Blog search results for Tag: UK

Policy

Waking up after a night of overindulgence on food and wine and realising you don’t have a headache is very satisfying. But realising, soon afterwards, you have heartburn can bring your mood down rapidly.

After years of discussion and argument around Brexit, the UK woke up to find that a Trade and Cooperation Agreement between the UK and the EU been reached. A major headache had been avoided.

SCIblog - 14 January 2021 - 2021: ‘A year to look forward to.’ - image of a woman from the back, she is looking out over landscape 

UK Businesses have a new trading landscape

However, the UK chemicals sector soon realised that after pulling back the curtains and taking a look at the new trading landscape, a feeling of heartburn was rising. The chemical sector’s regulatory obligation now requires that it establishes a UK-REACH system. The deal negotiated means that the UK has no access to the data it submitted to the EU’s REACH database.

In effect, the UK chemical sector has to populate the UK-REACH system from scratch. This will require an array of steps possibly including testing and renegotiating data sharing with other companies. According to the Chief Executive of the Chemical Industries Association (CIA), Steve Elliot, this is set to burn a £1 billion hole in the UK chemical sector’s pocket.

‘Failure to secure access to what has been a decade’s worth of investment by UK chemical businesses in data for EU REACH will leave the industry facing a bill of more than £1 billion in unnecessarily duplicating that work for a new UK regime,’ said Elliot in a statement on 24 December 2020, the day that the UK government excitedly announced the new trade deal.

SCIblog - 14 January 2021 - 2021: ‘A year to look forward to.’ - image of a scattered pound sterling 

UK-REACH could cost more than £1 billion

As a slightly belated Christmas gift, and perhaps just taking the edge off the heartburn, the UK government’s Environment Minister, Rebecca Pow announced, on 31 December, that the UK-REACH IT system was up and running. Pow said that the government had worked closely with partners, industry and stakeholders developing the IT system to manage the UK’s chemicals industry.

‘Having our own independent chemicals regulatory framework will ensure that we make decisions that best reflect the UK’s needs while maintaining some of the highest chemical standards in the world,’ she said.

But will these high standards do what REACH was set up for in the first place, and protect human health and the environment? According to CHEM Trust, a UK-German charity focused on preventing man-made chemicals from causing long term damage to wildlife or humans, the deal does not go far enough.

Critiquing the outcome, Michael Warhurst, Executive Director of CHEM Trust said, ‘CHEM Trust’s initial assessment is that this agreement does not adequately protect human health and the environment in the UK from hazardous chemicals. This is because it doesn’t retain UK access to the EU’s chemicals regulation system REACH. The agreement includes an annex on chemicals, but does not facilitate the type of close cooperation with the EU post-Brexit that civil society groups such as CHEM Trust, and also the chemicals and other industries are seeking.’

But on a positive note, Warhurst added; ‘The deal […] commits the UK to not regress from current levels of protection, includes a rebalancing procedure which could increase protection on both sides and offers a platform on which a closer partnership could be negotiated in the future.’

No one doubts that there is still much to be digested, along with those left over Christmas chocolates that nobody really likes, regarding the UK-EU Free Trade Agreement. ‘Although this Free Trade Agreement represents a mixed bag for our industry,’ said the CIA’s Elliot, ‘we shouldn’t underestimate the huge value that a deal brings in terms of certainty.’

SCIblog - 14 January 2021 - 2021: ‘A year to look forward to.’ - image of a plant with a sign saying 'Growth 2021' 

2021: A year to look forward to

As people return to their desks after the Christmas break, one might dare to hope that the heartburn can be quelled with a dose of optimism after the challenging year that has just passed. With this as a basis, along with eventually emerging from the global pandemic, Elliot believes 2021 should be ‘a year to look forward to’.

Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. First, we are delving into genetics and molecular biology – from Darwin’s legacy, to the structure of DNA and now modern molecular techniques.

The theory of evolution by natural selection is one of the most famous scientific theories in biology to come from Britain. Before Charles Darwin famously published this theory, several classical philosophers considered how some traits may have occurred and survived, including works where Aristotle pondered the shape of teeth. 

These ideas were forgotten until the 18th century, when they were re-introduced by philosophers and scientists including Darwin’s own grandfather, Erasmus Darwin.

 colorful bird

Darwin used birds, particularly pigeons and finches to demonstrate his theories. Image: Pixabay

In 1859, Darwin first set out his theory of evolution by natural selection to explain adaptation and speciation. He was inspired by observations made on his second voyage of HM Beagle, along with the work of political economist Thomas Robert Malthus on population.

Darwin coined the term ‘natural selection’, thinking of it as like the artificial selection imposed by farmers and breeders. After publishing a series of papers with Alfred Russel Wallace, followed by On the Origin of Species, the concept of evolution was widely accepted.

 darwin gif

Although many initially contested the idea of natural selection, Darwin was ahead of his time, and further evidence was yet to come in the form of genetics.


Double Helix

Gregor Mendel first discovered genetics whilst working on peas and inheritance in the late 19th century. The unraveling of the molecular processes that were involved in this inheritance, however, allowed scientists to study inheritance and genetics in a high level of detail, ultimately advancing the field dramatically. 

A major discovery in the history of genetics was the determination of the structure of deoxyribose nucleic acid (DNA).

 double helix

DNA was first isolated by Swiss scientists, and it’s general structure – four bases, a sugar and a phosphate chain – was elucidated by researchers from the United States. It was a British team that managed to make the leap to the three-dimensional (3D)structure of DNA.

Using x-ray diffraction techniques, Rosalind Franklin, a British chemist, discovered that the bases of DNA were paired. This lead to the first accurate model of DNA’s molecular structure by James Watson and Francis Crick. The work was initially published in Nature in 1953, and would later win them a Nobel Prize.

The age of genetic wonder. Source: TED

By understanding the structure of DNA, further advances in the field were made. This has lead to a wide range of innovations, from Crispr/CAS9 gene editing to targeted gene therapies. The British-born science has been utilised by British pharmaceutical companies – pharma-giants GlaxoSmithKline (GSK) and AstraZeneca use this science today in driving new innovations.


Health & Wellbeing

CRISPR/Cas9 is a gene editing tool that is swiftly becoming a revolutionary new technology. It allows researchers to edit the genome of a species by removing, adding or modifying parts of the DNA sequence.

To alter DNA using CRISPR, a pre-designed sequence is added to the DNA using a RNA scaffold (gRNA) that guides the enzyme Cas9 to the section of DNA that scientists want to alter. Cas9 ‘snips’ the selected sequence.

At this point, the cell identifies the DNA as damage and tries to repair it. Using this information, researchers can use repair technology to introduce changes to the genes of the cell, which will lead to a change in a genetic trait, such as the colour of your eyes or the size of a plants leaf.

 Cas9

Cas9 unzips the selected DNA sequence as the latter forms bonds to a new genetic code. Adapted from: McGovern Institute for Brain Research at MIT

Public approval of genetic modification is at an all-time high, with a recent YouGov survey finding only 7% of people in the UK oppose gene editing, although there is still a way to go. Lighter regulation in recent years has allowed smaller companies and academic institutions to undertake research.

The future of farming

One of the industries that has benefited from CRISPR is agriculture. The ongoing GM debate is an example of controversial use of transgenesis, the process of inserting DNA from one species into another, spawning fears of ‘Frankenstein foods’.

Instead of creating mega-crops that out-compete all conventional plants, gene editing provides resistance to harsh environments and infections; particularly significant in the context of global food security.

Disease breakthroughs

Although gene-editing has been a staple of new agriculture technology for many years now, it is only recently that CRISPR has seen successful use in human disease research and resulting clinical trials.

Scientists at the Salk Institute, California, successfully removed the MYBPC3 gene, linked to a common form of heart disease, from a human embryo. The correction was made at the earliest stage of human development, meaning that the condition could not be passed to future generations.

CRISPR is also being used to study embryo development. Recently, scientists at the Francis Crick Institute, London, discovered that the gene OCT4 was vital in these early stages, although its purpose is still not fully understood. Researchers involved believe that more research into OCT4 could help us improve success rates of IVF and understand why some women miscarry.

 A human embryo

A human embryo at day four, taken by a Scanning Electron Microscope. Image: Yorgos Nikas, Wellcome Images

CRISPR is still in the early stages and we are far from editing embryos that can be implanted for pregnancy. Many more safety tests are required before proceeding with any clinical trials, with the next step perhaps replicating the experiment on other mutations such as BRCA1 and BRCA2, the genes responsible for an increased risk of breast cancer.

Experts are confident, however, that this technique could be applied to thousands of other diseases caused by a single mutation, such as cystic fibrosis and ovarian cancers.

The benefits of gene editing are abundant. For example, we may be able to turn the tables on antibiotic-resistant bacteria or ‘super-bugs’ by engineering bacteriophages - viruses that infect bacteria - to target antibiotic resistance genes, knocking them out and allowing conventional antibiotics to work once again. Elsewhere, CRISPR could be used to modify metabolic pathways within algae or corn to produce sustainable and cost-effective ethanol for the biofuel market.

car gif

Originally posted by urbaneway

Is CRISPR ethical?

CRISPR and gene editing will revolutionise many industries, but the fear remains in many that we will slip into a society where ‘designer babies’ become the norm, and individuality will be lost. 

Marcy Darnovsky, Executive Director of the Centre for Genetics and Society, said in a statement: ‘We could all too easily find ourselves in a world where some people’s children are considered biologically superior to the rest of us.’

 superheros

Could CRISPR lead to a new generation of superheros? Image: Cia Gould

Dr Lovell-Badge, from the Francis Crick Institute, disagrees. ‘I personally feel we are duty bound to explore what the technology can do in a safe, reliable manner to help people. If you have a way to help families not have a diseased child, then it would be unethical not to do it,’ he said.

Genetic engineering does not have to have an all-or-nothing approach. There is a middle ground that will benefit everyone with correct regulation and oversight. With its globally renowned research base, the UK government has a great opportunity to encourage genetic experiments and further cement Britain’s place as the genetic research hub of the future.