Blog search results for Tag: blog

Health & Wellbeing

Chemists have created a new type of artificial cell that can communicate with other parts of the body. A study, published in Science Advances this month, describes a new type of artificial cell that can communicate with living cells.

“This work begins to bridge the divide between more theoretical ‘what is cellular life’ type of work and applicative, useful technologies,” said Sheref Mansy, Chemistry Professor at the University of Alberta and co-author of the study.

The artificial cells are made using an oil-water emulsion, and they can detect changes within their environments and respond by releasing protein signals to influence surrounding cells. This work is the first that can chemically communicate with and influence natural living cells. They started with bacteria, later moving to multicellular organisms.

“In the future, artificial cells like this one could be engineered to synthesizes and deliver specific therapeutic molecules tailored to distinct physiological conditions or illnesses–all while inside the body,” explained Sheref Mansy, professor in the University of Alberta’s Department of Chemistry,

Though the initial study was undertaken using a specific signalling system, the cells have applications in therapeutic use, going beyond traditional smart-drug delivery systems and allowing for an adaptable therapeutic.

Energy

Batteries have an important role as energy sources with environmental advantages. They offset the negative environmental impacts of fossil fuels or nuclear-based power; they are also recyclable. These attributes have led to increasing research with the aim of improving battery design and environmental impact, particularly regarding their end of life. In addition, there is a desire to improve battery safety as well as design batteries from more sustainable and less toxic materials.

New research shows that aluminium battery could offer several advantages:

Aluminium metal anode batteries could hold promise as an environmentally friendly and sustainable replacement for the current lithium battery technology. Among aluminium’s benefits are its abundance, it is the third most plentiful element the Earth’s crust.  

To date aluminium anode batteries have not moved into commercial use, mainly because using graphite as a cathode leads to a battery with an energy content which is too low to be useful.

This is promising for future research and development of aluminium as well as other metal-organic batteries.

 Battery Charging

Battery Charging

New UK battery project is said to be vital for balancing the country’s electricity demand

Work has begun on what is said to be Europe’s biggest battery. The 100MW Minety power storage project, which is being built in southwest England, UK, will comprise two 50MW battery storage systems. The project is backed by China Huaneng Group and Chinese sovereign wealth fund CNIC. 

Shell Energy Europe Limited (SEEL) has agreed a multi-year power offtake agreement which will enable the oil and gas major, along with its recently acquired subsidiary Limejump, to optimise the use of renewable power in the area.

 Renewable power

Renewable power 

In a statement David Wells, Vice President of SEEL said ‘Projects like this will be vital for balancing the UK’s electricity demand and supply as wind and solar power play bigger roles in powering our lives. 

 Battery

Battery

The major hurdles for battery design, states the EU’s document, include finding suitable materials for electrodes and electrolytes that will work well together, not compromise battery design, and meet the sustainability criteria now required. The process is trial and error, but progress is being made.

For more information, click here.

Reference:

https://ec.europa.eu/environment/integration/research/newsalert/pdf/towards_the_battery_of_the_future_FB20_en.pdf 


Careers

This latest instalment of SCI Energy Group’s blog delves deeper into the working life of another one of its own members – Peter Reineck.

Peter is currently a consultant working alongside technology developers. Throughout this article, he shares insights into his career to date.

 Peter Reineck

Figure 1- Peter Reineck

Peter, can you please provide a brief introduction about yourself? 

I worked with a number of chemical and environmental service companies in the UK and Canada in commercial operations roles.

I now work as a consultant with technology developers to support market and business development.

Can you please explain how your job is aligned with the energy sector? 

I have a particular interest in advanced combustion systems with CO2 capture.

Most recently, I became involved in a new project to produce bio-based plastic that would replace fossil-based plastics in packaging and other applications.

Bio-based plastic has the advantage of producing biogenic CO2 if composted or sent for energy recovery at end of life.

In your current role, what are your typical day-to-day tasks?

Typically, my work involves communicating with stakeholders by phone and email and in meetings, assessing their responses and planning developments accordingly.

 chemicals in vials

Figure 2 - A knowledge of science is particularly helpful

How has your education/previous experience prepared you for this role?

I would say that English language skills and a knowledge of science and chemistry in particular have been the most helpful in my career.

What is your favourite aspect of your current job role?

Consultancy works well for me as the focus is on business development activities; as well, the hours are flexible.

What is the most challenging part of your job? 

A high degree of self-discipline is required in order to meet deadlines.

So far, what is your biggest accomplishment/ achievement throughout your career? 

The most satisfying were moving a number of businesses forward into new markets and applications.

 hourglass

Figure 3 - Self-discipline is required to meet deadlines

In your opinion, what do you think is the biggest problem faced in this field of work at present? 

I think the biggest problem is regulatory changes which affect the potential market for new technologies for packaging and power generation.

These changes are governmental responses to activist claims which are not based on a holistic interpretation of a complete set of data.

What advice would you give someone who is seeking / about to enter the same field of work? 

A practical understanding of science and statistics is essential. Combined with, an ability to translate new technologies into solutions which are economically viable.


Policy

Many aid organisations have recognised that to change the growing population rate, investing in women is pivotal. Today (Wednesday 11 July) is World Population Day and we will briefly discuss why changing the living conditions for women and girls is essential to preventing overpopulation.

Although population numbers have stabilised in many regions, recent data has indicated that the global population is set to rise to 10.9 bn people will exist on this earth by 2100.

Today, there are 1.2 bn Africans and, according to figures released by the UN, by 2021 there will be more than 4 bn, stressing the urgency to prioritise the population crisis. Making contraception easily available and improving comprehensive sexual education are key to reducing Africa’s population growth.

 Family photo of five sisters from Africa

Family photo of five sisters from Africa. Image: Sylvie Bouchard

Over 225 m women in developing countries have stressed their desire to delay or stop childbearing, but due to the lack of contraception, this has not been the result.

Family planning would prevent unsafe abortions, unintended pregnancies, which would, in turn, also prevent infant and maternal mortality. If there was a decrease in infant mortality as a result of better medical care, parents would be able to make more informed decisions about having more children. 

It is therefore pivotal that governments and organisations invest more money into projects that will strengthen the health services in these regions, and in women’s health and reproductive rights.

 Lessons on family planning

Lessons on family planning.

In Niger, there are an estimated 205 births per 1,000 women between the ages of 16 and 19 –  a rate that hasn’t changed since 1960. The number of births in Somalia, have increased from around 55 to 105 births per 1,000 women within the same age range in the same time period.

In Rwanda, figures from Rwanda Demographic and Health Survey illustrate an increase in the use of modern contraceptive methods among married women, but the unmet need for family planning remains a large issue, stagnating at 19% between 2010 and 2015. 

Rwanda’s leadership in creating platforms and programmes of action to progress sexual and reproductive health rights has resulted in a decrease in fertility rate, dropping from 6.1 children per women in 2005 to 4.2 in 2015.

 World map of the population growth rate

World map of the population growth rate. Image: Wikimedia Commons.

‘Every year, roughly 74 m women and girls in developing countries experience an unwanted pregnancy primarily because there is a lack of sex education and a lack of contraception. It’s also because women and girls aren’t given equal rights’" said Renate Bähr, Head of the German World Population Foundation (DSW).

With opportunities and access to education, women and girls would be able to understand their rights to voluntary family planning. If women’s access to reproductive education and healthcare services were prioritised, public health and population issues would improve.


Health & Wellbeing

In honour of World Chocolate Day on 7 July, we delve into the health benefits of chocolate. You can thank us later!

chocolate mousse gif

Originally posted by satisfeye

Chocolate – one of the most consumed foods in the world – contains flavonoids, an antioxidant compound present in cocoa pulp, which can cause negative effects on human vascular health. 

However, new studies have explored the benefits of adding nutritional oils to food products, and found that adding high oleic peanut oil can increase the bioactive property of dark chocolate, leading to significant health benefits!

 High oleic peanut oil

 peanut oil

Adding microcapsules of high oleic peanut oil reduces the lipid content of dark chocolate and influences the nutritional composition, thus increasing the content of unsaturated fatty acids in the lipid fraction of chocolate. 

Studies have demonstrated that by adding microcapsules to the chocolate mass, the fat content would not rise, which means dark chocolate containing microcapsules has a lower amount of free fat. Therefore, the use of microcapsules can act as an alternative to protecting the fatty acids.

 chocolate bar

Phenolic compounds

Natural antioxidants are highly valued because they are protective agents and highly sought out to replace synthetic ones in plant products. A broad range of plant foods including cocoa have been sources of phenolic compounds. 

Trans-resveratrol, a phenolic compound is frequently associated with prevention of cancer, ischemias, diabetes, inflammations and viral infections. During chocolate production, the content of phenolic compounds naturally present in cocoa beans becomes lost or reduced. Therefore, it is important to minimise the loss of phenolic compounds. 

 antioxidant graphic

Although, phenolic compounds are essential to obtaining good quality coca beans, they also have a potentially negative influence on flavour conferring to bitterness. Understanding the factors that influence the losses of phenolic compounds is important in obtaining the final product with the desirable sensory attributes.

There is considerable evidence that cocoa with high oleic peanut oil and cocoa with high content of phenolic compounds can provide powerful health benefits, especially against heart disease. 

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on silicon’s positive effects on the body.

Silicon was not originally regarded as an important element for human health, as it was seen to have a larger presence in (other) animal and plant tissue. It was not until a 2002 ‘The American Journal of Clinical Nutrition’ paper that surmised that accumulating research found that silicon plays an important role in bone formation in humans.  

Silicon was first known to ‘wash’ through biology with no toxological or biological properties. However, in the 1970s, animal studies provided evidence to suggest that silicon deficiency in diets produced defects in connective and skeletal tissues. Ongoing research has added to these findings, demonstrating the link between dietary silicon and bone health.

health and fitness gif

Originally posted by tvneon

Silicon plays an important role in protecting humans against many diseases.  Silicon is an important trace mineral essential for strengthening joints. Additionally, silicon is thought to help heal and repair fractures.

The most important source of exposure to silicon is your diet. According to two epidemiological studies (Int J Endocrinol. 2013: 316783 ; J Nutr Health Aging. 2007 Mar-Apr; 11(2): 99–110) conducted, dietary silicon intake has been linked to higher bone mineral density.

pullup gif

Originally posted by ckhrrr

Silicon is needed to repair tissue, as it is important for collagen synthesis – the most abundant protein in connective tissue in the body – which is needed for the strengthening of bones. 

However, silicon is very common in the body and therefore it is difficult to prove how essential it is to this process when symptoms of deficiency vary among patients. 

brain gif

Originally posted by civisiii

There has also been a plausible link between Alzheimer’s disease and human exposure to aluminium. Research has been underway to test whether silicon-rich mineral waters can be used to reduce the body burden of aluminium in individuals with Alzheimer’s disease. 

However, longer term study is needed to prove the aluminium hypothesis of Alzheimer’s disease.


Health & Wellbeing

Globally, beers with flavours of fruits and touches of acidity notes have become very popular among consumers. Nowadays, experience has become the biggest trend in drinks; consumers desire an immersive experience and seek drinks with enhanced characteristics which include texture, mouthfeel, taste, flavour and colour.

 beers

Over the course of history, brewing became an essential element in rural communities. A study at Simon Fraser University in Canada investigated beer-brewing tools in archaeological remains belonging to the Natufian culture in the Eastern Mediterranean. The examination showed that the brewing of beer was an important cultural component of their society. Studies in Mexico suggested that generations of Mexican farmers domesticated grass into maize, which became a staple of the local diet before it became great for making beer.

As suggested, brewing became an essential element in rural communities and has now transformed from a small-scale local activity to a worldwide industry.

 beer fermenting

Belgium is known for its traditional and spontaneous mixed fermented beers, such as lambic beers which harbour complex micro-biotics. 

Lambic beers are among the most ancient brewing styles and its unique flavour profile has garnered global popularity. 

Wooden barrels play an essential role during its fermentation processes. Lambic brewers prefer using wooden barrels, which often come from red wine productions, as the wooden surfaces harbour a resident microbiota, providing an additional microbial inoculation source for lambic production. 

These barrels are preferred because most of the oak flavours will not come through in the final production of lambic, as the oak character has been stripped from the barrel.

 beer barrels

Consumers regard the combination of taste and odour as essential factors to their choice.  Flavour quality degradation can be triggered by various factors.

Prolonged periods of transportation and storage causes the fresh flavour of beer to deteriorate. Different temperatures in combination with vibrations during transport can negatively influence the quality of beer.

High temperatures can reduce the freshness of beer, increasing the amount of oxidative and non-oxidative chemical reactions which take place. These oxidative reactions degrade the flavour and quality of beer.

funny gif

Originally posted by fromthemotionpicture

It seems vibrations can cause an impact on beer quality subject to an elevated temperature, therefore, temperature reductions during transport and storage should be a primary focus for brewers. However, further research is required with regard to closely examining the influence of transport vibrations on the flavour of beer. 


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the various uses of nitrogen.

nitrogen

Nitrogen – an imperative part of DNA

The polymer that makes up the genetic code of is a sequence of nitrogen bases laid out on a backbone of sugar and phosphate molecules and blended into a double helix. 

The nitrogen bases are translated into proteins and enzymes which regulate most our system’s biochemical reactions. 

double helix gif

Originally posted by dimensao7

Explosive potential

RDX is a nitrogen explosive. This means its explosive properties are primarily caused by the presence of many nitrogen–nitrogen bonds, which are extremely unstable, especially as nitrogen atoms want to come together to produce nitrogen gas due to the triple bond. 

Ultimately, the more nitrogen–nitrogen bonds a molecule has, the more explosive it is. RDX is normally combined with other chemicals to make it less sensitive or less likely to explode.

nitrogen explosion

Originally posted by roguetoo

One of the most powerful explosive chemicals is PETN, containing nitro groups and nitroglycerin in dynamite. Despite its powerful explosions, the chemical rarely will detonate alone. PETN was used frequently during World War II, whereby PETN was used to create exploding bridgewire detonators, using electric currents for detonations.

Among the least stable explosives is aziroazide azide,  with 14 unstable nitrogen bonds, most of them bonded into unstable nitrogen–nitrogen bonds. Touching or handling this chemical can cause it to detonate, making it one of the most dangerous non-nuclear chemicals.

Nitrogen and plants

Originally posted by mnaturegif

Nitrogen plays a significant role for plants to keep healthy. Plants usually contain 3-4% nitrogen in their above-ground tissues. Nitrogen is a major component of chlorophyll which plants use to capture sunlight energy to produce sugars, and a major component of amino acids, which are the building blocks of life.

Overall, nitrogen is a significant component to DNA, a key nutrient to plants, and the uses of nitrogen in everyday life span across various chemical industries including the production of fertilisers and explosives.


Energy

Today, most rockets are fueled by hydrazine, a toxic and hazardous chemical comprised of nitrogen and hydrogen. Those who work with it must be kitted up in protective clothing. Even so, around 12,000t of hydrazine is released into the atmosphere every year by the aerospace industry

Now, researchers are in the process of developing a greener, safer rocket fuel based on metal organic frameworks (MOFs), a porous solid material made up of clusters of metal ions joined by an organic linker molecule. Hundreds of millions of connections join in a modular structure.

view from F18 support aircraft

Originally posted by nasa

Robin Rogers, formerly at McGill University, US, has worked with the US Air Force on hypergolic liquids that will burn when placed in contact with oxidisers, to try get rid of hydrazine. He teamed up with Tomislav Friščić at McGill who has developed ways to react chemicals ‘mechanochemically’ – without the use of toxic solvents.

The pair were interested in a common class of MOFs called zeolitic imidazole frameworks, or ZIFs, which show high thermal stability and are usually not thought of as energetic materials.

 chemist working

They discussed the potential of using ZIFs with the imidazolate linkers containing trigger groups. These trigger groups allowed them to take advantage of the usually not accessible energetic content of these MOFs.

The resulting ZIF is safe and does not explode, and it does not ignite unless placed in contact with certain oxidising materials, such as nitric acid, in this case.

 danger sign

Authorities continue to use hydrazine because it could cost millions of dollars to requalify new rocket fuels, says Rogers. MOF fuel would not work in current rocket engines, so he and Friščić would like to get funding or collaborate with another company to build a small prototype engine that can use it.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the importance of potassium in human health.

Why is potassium biologically important?

Potassium plays an essential role to health, being the third most important mineral in the body. The human body requires at least 1000mg of potassium a day in order to support key bodily processes. 

Potassium regulates fluid balance in the body, controls the electrical activity of the heart, muscles, and helps in activating nerve impulses throughout the nervous system. 

According to an article from Medical News Today Knowledge Center, the possible health benefits to a regular diet intake of potassium include maintaining the balance of acids and bases in the body, supporting blood pressure, improving cardiovascular health, and helping with bone and muscle strength.

These powerful health benefits are linked to a potassium rich diet. Potassium is present in all fruits, vegetables, meat and fish.

 Receptors on a cell membrane

Receptors on a cell membrane.


Can it go wrong?

The body maintains the potassium level in the blood. If the potassium level is too high in the body (hyperkalemia) or if it is too low (hypokalemia) then this can cause serious health consequences, including an abnormal heart rhythm or even a cardiac arrest. 

Fortunately, cells in the body store a large reservoir of potassium which can be released to maintain a constant level of potassium in blood.

What is hyperkalemia? Video: Osmosis

Potassium deficiency leads to fatigue, weakness and constipation. Within muscle cells, potassium would normally send signals from the brain that stimulate contractions. However, if potassium levels steep too low, the brain is not able to relay these signals from the brain to the muscles, the results end in more prolonged contractions which includes muscle cramping.

As potassium is an essential mineral carrying out wide ranging roles in the body, the low intakes can lead to an increase in illness. The FDA has made a health claim, stating that ‘diets containing foods that are a good source of potassium and that are low in sodium may reduce the risk of high blood pressure and stroke.’

Originally posted by stydiamccall

This suggests that consuming more potassium might reduce the risks of high blood pressure and the possibility of strokes. However, more research on dietary and supplemental potassium is required before drawing towards a set conclusion.


Sustainability & Environment

The emerald ash borer (Agrilus planipennis) is a metallic green beetle from Asia that is wiping out trees across the eastern US. First detected in Michigan in 2002, the pest is spreading rapidly and has killed billions of ash trees, with seven out of nine ash trees in North America threatened by this newcomer.

tree in eastern US

This is only the latest in a litany of exotics to ravage American forests. Sixty-two high-impact insect species and a dozen pathogens have arrived since the 1600′s. Only two were detected before 1860.

 The emerald ash borer

The emerald ash borer. Image; Wikimedia Commons

Increased global trade and travel, along with climate change and warmer winters, are all fueling the problem. And the devastation has pushed scientists and foresters to look towards biotechnology for a remedy.

‘Almost every day there appears to be a new forest pest and some of these are quite devastating,’ says tree geneticist Jeanne Romero-Severson at the University of Notre Dame, Indiana, US. 

‘Biotech approaches such as transgenic technology and CRISPR gene editing could be valuable tools in saving specific species.’

 forest

These biotech solutions look sexier to funders, and policymakers, and that is where the resources go. But in many ways, it is a dead end if you don’t have a foundational breeding programme to feed into,’ warns DiFazio, a plant geneticist at West Virginia University, US.

A technology like CRISPR for gene editing is fast and powerful, but mostly it is used in lab organisms where much is known about their genetics. Without deep knowledge of a tree’s genome, CRISPR will be far less useful.

 CRISPR

CRISPR is a gene editing tool that first came to prominence in the 1990′s and is considered one of the most disruptive technologies in modern medicine.

Powell, a plant scientist at the State University of New York (SUNY), US acknowledges that ‘the biggest thing is to the get the public onboard; a lot of people are afraid of genetic engineering. 

Surveys suggest that knowledge about genetic engineering technology, as well as about threats to forest health, is fairly low amongst the general public. Given these deficits, ‘public opinion might be vulnerable to changes,’ notes Delborne.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today, we investigate the uses of platinum.

Early uses

Around 1200BC, archaeologists discovered traces of platinum in gold in ancient Egyptian burials. 

However, the extent of Egyptians’ knowledge of the metal remains unknown, which suggests that Egyptians might have been unaware that platinum existed in the gold.

 Ancient Egyptian

The Ancient Egyptians made elaborate masks for royals to wear once they were mummified.

Platinum was also used by South Americans with dates going back 2000 years. Burial goods show that in the pacific coast of South America, people were able to work platinum, producing artifacts of a white gold-platinum alloy. 

Archaeologists link the South American tradition of platinum-working with the La Tolita Culture. Archaeological sites show the highly artistic nature of this culture, with the artifacts characterised by gold and platinum jewellery, and anthropomorphic masks symbolising the hierarchical and ritualistic society.

 nthropomorphic mask

What are its properties?

Platinum is a silvery white metal, also known as ‘white gold’. It is extremely resistant to tarnishing and corrosion and it is one of the least reactive metals, unaffected by water and air, which means it will not oxidise with air. 

It is also very soft and malleable, and therefore can be shaped easily and due to its ductility, it can be easily stretched into wire.

 Platinum ring

Platinum is a member of group 10 of the periodic table. The group 10 metals have several uses including decorative purposes, electrical components, catalysts in a variety of chemical reactions and play an important role in biochemistry, particularly platinum compounds which have widely been used as anticancer drugs. 

Additionally, platinum’s tarnish resistance characteristics makes it one the most well-suited elements for making jewelry.


Biological role

 tablets

Platinum bonds are often used as a form of medicine in treatments for cancer. However, the health effects of platinum are dependent on the kinds of bonds that are formed, levels of exposure, and the immunity of the individual.

In 1844, Michele Peyrone, an Italian chemist, discovered the anti-neo plastic properties (apparently prohibiting the development of tumours) and later in 1971, the first human cancer patient was treated with drugs containing platinum.

sheldon gif

Originally posted by keep-calm-and-allons-y-whovians

Today, approximately 50% of patient are treated using medicine which includes the rare metal. Scientists will look further into all the ways platinum drugs affect biology, and how to design better platinum drugs in the future. 


Sustainability & Environment

In an era of glass and steel construction, wood may seem old-school. But researchers are currently saying its time to give timber a makeover and bring to use a material that is able to store and release heat.

Transparent wood could be the construction material of choice for eco-friendly houses of the future, after researchers have now created an even more energy efficient version that not only transmits light but also absorbs and releases heat, potentially saving on energy bills.

 open window gif

Originally posted by dinsintegration

Researchers from KTH Royal Institute of Technology in Stockholm reported in 2019 that they would add polymer polyethylene glycol (PEG) to the formulation to stabilise the wood.

PEG can go really deep into the wood cells and store and release heat. Known as a phase change material, PEG is a solid that melts at 80°F – storing energy in the process. This process reverses at night when the PEG re-solidifies, turning the window glass opaque and releasing heat to maintain a constant temperature in the house.

Transparent wood for windows and green architecture. Video: Wise Wanderer

In principle, a whole house could be made from the wooden window glass, which is due to the property of PEG. The windows could be adapted for different climates by simply tailoring the molecular weight of the PEG, to raise or lower its melting temperature depending on the location.



Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at copper and some of its popular uses.


A brief history

 copper

Copper was one of the first metals ever extracted and used by humans. According to the US Geological Survey, copper ranks as the third most consumed industrial metal in the world, dating back to around 5000BC.

Around 5500BC, early ancestors discovered the malleable properties of copper, and discovered they could be fashioned into tools and weapons – a discovery that allowed humans to emerge out of the stone age and drift into the age of metals.

 volcanic rocks

Volcanic rocks in Tenerife, Spain.

Approximately two-thirds of the Earth’s copper is found in volcanic rocks, while approximately one-quarter occurs in sedimentary rocks. 

Th metal is malleable, meaning it can conduct heat and electricity, making copper an extremely useful industrial metal and is used to make electronics, cables and wiring.


What is it used for?

 copper tools

Since 4500BC humans have made and manufactured items from copper. Copper is used mostly as a pure metal, but its strength and hardness can be adjusted by adding tin to create a copper alloy known as bronze. 

In the 1700s, pennies were made from pure copper; in the 1800s they were made from bronze; and today, pennies consist of approximately 97.5% zinc and 2.5% copper.

 

Copper is utilised for a variety of industrial purposes. In addition to copper’s good thermal and electric conductivity, copper now plays an important role in renewable energy systems. 

As copper is an excellent conductor of heat and electricity, power systems use copper to generate and transmit energy with high efficiency and minimal environmental impacts.


Antimicrobial properties

 E Coli cultures on a Petri dish

E. Coli cultures on a Petri dish.

Copper plays an important role as an anti-bacterial material. Copper alloy surfaces have properties which are set out to destroy a wide range of microorganisms.

Recent studies have shown that copper alloy surfaces kill over 99.9% of E.coli microbes within two hours. In the interest of public health, especially in healthcare environments, studies led by the Environmental Protection Agency (EPA) have listed 274 different copper alloys as certified antimicrobial materials, making copper the first solid surfaced material to have been registered by the EPA.

bye gif

Originally posted by nursegif

Copper has always maintained an important role in modern society with a vast list of extensive uses. With further development of renewable energy systems and electric vehicles, we will likely see an ongoing increase in demand for copper.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at arsenic and some of its effects.


What is arsenic?

 arsenic

Arsenic is a chemical element found in nature – low levels of arsenic are found in water, air and soil – in man-made products. As arsenic is distributed throughout the environment, people have high exposure to elevated levels of inorganic arsenic through contaminated drinking water, as well as exposure to arsenic through oceans, food and insecticides.


Is arsenic harmful?

poison gif

Originally posted by venus-aversa

Arsenic can occur in an organic and inorganic form. Organic arsenic compounds are less harmful to our health, whereas, inorganic arsenic compounds (e.g those found in water) are carcinogens, which are highly toxic and dangerous. Arsenic contamination of groundwater has led to arsenic poisoning which affects the skin, liver, lungs and kidneys.

Prominently, arsenic has attracted much attention in Bangladesh, as 21.4% of all the deaths in a highly affected area were caused by levels of arsenic surpassing WHO’s provisional guideline value of 10 μg/L.


Health risks

 bacteria

Long-term exposure to low doses of arsenic can cause a negative interference in the way cells communicate, which may minimise their ability to function, subsequently playing a role in the development of disease and causing an increase in health risks.

For example, cells use phosphate to communicate with other cells, but arsenate, which is one form of arsenic, can replace and imitate phosphate in the cell. This damages cells so they can not generate energy and impairs the ability of cells to communicate.

 

 

 

The health risks of arsenic in drinking water. Video: EnviroHealthBerkeley 

Symptoms of arsenic poisoning can be acute, severe or chronic depending on the period of exposure and method of exposure. Symptoms may include vomiting, abdominal pain and diarrhoea, and long-term exposure can lead to cancers of the bladder and lungs.

Certain industries may face exposure to arsenic’s toxicity, but the maximum exposure to arsenic allowed is limited to 10 micrograms per cubic metre of air for every 8-hour shift. These industries include glass production, smelting, wood treatment, and the use of pesticides. Traces of arsenic can also be found in tobacco, posing a risk to people who smoke cigarettes and other tobacco products.


A global threat

 washing hands

Arsenic is naturally found in the Earth’s crust and can easily contaminate water and food.

WHO has ranked arsenic as one of the top 10 chemicals posing a huge threat to public health. WHO is working to reduce arsenic exposure, however, assessing the dangers on health from arsenic is not straightforward.

As symptoms and signs caused by long-term exposure to inorganic arsenic varies across population groups, geographical regions, as well as between individuals, there is no universal definition of the disease caused by this element. However, continuous efforts and measures are being made to keep concentrations as low as possible.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at mercury and some of its reactions.

 Mercury

Mercury is a silver, heavy, liquid metal. Though mercury is a liquid at room temperature, as a solid it is very soft. Mercury has a variety of uses, mainly in thermometers or as an alloy for tooth fillings.


Mercury & Aluminium

 mercury gif

Mercury is added directly to aluminium after the oxide layer is removed. Source: NileRed

The reaction between mercury and aluminium forms an amalgam (alloy of mercury). The aluminium’s oxide layer is disturbed When the amalgam forms, in the following reaction:

Al+ Hg → Al.Hg

Some of the Al.Mg get’s dissolved in the mercury. The aluminium from the amalgam then reacts with the air to form white aluminium oxide fibres, which grow out of the solid metal.


Mercury & Bromine

 mercury and bromine gif

Mercury and bromine are the only two elements that are liquid at room temperature on the periodic table. Source: Gooferking Science

When mercury and bromine are added together they form mercury(I) bromide in the following reaction:

Hg2 + Br2 → Hg2Br2

This reaction is unique as mercury can form a metal-metal covalent bond, giving   mercury(I) bromide a structure of Br-Hg-Hg-Br

 

Pharaoh’s Serpent

 igniting mercury

Making the Pharaoh's Serpent by igniting mercury (II) thiocyanate. Source: NileRed

The first step of this reaction is to generate water-soluble mercury (II) nitrate by combining mercury and concentrate nitric acid. The reaction goes as follows:

Hg + 4NO3 → Hg(NO3)2 + 2H2O + 2NO2

Next, the reaction is boiled to remove excess NO2 and convert mercury(I) nitrate by-product to mercury (II) nitrate. The mixture is them washed with water and potassium thiocyanate added to the mercury (II) nitrate:

Hg(NO3)+ 2KSCN→ Hg(SCN)2 + 2KNO3

The mercury (II) thiocyanate appears as a white solid. After this is dried, it can be ignited to produce the Pharaoh’s serpent, as it is converted to mercury sulfide in the following reaction:

Hg(SCN)2 → 2HgS + CS2 + + C3N4

The result is the formation of a snake-like structure. Many of the final products of this process are highly toxic, so although this used to be used as a form of firework, it is no longer commercially available.

Though many reactions of mercury look like a lot of fun, mercury and many of it’s products is highly toxic - so don’t try these at home!


Science & Innovation

Spaceflight is a high-risk business. Spacecraft break down all the time and when that happens funding and careers evaporate. Back in the late 1960s, NASA decided to double the odds of success and send two spacecraft on one mission. Voyagers 1 and 2, for example, were the spacecraft that returned the first detailed pictures of the outer planets of our solar system and introduced us to the neighbourhood. Launched in 1977, both are still flying.

Any spacecraft must have three components: a payload, an engine and a fuel supply – by far the heaviest component. But what if we could do away with the onboard fuel supply and replace it with an external fuel supply? Say light itself?

Can you push a spacecraft with light? Video: Physics Girl

The idea of solar sail technology has been floating around for decades. Indeed, the notion of a solar pressure can be traced back to 1610 in a letter that Johannes Kepler wrote to Galileo. 

But it was only in the 20th century that solar sails began to be considered as an achievable engineering reality. Broadly, solar sails fall into two categories: those using light from natural sources – the sun and ambient starlight in space; and those using coherent light from lasers.

 

Agrifood

A big congratulations to our Agri-Food Early Careers Committee #agrifoodbecause Twitter competition winner, Hannah Blyth. Hannah is a PhD student at Rothamsted Research. Her winning entry, a fungal plate, really wowed us!

 fungal plate

Hannah will receive a a years free membership to SCI and a £50 Amazon voucher!

shaun the sheep gif

Originally posted by usedpimpa

 

Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and soci.org/blog.

funny gif internship blog

Originally posted by a-little-bit-of-thisandthat

Undertaking an internship in digital media has exposed me to a completely new part of science. As a young scientist, we are regularly taught the value of communicating our work, but often we are not taught how to best do this. 

There are many nuances and tricks to getting digital media to be the most engaging it can be, and here are a few that I have learnt over the last couple of months.


Know your audience

Before you start producing any kind of content, you need to know your audience. Are they scientists or the general public, early- or late-career, students or professionals? Understanding your target demographic can help you make informed decisions about the media or topic you choose, and how you write the piece.

 child chemist

It is crucial to know who your audience is!

It is important to keep your audience in mind at every stage of the process, from conception of the idea, to writing, presentation and marketing. By targeting your piece, you will produce a higher quality piece of content and have much more engagement overall.


Image is important

When presenting a piece of work to the world, be in a long-read article or just a Tweet, image is crucial. Choosing images or photographs to best display your message takes time and careful curation. 

Images can be obtained from a wide variety of sources, from stock photo websites, such as Shutterstock or Pixabay, to original images you may have designed or photographed. Remember to always give credit where appropriate. 

emoji gif

Originally posted by darokin

At SCI we are big fans of gifs and emojis. When targeting a younger audience, or using more informal media like out blog, these can engage and draw the eye much more than a standard image. This again requires meticulous decision-making skills, and it can be crucial to know the meanings behind each emoji.


Trust your gut

A large part of science communication is choosing which science to communicate. This involves selecting topics and editing to the most critical and interesting information.

 At SCI, we release innovation news pieces on a regular basis, where we choose the most exciting science news from the week. This involves looking through press releases, and sometimes selecting one piece from hundreds can be a daunting task.

funny gif internship blog

Originally posted by onlyonepisode

One thing I have learnt during my time at SCI is to trust that I can select something that people will want to read. When pitching ideas for articles and blog pieces, I have learnt to value my own opinion in what is engaging and relevant science that our members and the broader public might want to read about.


Sustainability & Environment

Over 1.5bn smartphones will be manufactured globally in 2019, each one filled with valuable minerals and metals such as gold, platinum and silver. On average, they will be kept for just 21 months before being replaced. Over 60% of them will end up in landfills. And even when recycled, some 30% of material will still be lost, because smartphone design, and contemporary recycling systems render its recovery inefficient.

 ewaste

The predicted mass of the global e-waste mountain by 2021 is > 52m t/year, according to the UN. 

Smartphones represent a fraction of global electronic waste. Discarded electronics are one of the fastest growing waste streams, with the UN predicting that the global e-waste mountain will reach over 52m t/year by 2021. Meantime, we are gradually running out of valuable minerals, such as neodymium, terbium and iridium, that are crucial in manufacturing electronics.

 smart phones ewaste

More than 60% of smartphones end up in landfills. Even if recycled, some 30% of material will still be lost. Image: Pixabay

As the scale of the problem is becoming clear, there has recently been a surge in efforts to understand what goes into electronic products, and how it can be recovered, says Susanne Baker from techUK, the association for companies in the digital economy. ‘We are seeing a lot of academic proposals looking at better understanding the flow of products and waste within the economy,’ says Baker, who heads the trade body’s environment and compliance programme.

Recycling e-waste into art. Source: Great Big Story

 

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about sulphur, specifically sulphites and their significance to the wine industry.

 wine glass

Sulphites and wine - what is all the fuss about? Image: Pixabay


What is a sulphite?

Sulphites are compounds that contain the sulphite ion (sulphate (IV) or SO32- ). There a wide-range of compounds of this type, but common ones include sodium sulphite, potassium bisulphite and sulphur dioxide.

Sulphites are often added as preservatives to a variety of products, and help maintain shelf-life, freshness and taste of the food or drink. They can be found in wines, dried fruits, cold meats and other processed food. Some are produced naturally during wine-making however, they are mainly added in the fermentation process, protecting the wine from bacteria and oxidation.

wine pouring gif

Originally posted by settebelllo


Sneezing and wine

Sulphites have a bad reputation for causing adverse reactions, such as sneezing and other allergic symptoms. But are sulphites really allergens, or just another urban myth?

Despite it being one of the top nine listed food allergens, many experts believe that the reaction to sulphites in wine can be considered not a ‘true allergy’, rather a sensitivity. Symptoms only usually occur in wine-drinkers with underlying medical issues, such as respiratory problems and asthma, and do not include headaches.

 sneezing

Some people report sneezing and similar symptoms when drinking wine.

Sulphites are considered to be generally safe to eat, unless you test positive in a skin allergy test –some individuals, particularly those who are hyperallergic or aspirin-allergic, may have a true allergy to sulphites. Sufferers of a true allergy would not suffer very mild symptoms if they consumed sulphites, instead they would have to avoid all food with traces of sulphite.

Some scientists believe adverse reactions to red wine could be caused by increased levels of histamine. Fermented products, such as wine and aged cheese, have histamine present, and red wine has significantly more histamine than white wine. They suggest taking an anti-histamine around one hour before drinking to help reduce symptoms.


Sulphite-free wine!

Despite it not being considered a true allergen, wine-makers must still label wine as containing sulphites. In 1987, a law was passed in the US requiring labels to be placed on wine containing a large amount of added sulphites. Similarly, in 2005, a European law was brought in to regulate European wine labelling. Sulphites are now often listed as a common allergen on bottle labels in wines that have over 10mg/l.

 wine bottles

You can often find the words ‘contains sulphites’ on a wine bottle. Image: Pixabay

Many food and drink industries are producing products suitable for allergy sufferers, and winemakers have followed this trend by beginning to make sulphite-free wine. These are mainly dry red wines that contain high levels of tannins, which act as a natural preservative. Wines without added sulphites are generally labelled as organic or natural wines and have grown in popularity over the last few years, but unfortunately, many wine critics believe that these naturally preserved wines sacrifice on flavour and shelf life.

In summary, sulphites are a common preservative, not only found in wine, but a range of food, and do not generally cause allergic reactions. If you are an individual with a true sulphite allergy, you may want to try sulphite free wine – but you will have to compromise on shelf life!

wine gif 2

Originally posted by key-change

 

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the highly reactive gas, fluorine.

Elusive element

Fluorine wasn’t discovered until the 19th century, and even now very few chemists have seen elemental fluorine. Fluorite – fluorine’s source mineral – was used industrially as far back as the 16th century, but elemental fluorine wasn’t made until much later.

Fluorite is the mineral form of calcium fluoride (CaF2) and can be found in a wide variety of colours – from pastel free, to burgundy, and even purple or golden yellow. Many samples of fluorite can also be seen fluorescing under UV light. Fluorite’s main industrial use is as a source of hydrogen fluoride (HF), a highly reactive acid. It can also be used to lower the melting point of raw materials, such as steel.

 Fluorite

Fluorite has been used in industry for hundreds of years and is fluorescent under UV light. Image: Pixabay

In 1886, French chemist Henri Moissan first made elemental fluorine by electrolysing a mixture of potassium fluoride and hydrogen fluoride. He later won the Nobel Prize in Chemistry for his work. 

Large-scale production of fluorine first began during World War II, where it was used to separate uranium for the Manhattan Project – the United States’ nuclear weapons development project.


Highly reactive

Fluorine is known for its high reactivity. It is the most electronegative element, which means it can react with almost every other element in the periodic table. Despite being difficult to handle, fluorine and fluorine containing compounds have many real-world applications.

Due to its reactivity, elemental fluorine must be handled with great care. Fluorine reacts with water to produce hydrogen fluoride, which is such a powerful acid it can eat through glassware.

Fluorine’s reactivity isn’t all bad – in fact, it has hundreds of applications. One of the most common uses of fluorine is the fluorides in toothpaste. 

toothpaste gif

Originally posted by adamvanwinden

These fluorides exist usually as tin or sodium fluoride, and when you brush your teeth they react with calcium in the enamel to make it less soluble to acids. This gives some protection to your teeth from acidic foods such as fizzy drinks or juices.


Fluorochemical industry

The fluorochemical industry began in the 1930′s and 40′s with DuPont, who commercialised organofluorine compounds on a large scale. They developed Freon-12 (dichlorodifluoromethane) after General Motors showed chlorofluorcarbons (CFCs) could be used as refrigerants. The two companies joined together to market Freon-12, which quickly replaced previously used toxic kitchen refrigerants.

ozone layer hole gif

Originally posted by asapscience

CFCs were found to be creating holes in the ozone layer, contributing to global warming. Image: Pixabay

CFCs were later banned by a number of countries due to the damage they caused to the ozone layer. More environmentally friendly fluorine-based alternatives are now used in refrigeration, including hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).

DuPont continued to pioneer the industry, when recently hired chemist Roy J Plunkett accidentally discovered polytetrafluoroethylene, also known as the polymer Teflon. Tests of the mysterious white polymer he had generated showed its’ high temperature stability and resistance against corrosion were significantly higher than any other plastic. It only took three years for large-scale production to begin.

Fluorine – Professor Martyn Poliakoff. Video: Periodic Videos

The development of Teflon lead to many other similar fluorine-containing polymers appearing on the market, including PTFE, which is used in breathable rainwear by the Gore-Tex business and was developed by Robert Gore, the son of ex-DuPont employee Bill Gore.

The fluorochemicals industry continues to grow to this day; in 2017 the global market was estimated at $17.6 billion.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the exciting group one element, lithium!

 lithium

Lithium has a wide range of uses – it can even power batteries!


Bipolar disorder

Lithium was first discovered in mines in Australia and Chile, and was initially used to treat gout, an arthritic inflammatory condition. Its use as a psychiatric medication wasn’t established until 1949, when an Australian psychiatrist discovered the positive effect that lithium salts had on treating mania. Since then, scientists have discovered that lithium works as a mood stabiliser by targeting neurotransmitters in the brain.

brain activity gif

Originally posted by buddhaismyhomeboy

Neurotransmitters are chemicals that are released by one neuron to send a message to the next neuron. There are several types found in humans including dopamine, serotonin and glutamate. Each has a different role, and different levels of each neurotransmitter can be linked to a variety of mental illnesses. However, it is an increase in glutamate – an excitatory neurotransmitter that plays a role in learning and memory – and has been linked to the manic phase of bipolar disorder.

 lithium sals in tablet

Lithium salts have been used as a medication for mania effectively since 1949. Image: Pixabay

Lithium is thought to stabilise levels of glutamate, keeping it at a healthy and stable level. Though it isn’t a fully comprehensive treatment for bipolar disorder, lithium has an important role in treating the manic phase and helping researchers to understand the condition.


Battery power

One of the most common types of battery you will find in modern electronics is the lithium ion battery. This battery type was first invented in the 1970s, using titanium (IV) sulphide and lithium metal. Although this battery had great potential, scientists struggled to make a rechargeable version.

out of battery gif

Originally posted by wreckedteen

Initial rechargeable batteries were dangerous, mainly due to the instability of the lithium metal. This resulted in them failing safety tests and led to the use of lithium ions instead.

 liion battery

Lithium-ion batteries are widely used and developments in the technology continue today.

Developments in lithium ion technology continue to this day, in which the recently-founded Faraday Institute plays a large role. As part of the Faraday Battery Challenge, they are bringing together expertise from universities and industry, supporting projects that develop lithium-based batteries, along with new battery technologies.


Nuclear fusion

Nuclear fusion happens in a hollow steel donut surrounded by magnets. The large magnetic fields contain a charged gas known as plasma, which is heated to 100m Kelvin and leads to nuclear fusion of the deuterium and tritium in the plasma. Keeping the plasma stable and preventing it from cooling is one of the largest industrial problems to overcome. This is where lithium comes in.

nucleur fusion gif

Originally posted by civisiii

Results from studies in which lithium is delivered in a liquid form to the edge of the plasma, show that lithium is stable and maintains its temperature and could potentially be used in controlling the plasma. It can also increase the plasma temperature if injected under certain conditions, improving the overall conditions for fusion.

Lithium has uses in plasma stabilisation in nuclear fusion. Video: Tedx Talks

Aside from its uses in nuclear fusion, lithium has other uses in the nuclear industry. For example, it is used as an additive in coolant systems. Lithium fluoride and other similar salts have a low vapour pressure, meaning they can carry more heat than the same amount of water.

 


Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and soci.org/blog.

 sci staff pass

The SCI staff pass makes a change from the conference lanyards I am used to.

I am studying for my PhD as part of the Biotechnology and Biological Sciences Research Council (BBSRC) and University of Nottingham Doctoral Training Programme (DTP). I’m currently stationed at Rothamsted Research, a research institute in Hertfordshire, studying insect olfaction, specifically in aphids. 

A DTP involves completing rotations in different labs, a variety of training days and an internship, alongside your PhD studies. The internship is expected to be three months working in a role not directly applicable to your PhD studies, and is designed to give you a break from the lab to explore different potential career options.

 digital media

Working in digital media is a big contrast from my usual lab work.

When choosing where to undertake my internship, I was presented with a world of possibilities. There was working in industry, policy, marketing or for a charity. Prior to even considering an internship, I had done a lot of volunteering with the Society of Chemical Industry, being a member of their Agrisciences Group and Agrifood Early Career Committees. 

I had even previously written for the blog about experiences as PhD student. Having really enjoyed my prior work with them, it seemed logical to ask whether they would host me for my internship – and they said yes! I was accepted to do a three-month internship in the digital media team starting in January 2019.

cat gif

Originally posted by usedpimpa

My first month working with SCI has been a whirlwind of activity. There have been lots of opportunities already, from writing for the website and SCI Blog, to running their social media accounts. Recently, I was asked to help cover an SCI conference, which presented an entirely different experience to that which I had had with conferences before. 

The conference was on formulation – an area of chemistry I am completely unfamiliar with – and there was a wide-range of talks from academics to industry partners. It was a unique experience to listen to technical talks in something you have never studied, and the variety of real-world applications piqued my interest.

 sci building

Commuting to London everyday takes some getting used to, but it is a privilege to work in such a beautiful building.

There are huge differences between working at SCI and Rothamsted. Aside from the obvious differences in the work, there’s the London commute, dressing smart, and most importantly, the exposure to the wide variety of science covered across the chemical industry. 

Coming from an academic science background, my brain has been filled with new knowledge, particularly in relation to the intersection of industry and policy, such as the Chemistry Council and Industrial Strategy. This new knowledge, along with my training in digital media, will certainly be beneficial to my future scientific career.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the first element in the periodic table, hydrogen!

 hot air balloon

Hydrogen isn’t just for keeping balloons afloat. Image: Pixabay


Hydrogen engineering

Hydrogen (H2) gas has many uses in modern engineering. Scientists are always searching for cheaper, more renewable fuel sources that have a lower negative impact on the environment. Hydrogen was frequently used to generate energy in the past, and this drive for more renewable energy has given hydrogen-derived fuel a new lease of life.  

Hydrogen can be used in fuel cells. These act like batteries, generating their energy from a reaction between hydrogen and oxygen (O2). Hydrogen fuel cells have been incorporated into many modern technologies, including automotive. As the reaction occurring only generates heat, electricity and water, fuel cells are significantly better for the environment than many alternatives. Hydrogen is also much cheaper as a commodity that typical fuels.  

 hydrogen fuel cell

Hydrogen fuel cells can now be used to power automotive vehicles, including cars! 

Engineering cooling systems can use hydrogen. The gases physical properties make it 7-10 times better at cooling than air. It can also be easily detected by sensors. Because of this, hydrogen is used in cooling systems, which are generally smaller and less expensive than other available options.


Chemical reactions

Hydrogen gas can be used in reactions. The most famous reaction using hydrogen is the production of ammonia (NH3), also known as the Haber process. The Haber process was developed by Fritz Haber and Car Bosch in the early 20th century to fill the need to produce nitrogen-based fertilisers. In the Haber process, atmospheric nitrogen (N2) is reacted with H2 and a metal catalyst to produce NH3.

 crop field

Nitrogen-based fertilisers are still used today, but ammonia was one of the first to be commercially produced.

Ammonia is a valuable fertilised, providing much needed nitrogen to plants. It was used on a variety of agricultural plants, including food crops wheat and maize, in the 19th and early 20th century.

Chemists undertake other chemical reactions, such as hydrogenation and reduction, that utilise hydrogen, to make commercially valuable products. Some physical properties of hydrogen make it tricky, and often dangerous, to use in industry. However, careful control of conditions allow for its safe use on larger scales.

hydrogen explosion gif

Originally posted by gifsofprocesses

Hydrogen gas can be explosive, making it often dangerous to use.


Producing hydrogen gas

There are many ways to produce gaseous hydrogen. The four main sources of commercially produced hydrogen are natural gas, oil, coal and electrolysis. To obtain gaseous hydrogen, the fossil fuels are ‘steam reformed’, a process which involves a reaction with steam at high pressure and temperature.

Electrolysis of water is another method that is used in hydrogen production. This method is 70-80% efficient. However, it often requires large amounts of energy, specifically in the form of heat. This heat can be sourced from waste heat produced by industrial plants. 

So, whats all this hot air about hydrogen? Source: Tedx Talks

An alternative method for producing hydrogen is via biohydrogen. Hydrogen gas can be produced by certain types of algae. This process involves fermentation of glucose. Some hydrogen is also produced in a form of photosynthesis by cyanobacteria. This process can be used on an industrial scale.

Overall, hydrogen technology, whether it be new developments, such as hydrogen fueled cars, or old, like the Haber process, remains critical to the chemical industry.


Health & Wellbeing

A research team has tested more than 500,000 chemical compounds to discover 631 that show promise for treating malaria at an earlier stage.

Mosquitoes

Mosquitoes are a vector of the malarial parasite. Image: Pixabay

There were 219m cases of malaria in 2017, up 2m on the previous year. Increasingly, the disease is drug-resistant and prevention methods are difficult both in non-immune travelers and in areas where the disease is endemic. Moreover, most malaria drugs are designed to reduce symptoms after infection rather than prevent infection or transmission.

 antimalarial drugs

New compounds have been discovered with the potential to be novel antimalarial drugs. Image: Pixabay

A team of scientists are working to change that, aiming to treat the malaria parasite at an earlier stage – when it affects the human liver – rather than waiting until the parasite is in the blood. If successful, their work could have a significant impact on global health.