Chemists have created a new type of artificial cell that can communicate with other parts of the body. A study, published in Science Advances this month, describes a new type of artificial cell that can communicate with living cells.
“This work begins to bridge the divide between more theoretical ‘what is cellular life’ type of work and applicative, useful technologies,” said Sheref Mansy, Chemistry Professor at the University of Alberta and co-author of the study.
The artificial cells are made using an oil-water emulsion, and they can detect changes within their environments and respond by releasing protein signals to influence surrounding cells. This work is the first that can chemically communicate with and influence natural living cells. They started with bacteria, later moving to multicellular organisms.
“In the future, artificial cells like this one could be engineered to synthesizes and deliver specific therapeutic molecules tailored to distinct physiological conditions or illnesses–all while inside the body,” explained Sheref Mansy, professor in the University of Alberta’s Department of Chemistry,
Though the initial study was undertaken using a specific signalling system, the cells have applications in therapeutic use, going beyond traditional smart-drug delivery systems and allowing for an adaptable therapeutic.
It’s quite likely that most people who end up in the vicinity of a scorpion will more than likely beat a hasty retreat, not least because they can impart a potentially life threatening dose of venom should one get stung.
But scientists are now finding that the venom from these creatures, along with snakes and spiders, could be beneficial in treating heart attacks. Scorpion venom in particular contains a peptide that has been found to have a positive impact on the cardiovascular system of rats with high blood pressure. Reporting their findings in Journal of Proteome Research, scientists from Brazil, Canada and Denmark say that they now have a better understanding of the processes involved.
Emperor Scorpion
Scorpion venom is a complex mixture of molecules including neurotoxins, vasodilators and antimicrobial compounds, among many others. Individual venom compounds, if isolated and administered at the proper dose, could have surprising health benefits, the researchers say.
One promising compound is the tripeptide KPP (Lys-Pro-Pro), which the researchers say is part of a larger scorpion toxin. KPP was shown to cause blood vessels to dilate and blood pressure to decline in hypertensive rats.
A blood vessel on organic tissue
To understand how KPP worked, the researchers treated cardiac muscle cells from mice, in a Petri dish, with KPP and measured the levels of proteins expressed by the cells at different times using mass spectrometry. They found that KPP regulated proteins associated with cell death, energy production, muscle contraction and protein turnover. In addition the scorpion peptide triggered the phosphorylation of a mouse protein called AKT, which activated another protein involved in production of nitric oxide, a vasodilator.
Treatment with KPP led to dephosphorylation of a protein called phospholamban, which led to reduced contraction of cardiac muscle cells. Both AKT and phospholamban are already known to protect cardiac tissue from injuries caused by lack of oxygen. The researchers said that these results indicate that KPP should be further studied as a drug lead for heart attacks and other cardiovascular problems.
Conceptual image for cardiovascular problems .
The concept of a hydrogen economy is not new to anyone involved or familiar with the energy sector. Until the 1970s, hydrogen was a well-established source of energy in the UK, making up 50% of gas used. For several reasons, the sector moved on, and a recent renewed interest into the advantages of hydrogen has put the gas at the forefront in the search for green energy.
Confidence behind the viability of hydrogen was confirmed last October when the government announced a £20m Hydrogen Supply programme that aims to lower the price of low carbon hydrogen to encourage its use in industry, power, buildings, and transport.
Hydrogen - the Fuel of the Future? Video: Real Engineering
‘In a way, hydrogen is more relevant than ever, because in the past hydrogen was linked with transportation,’ UCL fuel cell researcher Professor Dan Brett explained to The Engineer. ‘But now with the huge uptake of renewables and the need for grid-scale energy storage to stabilise the energy system, hydrogen can have a real role to play, and what’s interesting about that […] is that there’s a number of things you can do with it.
‘You can turn it back into electricity, you can put it into vehicles or you can do a power-to-gas arrangement where you pump it into the gas grid.’
Determining the efficacy of organic solar cell mixtures is a time-consuming and tired practice, relying on post-manufacturing analysis to find the most effective combination of materials.
Now, an international group of researchers – from North Carolina State University in the US and Hong Kong University of Science and Technology – have developed a new quantitative approach that can identify effective mixtures quickly and before the cell goes through production.
Development of a thin-film solar cell. Image: science photo/Shutterstock
By using the solubility limit of a system as a parameter, the group looked to find the processing temperature providing the optimum performance and largest processing window for the system, said Harald Ade, co-corresponding author and Professor of Physics at NC State.
‘Forces between molecules within a solar cell’s layers govern how much they will mix – if they are very interactive they will mix but if they are repulsive they won’t,’ he said. ‘Efficient solar cells are a delicate balance. If the domains mix too much or too little, the charges can’t separate or be harvested effectively.’
‘We know that attraction and repulsion depend on temperature, much like sugar dissolving in coffee – the saturation, or maximum mixing of the sugar with the coffee, improves as the temperature increases. We figured out the saturation level of the ‘sugar in the coffee’ as a function of temperature,’ he said.
Organic solar cells are a type of photovoltaic – which convert energy from the sun into electrons – that uses organic electronics to generate electricity. This type of cell can be produced cheaply, and is both lightweight and flexible, making it a popular option for use in solar panels.
Photovoltaic systems are made up of organic solar cells that convert sunlight into energy. Image: Pxhere
However, difficulties in the production process, including an effective process to determine efficiency of potential material combinations, is stalling its development.
‘In the past, people mainly studied this parameter in systems at room temperature using crude approximations,’ said Long Ye, first author and postdoctoral researcher at NC State. ‘They couldn’t measure it with precision and at temperatures corresponding to processing conditions, which are much hotter.’
Faces of Chemistry: Organic solar cells at BASF. Video: Royal Society of Chemistry
‘The ability to measure and model this parameter will also offer valuable lessons about processing and not just material pairs.’
But the process still needs refinement, said Ade. ‘Our ultimate goal is to form a framework and experimental basis on which chemical structural variation might be evaluated by simulations on the computer before laborious synthesis is attempted,’ he said.
Cellular agriculture involves making food from cell cultures in bioreactors. The products are chemically identical to meat and dairy products, and it’s claimed they have the same taste and texture.
The technology is an attractive option because it would reduce the world’s reliance on livestock, which is unsustainable, and would have potential knock-on benefits of lower greenhouse gas emissions, and reduced water, land, and energy usage than traditional farming.
IndieBio helps biotechnology start-ups. Since 2014, it has funded several new US-based businesses in cellular agriculture: Perfect Day, formerly Muufri, makes milk from cell culture; Clara Foods is developing a way to make egg whites from cell culture; and Memphis Meats is focusing on animal-free meat using tissue engineering.
Growth is driven by the clear benefits this technology can offer, says Ron Sigeta, IndieBio’s Chief Scientific Officer. ‘It takes 144 gallons of water to make a gallon of milk or 53 gallons of water to make an egg. Cellular agriculture products don’t require such large water supplies, or large tracts of land, or produce the same level of greenhouse gas emissions.’
Salmonella bacteria are not present in cell-cultured milk so there is no risk of infection. Image: Wikimedia Commons
Food safety is also a significant issue. ‘Cellular agriculture makes products in an entirely controlled environment so it’s a source of food we can understand with a transparency that is simply not possible now,’ says Sigeta. For example, raw, unpasteurised milk can carry bacteria, such as salmonella, which is not a problem for Perfect Day’s milk as there are no bacteria-carrying animals are involved.
So how does it work?
Cellular agriculture products can be acellular – made of organic molecules like proteins and fats – or cellular – made of living or once-living cells.
Meat industry critics argue that it is not sustainable and lab-grown meat is the future. Video: Eater
Acellular products are made without using microbes like yeast or similar bacteria. Scientists alter the yeast by inserting the gene responsible for making the desired protein. Since all cells read the same genetic code, the yeast, now carrying recombinant DNA, makes the protein molecularly identical to the protein an animal makes.
Other products like meat and leather are produced by a cellular approach. Using tissue engineering techniques muscle, fat or skin cells can be assembled on a scaffold with nutrients. The cells can be grown in large quantities and then combined to make the product.
The first cultured beef patty was made in 2013. Image: Public Domain Pictures
Mark Post at Maastricht University, the Netherlands, made the first cultured beef hamburger in 2013 using established tissue engineering methods to grow cow muscle cells. The process, however, was expensive and time-consuming, but his team has been working on improvements.
‘We are focusing on hamburgers because our process results in small tissues that are large enough for minced meat applications, which accounts for half of the meat market. To make a steak, one would need to impose a larger 3D structure to the cells to grow in.
‘It is very important that such a structure contains a channel system to perfuse the nutrients and oxygen through to the developing tissue and to remove waste as a result of metabolic activity. This technology is being developed, but is not yet ready for large scale production.’
Surveys have shown that the public are behind genetically engineered meat alternatives. Image: Ben Amstutz@Flickr
Future outlook
Commercial challenges include finding a cost-effective medium for cell nutrition developing a bioreactor for industrial scale production. Public perception may also be a challenge: Will people buy synthetically engineered food?
A recent crowdfunding campaign shows the global massive support for the idea of clean meat, says Koby Barak, SuperMeat’s chief operating officer and co-founder. However, he believes these will be overcome shortly, and it will not be long before companies see ‘massive funding’ in this field and the creation of clean meat factories worldwide.