Blog search results for Tag: co2

Energy

Energy is critical to life. However, we must work to find solution to source sustainable energy which compliments the UK’s emission targets. This article discusses six interesting facts concerning the UK’s diversified energy supply system and the ways it is shifting towards decarbonised alternatives.

Finite Resources

1. In 2015, UK government announced plans to close unabated coal-fired power plants by 2025.

 A coalfired power plant

A coal-fired power plant 

In recent years, energy generation from coal has dropped significantly. In March 2018, Eggborough power station, North Yorkshire, closed, leaving only seven coal power plants operational in the UK. In May this year, Britain set a record by going one week without coal power. This was the first time since 1882!

2. Over 40% of the UK’s electricity supply comes from gas.

 A natural oil and gas production in sea

A natural oil and gas production in sea

While it may be a fossil fuel, natural gas releases less carbon dioxide emissions compared to that of coal and oil upon combustion. However, without mechanisms in place to capture and store said carbon dioxide it is still a carbon intensive energy source.

3. Nuclear power accounts for approximately 8% of UK energy supply.

hazard gif

Originally posted by konczakowski

Nuclear power generation is considered a low-carbon process. In 2025, Hinkley Point C nuclear power-plant is scheduled to open in Somerset. With an electricity generation capacity of 3.2GW, it is considerably bigger than a typical power-plant.

Renewable Resources

In 2018, the total installed capacity of UK renewables increased by 9.7% from the previous year. Out of this, wind power, solar power and plant biomass accounted for 89%.

4. The Irish Sea is home to the world’s largest wind farm, Walney Extension.

 The Walney offshore wind farm

The Walney offshore wind farm.

In addition to this, the UK has the third highest total installed wind capacity across Europe. The World Energy Council define an ‘ideal’ wind farm as one which experiences wind speed of over 6.9 metres per second at a height of 80m above ground. As can be seen in the image below, at 100m, the UK is well suited for wind production.

5. Solar power accounted for 29.5% of total renewable electricity capacity in 2018.

 solar panels

This was an increase of 12% from the previous year (2017) and the highest amount to date! Such growth in solar power can be attributed to considerable technology cost reductions and greater average sunlight hours, which increased by up to 0.6 hours per day in 2018. 

Currently, the intermittent availability of both solar and wind energy means that fossil fuel reserves are required to balance supply and demand as they can run continuously and are easier to control.

6. In 2018, total UK electricity generation from bioenergy accounted for approximately 32% of all renewable generation.

 A biofuel plant in Germany

A biofuel plant in Germany.

This was the largest share of renewable generation per source and increased by 12% from the previous year. As a result of Lynemouth power station, Northumberland, and another unit at Drax, Yorkshire, being converted from fossil fuels to biomass, there was a large increase in plant biomass capacity from 2017.


Sustainability & Environment

This is the first in a series of blog articles by SCI’s Energy group. As a group, they recognise that the energy crisis is a topic of large magnitude and therefore have set out to identify potential decarbonisation solutions across multiple dimensions of the overall energy supply chain, which include source, system, storage and service.

 wind turnbine

Throughout the series, you will be introduced to its members through regular features that highlight their roles and major interests in energy. We welcome you to read their series and hope to spark some interesting conversation across all areas of SCI.


Global emissions

 factory burning fossil fuels

The burning of fossil fuels is the biggest contributor to global greenhouse gas emissions.

According to the National Oceanic and Atmospheric Administration (NOAA), by the end of 2018, their observatory at Muana Loa, Hawaii, recorded the fourth-highest annual growth of global CO2 emissions the world has seen in the last 60 years.

Adding even more concern, the Met Office confirmed that this trend is likely to continue and that the annual rise in 2019 could potentially be larger than that seen in the previous two years.

 atmospheric co2 data

Forecast global CO2 concentration against previous years. Source: Met Office and contains public sector information licensed under the Open Government Licence v1.0.

Large concentrations of COin the atmosphere are a major concern because it is a greenhouse gas. Greenhouse gases absorb infrared radiation from solar energy from the sun and less is emitted back into space. Because the influx of radiation is greater than the outflux, the globe is warmed as a consequence.

Although CO2 emissions can occur naturally through biological processes, the biggest contributor to said emissions is human activities, such as fossil fuel burning and cement production.

 co2 emissions data

Increase of CO2 emissions before and after the Industrial Era. Source: IPCC, AR5 Synthesis Report: Climate Change 2014, Fig. 1.05-01, Page. 3


Climate Change

 field

Weather impacts from climate change include drought and flooding, as well as a noticeable increase in natural disasters.

This warming has resulted in changes to our climate system which has created severe weather impacts that increase human vulnerability. One example of this is the European heat wave and drought which struck in 2003. 

The event resulted in an estimated death toll of over 30,000 lives and is recognised as one of the top 10 deadliest natural disasters across Europe within the last century.

In 2015, in an attempt to address this issue, 195 nations from across the globe united to adopt the Paris Agreement which seeks to maintain a global temperature rise of well below 2C, with efforts to  limit it even further to 1.5C.

 

 

The Paris Climate Change Agreement explained. Video: The Daily Conversation  

In their latest special report, the Intergovernmental Panel on Climate Change (IPCC) explained that this would require significant changes in energy, land, infrastructure and industrial systems, all within a rapid timeframe.

In addition, the recently published Emissions Gap report urged that it is crucial that global emissions peak by 2020 if we are to succeed in meeting this ambitious target.


Are we further away then we think?

 co2 graphic

As well as the Paris Agreement, the UK is committed to the Climate Change Act (2008) which seeks to reduce greenhouse gas emissions by at least 80% by 2050 relative to 1990 baseline levels. Since 1990, the UK has cut emissions by over 40%, while the economy has grown by 72%.

To ensure that we meet our 2050 target, the government has implemented Carbon Budgets, which limit the legal emissions of greenhouse gases within the UK across a five-year period. Currently, these budgets run up to 2032 and the UK is now in the third budget period (2018-2022).

cars gif

Originally posted by worldoro

The UK has committed to end the sale of all new petrol and diesel cars by 2040.

At present, the UK is on track to outperform both the second and third budget. However, it is not on track to achieve the fourth budget target (2023-2027). To be able to meet this, the Committee on Climate Change (CCC) urge that UK emissions must be reduced annually by at least 3% from this point forward.

We may not be sure which technologies will allow such great emission reductions, but one thing is for certain – decarbonisation is essential, and it must happen now!

 

Sustainability & Environment

The UK’s efforts to move towards clean energy can be seen around the UK, whether it’s the wind turbines across the hills of the countryside or solar panels on the roofs of city skyscrapers. There is, however, a technology that most people will never see, and it is set to be one of the biggest breakthroughs in a low-carbon economy yet.

Deep in the North Sea are miles of offshore pipelines, once used to transport natural gas to the UK. The pipelines all lead to a hub called the St Fergus Gas Terminal – a gas sweetening plant used by industry – that sits on the coast of north-east Scotland.

 St Fergus Gas Terminal in NorthEast Scotland

St Fergus Gas Terminal in North-East Scotland. 

This network has now been reimagined as a low-cost, full-chain carbon capture, transport and offshore storage that will provide the UK will a viable solution to permanent carbon capture and storage (CCS) called the Acorn project.

CCS is a process that takes waste CO2 produced by large-scale, usually industrial, processes and transports it to a storage facility. The site, likely to be underground, stops the waste CO2 from being released into the atmosphere, storing it for later use for another purpose, such as the production of chemicals for coatings, adhesives or jet fuel.

Carbon Capture Explained | How It Happens. Video: The New York Times  

High levels of CO2 in the atmosphere have been linked to global warming and the damaging effects of climate change, and CCS is one of the only proven solutions to decarbonisation that industry can currently access.

Taking advantage of existing infrastructure means that the Acorn project is running at a much lower cost and risk to comparable projects and is expected to be up and running by 2023. It is hoped the project will bring competitiveness and job retention and creation across the UK, particularly in the industrial centres of Scotland.  


Sustainability & Environment

It’s well known that the oceans are becoming more acidic as they absorb increasing amounts of CO2 from the atmosphere. Now, German researchers say they have found the first evidence that this is happening in freshwaters, too, with potentially widespread effects on ecosystems.

‘Many current investigations describe tremendous effects of rising CO2 levels on marine ecosystems,’ says Linda Weiss at Ruhr-University Bochum: acidic oceans can have major impacts on marine food webs, nutrient cycles, overall productivity and biodiversity. ‘However, freshwater ecosystems have been largely overlooked,’ she adds.

image

Originally posted by boitoyscotty

Waters with high acidity have reduced biodiversity.

Weiss and colleagues looked at four freshwater reservoirs in Germany. Their analysis of data over 35 years – from 1981 to 2015 – confirmed a continuous increase in CO2, measured as the partial pressure or pCO2, and an associated decrease in pH of about 0.3, suggesting that freshwaters may acidify at a faster rate than the oceans.

In lab studies, the team also investigated the effects of higher acidity on two species of freshwater crustaceans called Daphnia, or water fleas. Daphnia found in lakes, ponds and reservoirs are an important primary food source for many larger animals.

 Daphnia

Daphnia are an essential part of the freshwater food chain. Image: Faculty of Natural Sciences at Norwegian University of Science and Technology/Flickr  

When Daphnia sense that predators are around, they respond by producing ‘helmets’ and spikes that make them harder to eat. Weiss found that high levels of CO2 reduce Daphnia’s ability to detect predators. ‘This reduces the expression of morphological defences, rendering them more vulnerable,’ she says.

The team suggest that CO2 alters chemical communication between species, which could have knock-on effects throughout the whole ecosystem. Many fish learn to use chemical cues from injured species to detect predatory threats and move away from danger, for example.

Ocean acidification - the evil twin of climate change | Triona McGrath | TEDxFulbrightDublin. Video: TEDx Talks

Cory Suski, an ecologist at the University of Illinois at Urbana-Champaign, US, says he is not aware of many other data sets showing trends in CO2 abundance in freshwater over an extended time. Also, he notes: ‘A lot of the work to date in this area has revolved around behavioural or physiological responses to elevated CO2, so a morphological change is novel.’

But he points out that it is difficult to predict how this change could impact aquatic ecosystems, or whether this may be a global phenomenon, simply because of the complex nature of CO2 in freshwater. The amount of CO2 in freshwater is driven by a number of factors including geology, land use, water chemistry, precipitation patterns and aquatic respiration.

Science & Innovation

 Concrete

Concrete is a common fixture in the building blocks of everyday life. Image: US Navy@Wikimedia Commons

Concrete is the most widely used construction material in the world, with use dating back to Ancient Egypt. 

Predictably, our needs concerning construction and the environment have changed since then, but the abundance of concrete and its uses have not. We still use concrete to build infrastructure, but building standards have changed dramatically.

 Dubai city landscape

Dubai city landscape. Concrete is predominantly used in residential buildings and infrastructure. Image: Pixabay

Its immense use, from house foundations to roads, means that problems cannot easily be fixed through removal of the old and replacement with the new. Such constraints have seen researchers focus on unique ways to solve the problems that widespread use of concrete can create for industry.


Self-healing concrete

In the UK, four universities have created ‘self-healing’ concrete as part of a collaborative project, known as Resilient Materials 4 Life (RM4L), to produce materials that can repair themselves. Currently, monitoring and fixing building materials costs the UK construction industry £40 billion a year.

construction gif

Originally posted by dddribbble

Microcapsules are mixed through the cement which then break apart when tiny cracks begin to appear. The group have also tested shape-memory polymers that can close the cracks together closely and prevent further damage. These techniques have shown success in long-term trials and in scaled-up structural elements, said Prof Bob Lark, speaking to Materials World magazine. Lark is lead investigator for RM4L at Cardiff University.

RM4L already has 20 industry partners and there is hope that, in the future, technologies can be transferred to other materials, although it has not yet reached the commercialisation stage.

Lark said: ‘What we have to do now is improve the reliability and reduce the cost of the techniques that we have developed so far, but we also need to find other, more efficient and perhaps more tailored approaches that can ensure we address the full range of damage scenarios that structures can experience.’


Making concrete eco-friendly

The abundance of concrete globally comes with an equally large carbon footprint, with concrete production equating to 5% of the annual CO2 produced by humans. For every tonne of concrete made, we contribute one tonne of CO2 to our surroundings. It is primarily due to the vast quantity produced each year that leads to this high level of environmental damage, as concrete is otherwise a ‘low impact’ material.

This inherent characteristic has led some scientists to develop stronger types of concrete. Here, the building features and low environmental impact of the material remain the same, but because less is needed of the stronger concrete to perform the same job, carbon emissions are reduced significantly.

Carbon Upcycling: Turning Carbon Dioxide into CO2NCRETE from UCLA Luskin on Vimeo.

Another method aimed at tackling emissions is the ‘upcycling’ of concrete. At UCLA, researchers have created a closed-loop process by using carbon capture from power plants that would be used to create a 3D-printed CO2NCRETE.

‘It could be a game-changer for climate policy,’ said Prof JR DeShazo, Director at the Luskin Centre for innovation, UCLA. ‘It takes what was a problem and turns it into a benefit in products and services that are going to be very much needed and valued in places like India and China.’