Blog search results for Tag: british-science-week

Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. British scientists, engineers and inventors have played a significant role in developing engines and the automotive industry that stemmed from them.

steam train gif

Originally posted by suffocating-in-the-void

Steam power

Before the internal combustion engine, steam power was revolutionary in progressing industry in Britain. 

The first practical steam engine was designed by English inventor Thomas Newcomen in 1712 and was later adapted by Scotsman James Watt in 1765. Watt’s steam engine was the first to make use of steam at an above atmospheric pressure.

The Steam Engine - How Does It Work? Video: Real Engineering  

In 1804, the first locomotive-hauled railway journey was made by a steam locomotive design by Richard Trevithick, an inventor and mining engineer from Cornwall, UK. 

After this, steam trains took off and the steam engine was used in many ways such as powering the SS Great Britain, designed by Isambard Kingdom Brunel and launched in 1843.

 SS Great Britain
The SS Great Britain in Bristol, UK, today.

Engines at the ready

The conception and refinement of the internal combustion engine involved many inventors from around the world, including British ones. 

The automobile, using the internal combustion engine, was been invented in the United States, and Britain picked up on this emerging industry very quickly. These brands are among the most famous and abundant cars on the road today; Aston Martin, Mini, Jaguar, Land Rover and Rolls Royce may come to mind.  

 car engine

By the 1950s, the UK was the second-largest manufacturer of cars in the world (after the United States) and the largest exporter.

In 1930, the jet engine was patented by Sr Frank Whittle. He was an aviation engineer and pilot who started his career as an apprentice in the Royal Air Force (RAF). The jet engine became critical after the outbreak of World War II.

raf jet

Originally posted by aviationgifs

Great Britain are still major players in the aviation industry, and engineering innovations continue to be a major part of the British economy. British inventors have gone on to invent the hovercraft, hundreds of different jet designs and a variety of military vehicles.


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. Discoveries made by British physicists have changed the way we see the world, and are still used and celebrated today.

One of the world’s most recognisable scientists is mathematician and physicist Isaac Newton (1643-1727), who is credited with the discovery of the law of gravitation.

It is scientific legend that during one afternoon in his garden in 1666, during which Newton was sat under an apple tree, that an apple fell on his head. This led to a moment of inspiration from which he based his theory of gravity.

Gravity is an invisible force that pulls objects towards each other – anything with mass is affected by gravity – and is the reason why we don’t float off into space and why objects fall when you throw or drop them.

 Isaac Newton

An illustration of Isaac Newton in 1962.

The Earth’s gravity comes from its mass, which ultimately determines your weight. As the different plants in our universe are different masses, our weight on Earth is different to what it would be on Saturn or Uranus.

Whilst Newton’s theory has since been superseded by Einstein’s theory of relativity, it remains an important breakthrough in scientific history. The apple tree that supposedly led to his theory can still be found at Newton’s childhood home, Woolsthorpe Manor, in Grantham, UK.

 Newtons apple tree

Newton’s apple tree. Image: Martin Pettitt/Flickr


The Higgs boson

As a Senior Research Fellow at the University of Edinburgh, physicist Peter Higgs hypothesised that when the universe began, all particles had no mass. This changed a second later when they came into contact with a theoretical field – later named the Higgs field – and each particle gained mass.

The more a particle interacts with the field, the more mass it acquires and therefore the heavier it is, he postulated. The Higgs boson is a physical manifestation of the field.

 higgs boson

A computer generated rendering of the Higgs boson.

Back in 2012, the scientific community celebrated an important discovery made by researchers at CERN using the Large Hadron Collider – the world’s most powerful particle accelerator. 

After years of theorised work, they found a particle that behaved the way that the Higgs boson supposedly behaved.

The celebration was warranted, as the discovery of the Higgs boson verified the Standard Model of Particle Physics, which states that the Higgs boson gives everything in the universe its mass. It has been estimated that it cost $13.25bn to find the Higgs boson.  

 Large Hadron Collider

Inside the Large Hadron Collider at CERN in Switzerland. Image: Thomas Cizauskas/Flickr

In 2013, Higgs was presented with the Nobel Prize in Physics, which he shared with Belgian researcher Franҫois Englert, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles’.

Having avoided the limelight and media since his retirement, Higgs found out about his win from an ex-neighbour on his way home as he did not have a mobile phone!

Beyond the Higgs: What’s Next for the LHC? Video: The Royal Institution

The success of British physics isn’t slowing down either. It was in Manchester that two Russian scientists discovered graphene, which has influenced a wave of new research and investment into the use of this versatile material set to be a cornerstone for the fourth Industrial Revolution.


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. First, we are delving into genetics and molecular biology – from Darwin’s legacy, to the structure of DNA and now modern molecular techniques.

The theory of evolution by natural selection is one of the most famous scientific theories in biology to come from Britain. Before Charles Darwin famously published this theory, several classical philosophers considered how some traits may have occurred and survived, including works where Aristotle pondered the shape of teeth. 

These ideas were forgotten until the 18th century, when they were re-introduced by philosophers and scientists including Darwin’s own grandfather, Erasmus Darwin.

 colorful bird

Darwin used birds, particularly pigeons and finches to demonstrate his theories. Image: Pixabay

In 1859, Darwin first set out his theory of evolution by natural selection to explain adaptation and speciation. He was inspired by observations made on his second voyage of HM Beagle, along with the work of political economist Thomas Robert Malthus on population.

Darwin coined the term ‘natural selection’, thinking of it as like the artificial selection imposed by farmers and breeders. After publishing a series of papers with Alfred Russel Wallace, followed by On the Origin of Species, the concept of evolution was widely accepted.

 darwin gif

Although many initially contested the idea of natural selection, Darwin was ahead of his time, and further evidence was yet to come in the form of genetics.


Double Helix

Gregor Mendel first discovered genetics whilst working on peas and inheritance in the late 19th century. The unraveling of the molecular processes that were involved in this inheritance, however, allowed scientists to study inheritance and genetics in a high level of detail, ultimately advancing the field dramatically. 

A major discovery in the history of genetics was the determination of the structure of deoxyribose nucleic acid (DNA).

 double helix

DNA was first isolated by Swiss scientists, and it’s general structure – four bases, a sugar and a phosphate chain – was elucidated by researchers from the United States. It was a British team that managed to make the leap to the three-dimensional (3D)structure of DNA.

Using x-ray diffraction techniques, Rosalind Franklin, a British chemist, discovered that the bases of DNA were paired. This lead to the first accurate model of DNA’s molecular structure by James Watson and Francis Crick. The work was initially published in Nature in 1953, and would later win them a Nobel Prize.

The age of genetic wonder. Source: TED

By understanding the structure of DNA, further advances in the field were made. This has lead to a wide range of innovations, from Crispr/CAS9 gene editing to targeted gene therapies. The British-born science has been utilised by British pharmaceutical companies – pharma-giants GlaxoSmithKline (GSK) and AstraZeneca use this science today in driving new innovations.