Blog search results for Tag: battery

Energy

Batteries have an important role as energy sources with environmental advantages. They offset the negative environmental impacts of fossil fuels or nuclear-based power; they are also recyclable. These attributes have led to increasing research with the aim of improving battery design and environmental impact, particularly regarding their end of life. In addition, there is a desire to improve battery safety as well as design batteries from more sustainable and less toxic materials.

New research shows that aluminium battery could offer several advantages:

Aluminium metal anode batteries could hold promise as an environmentally friendly and sustainable replacement for the current lithium battery technology. Among aluminium’s benefits are its abundance, it is the third most plentiful element the Earth’s crust.  

To date aluminium anode batteries have not moved into commercial use, mainly because using graphite as a cathode leads to a battery with an energy content which is too low to be useful.

This is promising for future research and development of aluminium as well as other metal-organic batteries.

 Battery Charging

Battery Charging

New UK battery project is said to be vital for balancing the country’s electricity demand

Work has begun on what is said to be Europe’s biggest battery. The 100MW Minety power storage project, which is being built in southwest England, UK, will comprise two 50MW battery storage systems. The project is backed by China Huaneng Group and Chinese sovereign wealth fund CNIC. 

Shell Energy Europe Limited (SEEL) has agreed a multi-year power offtake agreement which will enable the oil and gas major, along with its recently acquired subsidiary Limejump, to optimise the use of renewable power in the area.

 Renewable power

Renewable power 

In a statement David Wells, Vice President of SEEL said ‘Projects like this will be vital for balancing the UK’s electricity demand and supply as wind and solar power play bigger roles in powering our lives. 

 Battery

Battery

The major hurdles for battery design, states the EU’s document, include finding suitable materials for electrodes and electrolytes that will work well together, not compromise battery design, and meet the sustainability criteria now required. The process is trial and error, but progress is being made.

For more information, click here.

Reference:

https://ec.europa.eu/environment/integration/research/newsalert/pdf/towards_the_battery_of_the_future_FB20_en.pdf 


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on cobalt and its current and potential uses.

 cobalt

History

In 1739, Georg Brandt, whilst studying minerals that gave gave glass a deep blue colour he discovered a new metal, namely cobalt.Today cobalt’s uses vary from health and nutrition to industry. Cobalt is an essential metal, used in the production of alloys to make rechargeable batteries and catalysts. Cobalt is an essential trace element for the human body, an important component of vitamin B12 and plays an essential role in forming amino acids, proteins in nerve cells and in creating neurotransmitters. 

 b12 diagram

 

 Cobalt is an important component of B12. Image source: flickr: Healthnutrition 

Cobalt and medicine 

The salts found in cobalt can be used as a form of treatment for anaemia, as well as having an important role for athletes acting as an alternative to traditional blood doping. This metal enhances synthesis of erythropoietin, increasing the erythrocyte quantity in blood, and subsequently, improving aerobic performance.

exercise gif

Originally posted by icefitness

The skin

Cobalt can enter the body via various ways: one way is by the skin. This organ is susceptible to environmental pollution, especially in workers who are employed in heavy industry. 

When cobalt ions from different metal objects repeatedly come into contact with skin, these cobalt ions then diffuse through the skin, causing allergic and irritant reactions.

allergic gif

Originally posted by showcaseshirley17

Important raw material for electric transport

Cobalt is also a critical raw material for electric transport. It is used in the production of the most common types of lithum-ion batteries, thus, powering the current boom in electric vehicles. 

The electric vehicle industry has the potential to grow from 3.2 million in 2017 to around 130 million in 2030, seeing the demand for cobalt increase almost threefold within the next decade.

electric vehicle charging

As the EU continues to develop the battery industry, it is becoming a priority for manufacturing industries to secure adequate cobalt supplies. The electric vehicle boom means cobalt will increase in demand in the EU as well as globally; further projects to monitoring the supply-and-demand situation will be announced.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the exciting group one element, lithium!

 lithium

Lithium has a wide range of uses – it can even power batteries!


Bipolar disorder

Lithium was first discovered in mines in Australia and Chile, and was initially used to treat gout, an arthritic inflammatory condition. Its use as a psychiatric medication wasn’t established until 1949, when an Australian psychiatrist discovered the positive effect that lithium salts had on treating mania. Since then, scientists have discovered that lithium works as a mood stabiliser by targeting neurotransmitters in the brain.

brain activity gif

Originally posted by buddhaismyhomeboy

Neurotransmitters are chemicals that are released by one neuron to send a message to the next neuron. There are several types found in humans including dopamine, serotonin and glutamate. Each has a different role, and different levels of each neurotransmitter can be linked to a variety of mental illnesses. However, it is an increase in glutamate – an excitatory neurotransmitter that plays a role in learning and memory – and has been linked to the manic phase of bipolar disorder.

 lithium sals in tablet

Lithium salts have been used as a medication for mania effectively since 1949. Image: Pixabay

Lithium is thought to stabilise levels of glutamate, keeping it at a healthy and stable level. Though it isn’t a fully comprehensive treatment for bipolar disorder, lithium has an important role in treating the manic phase and helping researchers to understand the condition.


Battery power

One of the most common types of battery you will find in modern electronics is the lithium ion battery. This battery type was first invented in the 1970s, using titanium (IV) sulphide and lithium metal. Although this battery had great potential, scientists struggled to make a rechargeable version.

out of battery gif

Originally posted by wreckedteen

Initial rechargeable batteries were dangerous, mainly due to the instability of the lithium metal. This resulted in them failing safety tests and led to the use of lithium ions instead.

 liion battery

Lithium-ion batteries are widely used and developments in the technology continue today.

Developments in lithium ion technology continue to this day, in which the recently-founded Faraday Institute plays a large role. As part of the Faraday Battery Challenge, they are bringing together expertise from universities and industry, supporting projects that develop lithium-based batteries, along with new battery technologies.


Nuclear fusion

Nuclear fusion happens in a hollow steel donut surrounded by magnets. The large magnetic fields contain a charged gas known as plasma, which is heated to 100m Kelvin and leads to nuclear fusion of the deuterium and tritium in the plasma. Keeping the plasma stable and preventing it from cooling is one of the largest industrial problems to overcome. This is where lithium comes in.

nucleur fusion gif

Originally posted by civisiii

Results from studies in which lithium is delivered in a liquid form to the edge of the plasma, show that lithium is stable and maintains its temperature and could potentially be used in controlling the plasma. It can also increase the plasma temperature if injected under certain conditions, improving the overall conditions for fusion.

Lithium has uses in plasma stabilisation in nuclear fusion. Video: Tedx Talks

Aside from its uses in nuclear fusion, lithium has other uses in the nuclear industry. For example, it is used as an additive in coolant systems. Lithium fluoride and other similar salts have a low vapour pressure, meaning they can carry more heat than the same amount of water.

 


Energy

A 3D battery made using self-assembling polymers could allow devices like laptops and mobile phones to be charged much more rapidly.

Usually in an electronic device, the anode and cathode are on either side of a non-conducting separator. But a new battery design by Cornell University researchers in the US intertwines the components in a 3D spiral structure, with thousands of nanoscale pores filled with the elements necessary for energy storage and delivery.

image

Originally posted by novelty-gift-ideas

This type of ‘bottom-up’ self-assembly is attractive because it overcomes many of the existing limitations in 3D nanofabrication, enabling the rapid production of nanostructures at large scales.

In the Cornell design, the battery’s anode is made of gyroidal (spiral) thin films of carbon, generated by block copolymer self-assembly. They feature thousands of periodic pores around 40nm wide. The pores are coated with a 10 nm-thick separator layer, which is electronically insulating but ion-conducting. Some pores are filled with sulfur, which acts as the cathode and accepts electrons but doesn’t conduct electricity.

Adaptive battery can charge in seconds. Video: News Direct

‘This is potentially ground-breaking, if the process can be scaled up and the quality of the electrodes can be ensured,’ comments Yury Gogotsi, director of A.J. Drexel Nanomaterials Institute, Philadelphia, US. ‘But this is still an early-stage development, proof of concept. The main challenge is to ensure that no short-circuits occur in the structure.

Materials

Researchers claim to be ‘on the cusp’ of creating a new generation of devices that could vastly expand the practical applications for 3D and 4D printing. At the ACS meeting in New Orleans in March, H. Jerry Qi at Georgia Institute of Technology reported the development of a prototype printer that not only simplifies and speeds up traditional 3D printing processes, but also greatly expands the range of materials that can be printed.

‘Our prototype printer integrates many features that appear to simplify and expedite the processes used in traditional 3D printing,’ said Qi. ’As a result, we can use a variety of materials to create hard and soft components at the same time, incorporate conductive wiring directly into shape-changing structures, and ultimately set the stage for the development of a host of 4D products that could reshape our world.

4D printing would allow 3D printed components to change their shape over time after exposure to environmental triggers such as heat, light and humidity. In 2017, for example, Qi’s group, in collaboration with scientists at the Singapore University of Technology and Design, used a composite made from an acrylic and an epoxy along with a commercial heat source to create 4D objects, such as a flower that can close its petals or a star that morphs into a dome. These objects transformed 90% faster than previously possible because the team incorporated the mechanical programming steps directly into the 3D printing process.

 H Jerry Qi right with Glaucio Paulino

H Jerry Qi (right) with Glaucio Paulino, a professor at Georgia Tech’s School of Civil and Environmental Engineering, hold 3D printed objects that use tensegrity – a structural system of floating rods in compression and cables in continuous tension. Image: Rob Felt

‘As a result, the 3D printed component can rapidly change its shape upon heating,’ the researchers reported. ‘This second shape largely remains stable in later variations in temperature such as cooling back to room temperature. Furthermore, a third shape can be programmed by thermomechanical loading, and the material will always recover back to the permanent (second) stable shape upon heating.’

In their latest work, the group sought to create an ‘all-in-one’ printer that combines four different printing techniques: aerosol, inkjet, direct ink write and fused deposition modelling. The resulting machine can handle a range of materials such as hydrogels, silver nanoparticle-based conductive inks, liquid crystal elastomers and shape memory polymers (SMPs). 

 

It can even create electrical wiring that can be printed directly onto an antenna, sensor or other electrical device. The process uses a direct-ink-write method to produce a line of silver nanoparticle ink, which is dried using a photonic cure unit – whereupon the nanparticles coalesce to form conductive wire. Lastly, the wires are encased in plastic coating via the printer’s inkjet component.

The researchers can also use the printer to create higher quality SMPs capable of making more intricate shape changes than in the past. And to also make materials comprising both harder and softer or more bendable regions, Qi explained. Here, the printer projects a range of white, grey or black shades of light to trigger a polymer crosslinking reaction dependent on the greyscale of shade shone on the component part. Brighter light shades create harder component parts than darker shades.

In terms of applications, Qi’s own particular interest is in developing ‘soft robots’ with sensory properties more akin to human skin than the traditional metallic or rigid robots with which we are probably more familiar. Sensory robots, Qi says, will play a big role in future safety for human workers working alongside robots. As a first step in that direction, his group is currently working with Children’s Healthcare of Atlanta to investigate whether the new technology could make prosthetic hands for children born with malformed arms – a condition not covered by most medical insurance policies. The idea would be to combine multiple different sensors to create a functional replacement hand.

In future, new 3D and 4D printers will ultimately be capable of printing whatever we might want to make, Qi says. He points, for example, to work by Jennifer Lewis at the University of Harvard to 3D print a Li-ion battery – an essential component of mobile phones and computer laptops. However, Qi notes that 3D printing does not always make economic or practical sense for all items. Instead, a big consideration will be ‘pick and place’ technology that mixes and matches printed and non-printed components to assemble the desired objects.

 

Policy

In July 2017, the UK government announced plans to end the sale of all new petrol and diesel cars and vans by 2040, but there’s a long way for the electric vehicle market to go before that target can be reached – low-emission vehicle sales still account for just 0.5% of total car sales.

Last week, the European Commission announced a new Innovation Deal that could go some way to overcoming barriers to electric vehicle development and acceptance by consumers.

Entitled ‘From e-mobility to recycling: the vitreous loop of the electric vehicle’, it is designed to help innovators address regulatory obstacles to the recycling and re-use of propulsion batteries in second-life applications, such as energy storage.

The deal comprises a multi-disciplinary working group of partners across industry and government in France and the Netherlands. In France, Renault, Bouygues and the Ministries for the Ecological and Inclusive Transition and Economy and Finance; in the Netherlands, renewable energy technology company LomboXnet, the Provice of Utrecht, and the Ministries of Infrastructure and Water Management, Economic Affairs, and Climate Policy.

twitterpost

Carlos Moedas, EU Commissioner for Research, Science and Innovation, said, ‘The electric vehicle revolution is a testimony to how innovation generates growth and fundamentally changes society for the better. In order for Europe to stay in the lead of this innovation race, we need to work together with innovators and authorities to make sure our laws do not hamper innovation. This Innovation Deal will clarify the regulatory landscape in this area, and boost demand for electric vehicles.’

Robin Berg, founder of LomboXnet is one such innovator set on fundamentally changing society for the better. In Utrecht, the Netherlands, his company has set up a smart solar charging network that allows excess solar power harvested via rooftop photovoltaic panels to be stored in electric vehicle batteries – the energy can then be transferred between car and home as demand requires.

‘Enhancing the economic value of car batteries through vehicle-to-grid applications, second-life battery projects and smart solar charging of cars, creates huge business opportunities,’ Berg said.

‘The Smart Solar Charging consortium in Utrecht Region led by LomboXnet together with Renault seeks to increase these opportunities to spur the transition to a renewable energy system and a zero-emission mobility future. Europe is leading in these developments; this Innovation Deal offers a chance to further strengthen Europe’s leadership.’

Pure electric vehicle sales were down in the first two months of 2018 compared with the previous year – although sales of plug-in hybrid cars, which combine a conventional petrol or diesel engine with an electric motor that can be charged at an outlet or on the move, were up by 40% over the same period.

Energy

 Tesla

Tesla is at the forefront of industrial battery technology research. 

Electric cars are accelerating commercially. General Motors has already sold 12,000 models of its Chevrolet Bolt and Daimler announced in September 2017 that it is to invest $1bn to produce electric cars in the US, with Investment bank ING, meanwhile, predicts that European cars will go fully electric by 2035.

‘Batteries are a global industry worth tens of billions of dollars, but over the next 10 to 20 years it will probably grow to many hundreds of billions per year,’ says Gregory Offer, battery researcher at Imperial College London. ‘There is an opportunity now to invest in an industry, so that when it grows exponentially you can capture value and create economic growth.’

The big opportunity for technology disruption lies in extending battery lifetime, says Offer, whose team at Imperial takes market-ready or prototype battery devices into their lab to model the physics and chemistry going on inside, and then figures out how to improve them.

Lithium batteries, the battery technology of choice, are built from layers, each connected to a current connector and theoretically generating equivalent power, which flows out through the terminals. However, improvements in design of packs can lead to better performance and slower degradation.

 Lithium batteries

Lithium batteries need to be adapted for electric vehicle use. Image: Public Domain Pictures

For many electric vehicles, cooling plates are placed on each side of the battery cell, but the middle layers get hotter and fatigue faster. Offer’s group cooled the cell terminals instead, because they are connected to every layer. ‘You want the battery operating warmish, not too hot and not too cold,’ he says.

‘Keeping the temperature like that, we could get more energy out and extend the lifetime three-fold.’ If the expensive Li ion batteries in electric cars can outlive the car, he says their resale value will go up and dramatically alter the economic calculation when purchasing the car. ‘If we can get costs down, we will see more electric vehicles, and reduced emissions and improved air quality,’ Offer says.


Alternatives to lithium ion

Battery systems management and thermal regulation will allow current lithium batteries to be continually improved, but there are fundamental limits to this technology. ‘Lithium ion has a good ten years of improvements ahead,’ Offer predicts. ‘At that point we will hit a plateau and we are going to need technologies like lithium (Li) sulfur.’

 

Will Batteries Power The World? | The Limits Of Lithium-ion. Video:  minutephysics

Li sulfur has a theoretical energy density five times higher than Li ion. In September 2017, US space agency NASA said it will work with Oxis Energy in Oxford, UK, to evaluate its Li sulfur cells for applications where weight is crucial, such as drones, high-altitude aircraft and planetary missions.

However, Li sulfur is not the only challenger to Li ion. Toyota is working to develop solid-state batteries, which use solids like ceramics as the electrolyte. ‘They are based around a class of material that can conduct ions at room temperature as a solid,’ Offer explains. ‘The advantage is that you can then use metallic lithium as the anode. This means there is less parasitic mass, increasing energy density.’


Futuristic chemistries

 BMWs electric cars

The carbon-fiber structure and Li ion battery motor of one of BMW’s electric cars. Image: Mario Roberto Duran Ortiz

For electric cars, the ultimate technology in terms of energy density is rechargeable metal-air batteries. These work by oxidising metals such as lithium, zinc or aluminium with oxygen from the air. ‘Making a rechargeable air breathing electrode is really hard,’ warns Offer. ‘To get the metal to give up the oxygen over and over again, it’s difficult.’ 

Development in the area looks promising, with the UK nurturing battery-focused SMEs and forward-thinking research groups in universities. The latest investment plan envisages support that links across research, innovation and scale-up, as championed by Mark Walport, the government’s Chief Scientific Advisor.

The Faraday Challenge – part of the Industrial Strategy Challenge Fund. Video: Innovate UK  

Introducing a programme to directly tackle this challenge ‘would drive improved efficiency of translation of UK science excellence into desirable economic outcomes; would leverage significant industrial investment in the form of a “deal” with industry; and would send a strong investment signal globally,’ says Walport.

Energy

Installing new energy infrastructure on the Isles of Scilly, UK, is a tricky proposition, given the islands’ location 28 miles off the Cornish coast, and a population of just 2,500 to share the high costs. 

But an exciting new project is about to transform the islands’ energy provision, reducing energy costs and supporting clean growth, through the use of a smart energy grid.

By 2025, the Smart Islands programme aims to provide the Isles of Scilly with 40% of its electricity from renewables, cut Scillonians’ electricity bills by 40%, and revolutionise transport, with 40% of cars to be electric or low-carbon. The key to this will be an integrated smart energy system, operated by a local community energy services company and monitored through an Internet of Things platform.

 Local Growth Fund

In the UK Government’s Industrial Strategy, published in November 2017, it was announced that the Local Growth Fund would provide £2.95m funding to the project, via the Cornwall and Isles of Scilly Local Enterprise Partnership.

The project will be led by Hitachi Europe Ltd in a public-private partnership, along with UK-based smart energy technology company Moixa, and smart energy software company PassivSystems.

 

Colin Calder, CEO of PassivSystems, explained, ‘Our scalable cloud-based energy management platform will be integrated with a range of domestic and commercial renewable technologies, allowing islanders to reduce their reliance on imported fossil fuels, increase energy independence and lower their carbon footprint.

‘These technologies have the potential to significantly increase savings from solar PV systems.’

Aiming to increase the renewable capacity installed on the island by 450kW and reduce greenhouse gas emissions by 897 tonnes CO2 equivalent per annum, 100 homes on the islands (a tenth of the total) will be fitted with rooftop solar photovoltaic systems, and two 50kW solar gardens will also be built.

100 homes will also get energy management systems, and 10 of them will pilot a variety of additional smart energy technologies such as smart batteries and air source heat pumps.

 

Chris Wright, Moixa Chief Technology Officer, said: ‘Ordinary people will play a key role in our future energy system. Home batteries and electric vehicles controlled by smart software will help create a reliable, cost-effective, low-carbon energy system that will deliver savings to homeowners and the community.

‘Our systems will support the reduction of fuel poverty on the Scilly Isles and support their path to full energy independence. They will be scalable and flexible so they can be replicated easily to allow communities all over the world to cut carbon and benefit from the smart power revolution.’

The burgeoning smart energy industry is attracting serious investment – only this week, the Department for Business, Energy and Industrial Strategy (BEIS) announced it will invest up to £8.8 million in new ideas for products and services that use smart meter data to reduce energy demand in small, non-domestic buildings; while Manchester-based smart energy start-up Upside Energy this week announced it had secured £5.5m in its first round of venture capital financing to commercialise and deploy its cloud-based smart grid platform.

Smart energy covers a range of technologies intended to allow both companies and households to increase their energy efficiency. Smart meters are currently being offered by energy suppliers, with the aim of allowing energy companies to automatically manage consumer energy use to reduce bills, for example, running your washing machine when energy demand (and therefore cost) is low. 

Battery technology also plays a major role in smart energy, allowing users to store renewable power and potentially even sell back into the grid as demand requires. In the Industrial Strategy, the government announced a new £80m National Battery Manufacturing Development Facility (NBMD) in Coventry, which will bring together academics and businesses to work on new forms and designs of batteries, as well as their chemistry and components. 

 Isles of Scilly

The Isles of Scilly’s small population and remote access issues make it an interesting candidate for a smart energy project. Image: NASA, International Space Station Science

The funding for this and a further £40m investment into 27 individual battery research projects have been allocated from the £246m Faraday Challenge, which was announced in July.

The Smart Islands project promises a real-world demonstration of how a community can harness the power of the Internet of Things to maintain an efficient, inexpensive, and clean energy system. 

Science & Innovation

It has been a year since Prime Minister Theresa May announced the launch of the Industrial Strategy Challenge Fund at CBI’s annual conference. At the time, May said the fund would ‘help to address Britain’s historic weakness on commercialisation and turning our world-leading research into long-term success’.

Since then, Innovate UK has worked closely with the government and research councils to identify the great innovation challenges the UK faces.

‘Innovate UK have been in this right from the very beginning,’ said Ruth McKernan, Chief Executive of Innovate UK, speaking at Innovate 2017. McKernan explained that the organisation has held several engagement events to find out what ‘industry and researchers see as the challenges of the future and where economic growth can be developed in the UK’.

city gif

Originally posted by juliendouvier

The first three challenges sponsored by the Industrial Strategy Challenge Fund were announced in April this year: The Faraday challenge, medicines manufacturing, and robotics and autonomous systems.

Andrew Tyrer, Interim Director of Robotics and Autonomous Systems is now responsible for the £69m investment into research on AI in extreme conditions.

Research projects in this cohort include robotics in deep mining, space exploration, and off-shore energy. ‘One of the challenges is that you cannot put people in these environments,’ he said.

 Space

Space is just one of the dangerous environments being researched in robotics projects. Image: NASA

However, the UK does not currently have the research capacity to access the global market, Tyrer explained. For example, he said ‘the nuclear decommissioning market in five years will be at £150bn a year in Europe alone’ – a market the UK is currently struggling to make an impact.

‘The programme is about taking academic and business excellence, linking those value chains together, and building those industries,’ Tyrer said.

On the other end of the spectrum, is the Faraday Challenge – a ‘commitment’ to research into the battery development of driverless cars and an area of research the UK has already seen success in – headed by Jacqui Murray and Kathryn Magnay.

 petrol and diesel vehicles

The UK have pledged to have all petrol and diesel vehicles off roads by 2040. Image: Wikimedia Commons

‘Automotive has been a real success story in the UK in the last 10 years,’ said Murray, with the UK reaching ‘world-class’ in productivity levels.

However, there are ways the UK needs to improve, said Magnay. ‘In the UK we have a huge gap between the research that we do and how you scale that up in the manufacturing process,’ she said.

This is the inspiration for the upcoming £65m Faraday Battery Institute, which will serve as a hub for universities, as well as other academic institutions and industry partners, to further their science. Magnay said that Innovate UK wants to ‘provide a facility that companies and researchers can go to and take their ideas to trial them at scale’.

Will smart energy solutions be the next challenge?

Further challenges under the Industrial Strategy Challenge Fund are currently unknown, although there are rumours of an early 2018 announcement. Which challenge will be next?