the Lever Brothers 

The Lecture is given every three years before the Liverpool and North West Regional Group to promote chemical or technological research or education.

Prof Maitland is the 20th recipient of this prestigious award and gave his lecture on ‘Avoiding catastrophic climate change; Paris 2015 set the targets, can the UK deliver?’.

Read our full write-up on the lecture here   

 Board of Trustees

Geoffrey Maitland (second left) receives his award from Alan Bayliss, Chair of the Board of Trustees, with Trevor Rhodes (left), Chair of SCI’s Liverpool and North West Group, and Sharon Todd, SCI’s Executive Director. Image: Mike Halliday

 Chemical Engineering degree

Reace Edwards, from Chester University, collects her award from Prof Maitland. She is the top scoring second year student on the BEng/MEng Chemical Engineering degree course. Image: Mike Halliday

 Oliver Stanfield

Oliver Stanfield won his award for highest-achieving third year student on the BSc Chemistry with Industrial Experience course at the University of Bangor. Image: Mike Halliday

 Aaisha Patel

Aaisha Patel, from Liverpool John Moores University, is the best second year student on the BSc (Hons) Chemical and Pharmaceutical Science programme. Image: Mike Halliday

Agrifood


#agrifoodbecause
wheat field

 

Check out SCI #agrifoodbecause on Twitter here

On the final day of the #agrifoodbecause competition, a look at some of the outstanding work being carried out in the field!

Careers

 Delegates at this years Young Chemist

Delegates at this year’s Young Chemist in Industry conference. Image: SCI

Every year, SCI’s Young Chemist’s Panel organise their Young Chemist in Industry event, where early career industrial chemists meet to showcase their research and network with their academics counterparts and other companies. 

This year, the conference was held at AstraZeneca’s Macclesfield base. Exhibitors are also judged, with the winner receiving a £150 Amazon voucher.

 Julien Vantourout

Julien Vantourout. Image: SCI

This year’s Young Chemist in Industry award went to Julian Vantourout, a final-year industrial PhD student at GSK and the University of Strathclyde.

His presentation focused on the limitations of the Chan-Lam amination of aryl boronic acid used in medicinal and process chemistry.

 Tim ORiordan and Ellen Gallimore

Tim O'Riordan and Ellen Gallimore. Image: SCI

Two runners-up received a £50 Amazon voucher each; Tim O’Riordan and Ellen Gallimore. 

Tim O’Riordan is a Principal Research Chemist in Syngenta’s crop protection department. he won the runner-up prize this year for his work in the synthesis and evaluation of new herbicides.

Ellen Gallimore is currently finishing her DPhil at Oxford University and works for UCB in their medicinal chemistry department. She received the runner-up prize for her exhibit explaining the biocatalytical potential of enzymes on small molecule drug discovery.

 Fluorochem

Image: Fluorochem Ltd

Fluorochem Ltd were at the event promoting their business to delegates. They supply intermediates used in R&D to pharmaceutical companies.

 Manchester Organics

Image: Manchester Organics

Manchester Organics work in fluorination and high pressure chemistry.

 Radleys

Image: Radleys

Radleys were on hand to tell delegates about their sustainable chemistry equipment.

Careers

In early September of this year, 34 final year chemists from all over the United Kingdom descended on GSK Stevenage for a week of all things chemistry, at the 14th Residential Chemistry Training Experience.

A few months prior, an e-flyer had circulated around the Chemistry department at UCL. It advertised the week-long, fully-funded initiative created to give soon-to-be grad chemists insight into the inner workings of the pharma industry. We were told we would also receive help with our soft skills – there was mention of interview prep and help with presentation skills. As someone who doesn’t have an industrial placement year structured into their degree, I was excited to see how different chemistry in academia might be to that in industry, or if there were any differences at all.

 GSK2

A fraction of GSK’s consumer healthcare products. Image: GSK

Two days in labs exposed me to new analytical techniques and gave me an appreciation for how smoothly everything can run. I was assigned a PhD student who supervised me one-on-one – something you’re seldom afforded at university until your masters year. We hoped to synthesise a compound he needed as proof of concept, and we did!

The abundance in resources available and state-of-the-art equipment at every turn highlighted how different an academic PhD might be to an industry one if that’s the route I decided to go down. The week bridged the disconnect I had between what I’d learnt at university and how things are done or appear. 

 The GSK training course

The GSK training course gave me unique insight into the life of a working scientist. Image: Pixabay

For example, I know enzymes can be used to speed up the rate of a biological reaction, but I’d never stopped to think about what they even look like. They come in the form of a sand-like material, if you’re wondering. Before that week, I hadn’t seen a Nuclear Magnetic Resonance (NMR) machine – we’d hand in our samples and someone else did the rest. NMR is an analytical technique we employ to characterise samples, double-checking to see we’ve made the right thing. It was great to put all this chemistry into context.

Our evenings were filled with opportunities to meet GSK staff and a networking formal brought in many others from places like SCI and the Royal Society of Chemistry. 

 A Nuclear Magnetic Resonance

A Nuclear Magnetic Resonance (NMR) machine, used by scientists to determine the properties of a molecule. Image: GSK  

During the week, there was a real emphasis on equipping us with the skills and confidence to succeed in whatever we opted to do. That’s exactly how I felt during our day of interview prep. The morning started off with a presentation on the structure of a typical graduate chemistry interview, followed by a comical mock interview before we were set loose with our own interviewer for an hour. Before this, I’d never had someone peer over my shoulder as I drew out mechanisms, and I’d never anticipated that I’d forget some really basic stuff. 

The hour whizzed by and when I was asked how I thought it had gone – terribly – and I was met with feedback that not only left me with more confidence in my own abilities, but an understanding of what a good interview is. It’s definitely OK to forget things – we’re human – but what’s most important is showing how you can get back to the right place using logic when you do forget.

watch gif

Originally posted by howbehindwow

Whether you’re curious about what goes on in companies like GSK, know you definitely want to work in pharma or you’re approaching your final year and just don’t know what you want to do (me), I’d recommend seeking out opportunities like this one. I got to meet people at my own university that I’d never spoken to and had great fun surrounded by others with the same love for organic chemistry.

 

Careers

Artificial intelligence (AI) – the ability of any man-made device to perceive its environment, identify a goal, and take rational actions to that end – can seem like a concept of science fiction. Recently, however, exponential growth in the field, with developments such as driverless cars, has made the prospect very real. The pace of change has led many to express concern about the dangers of artificial AI, although most of the potential benefits are yet to be realised.

A key aspect when trying to understand AI is knowledge of ‘machine learning’. Previously, software had to be ‘taught’ everything by the programmer, but this is no longer the case. DeepMind, one of the world’s leading groups in developing artificial intelligence, has seen considerable investment from high profile figures such as Elon Musk and has recently been acquired by Google’s parent company, Alphabet.

 

DeepMind claims to have developed software that mimics human imagination by considering the possible consequences of their actions and interpreting the results, ignoring irrelevant information. This allows the software to plan ahead, solving tasks in fewer steps and performing much better than conventional AI.

Could machines become better than humans?

There is plenty to suggest that AI, if managed correctly, could positively benefit society, tackling issues such as global warming and healthcare. On the other hand, sceptics argue that the developments in AI will drastically disrupt many industries. 

A decade ago, truck drivers were thought to be irreplaceable; now, Tesla and many other companies are making autonomous self-driving cars a reality. The pharmaceutical industry may also see immense changes; incredibly complex computational biological models will soon be able to fully predict drug mechanisms and interactions, allowing for much better analysis and speeding up the currently painstakingly slow clinical trial process for new drugs.

 Ubers selfdriving car

Uber’s self-driving car being testing in Pittsburgh. Image: Rex

It isn’t only drivers that are at risk of losing their jobs. Historian Yuval Noah Harari states that, just like the industrial revolution lessened the requirement for manual labour, the AI revolution will create vast amounts of unemployable people as their skills become redundant. 

Carl Benedikt Frey and Michael A Osborne from the University of Oxford predict that 47% of jobs are at high risk of being taken over by computer algorithms by 2033. Their list of jobs is striking – insurance underwriters, chefs, waiters, carpenters, and lifeguards are all at high risk of being superfluous. The displacement of human workers because of AI will be one of the key issues that policymakers and governments must consider going into the future.

 Elon Musk

Elon Musk, Founder of SpaceX and CEO of Tesla, Inc. Image: TED Conference

What could go wrong?

Facebook had to shut down its most recent AI system after it discovered that its chatbots were communicating between themselves in a new language that used English words but could not be understood by humans. Although the AI agents were rewarded for negotiating efficiently, they were not confined to just using English. The result was that they deviated from it and instead opted to create a language that was easier and faster for them to communicate, causing the social media giant to pull the plug on the system.

Elon Musk, founder of SpaceX and co-founder of PayPal, has very strong views about the development of AI, famously stating that AI is an ‘existential risk for human civilisation’. He raises interesting questions about cybersecurity and malicious AI that may be exploited by hackers to destabilise the outdated and less intelligent software that often controls the electricity and water of the world’s cities.

Above: Musk in Conversation with Max Tegmark, author of Life 3.0: Being Human in the Age of Artificial Intelligence 

AI is a rare case where we need to be proactive in regulation instead of reactive because ‘if we’re reactive in AI regulation it’s too late’, he said. At the moment, the technology is far from the apocalyptic, self-evolving software that haunts Musk. But we are becoming more and more accustomed to AI in our daily life; for example, Apple’s Siri interpreting voice commands and Facebook’s targeted advertising system.


 Hermann Hauser

Hermann Hauser Image: Franz Johann Morgenbesser

Interested in AI?

SCI is running a Public Evening Lecture in London on Wednesday 25 October – Machine Intelligence: Are Machines Better than Humans? The talk will be given by Hermann Hauser, co-founder of Amadeus Capital Partners, Acorn Computers, and ARM. It is free to attend, but spaces are limited. Don’t miss out – book your place here. 

Careers

One of the many commitments I have as part of my PhD training is in public engagement. This means that I get to attend events and talk about my research and other areas of science to kids, teenagers, mums, dads, grandparents… everyone!

I used to be terrified of this, as I thought that people wouldn’t understand or care. Any time friends or relatives asked what I was doing in the lab, I was never able to give a proper and comprehensive answer, and moving to England from Italy made this even worse, as I had to talk about my research in another language.

scared gif

Originally posted by hitrecord

But my idea that people wouldn’t care about or understand my research was very wrong. In fact, if people ask what you are doing in the lab, it’s because they are interested. It is true that they might not grasp complicated scientific theories, equations, and laws, but it is a scientist’s duty to make science accessible to everyone, especially when they show an interest.

I have been receiving a lot of training on how to communicate and entertain the general public with science, and here are a few ways I have found to make communication easier…


Make it simple

BB jessie if

Originally posted by vismaviedevie

Talking to the public is very different to talking to a panel of academics. Many of the people you engage with will not have much prior scientific knowledge, so try to be as simple as possible – use examples, and substitute specialised terms with more common ones. Rather than saying you synthesised a molecule, say that you made a material or compound – there is no need to be specific from the very beginning. Talk clearly and carefully, and ask if what you said was clear enough.


Relate your research to everyday life

melting gif

Originally posted by rosanna-wan

Everything happening around us is science. All natural events can be explained by physical, chemical, and mathematical rules. Telling your story will be a lot easier if you make a comparison with everyday life events. If someone complains about messy housemates, you can tell them that the state of disorder of the universe is constantly increased according to the second law of thermodynamics, so their housemates are behaving naturally!


Talk about why your research matters

particle gif

Originally posted by valeriemperez

Don’t forget that what you are doing is the lab isn’t only important to you – remind people that everybody benefits from research, whether that is through delivering useful new innovations to the market through industry, or lessening our impact on the planet. Science and innovation means progress, and, directly or indirectly, every new scientific discovery has the potential to provide benefit to society. If you can make this clear, people will relate to you more easily.


Communicate with enthusiasm

gameshowscience gif

Originally posted by ri-science

When you talk about science and your research, talk about what interests you to as many people as possible, and make it fun – use drawings, props, Lego – use whatever you can to help communicate the science in an engaging way.