Blog search results for Tag: economy

Science & Innovation

We need to create more diverse paths into research and scientific innovation. Professor Dame Ottoline Leyser, Chief Executive of UK Research and Innovation, explains how industry clusters and a change of mindset could help.

What do you picture when someone mentions a chemist? Maybe you see someone like you working in a lab or office with your colleagues.

But what do people at the bus stop think? What would a secondary school student say? Do they see someone like them – or do they imagine an Einstein-like figure hidden away in a dark room with crazed hair and test tubes?

One of the most interesting messages from Professor Dame Ottoline Leyser’s Fuelling the Future: science, society and the research and innovation system talk on 29 September was the need to make sure science and technology are seen as viable careers for people throughout society.

SCIblog - 12 October 2021 - Making science and technology more accessible - image of Professor Dame Ottoline Leyser

Prof Dame Ottoline Leyser

You don’t need to be a genius to work in research and innovation. You don’t necessarily need to be a specialist, and you certainly don’t need to be hunched over a microscope with a jumble of figures and formulae on a board behind you. An array of different people, technical and non-technical, are needed to make the sector thrive.

 

The narrow pathway of talent

Part of Dame Ottoline’s job as Chief Executive of UK Research and Innovation (UKRI) is to improve access to these sectors and to make sure that great ideas aren’t lost due to daunting entry barriers.

‘It’s a huge challenge,’ she said. ‘A large part of the challenge is the narrow concept that we all have of what a researcher and innovator look like.’

Leyser spoke about the need to create diverse routes through the system rather than squeezing everyone through the same narrow path. ‘The assessment criteria we use for individuals have become narrower and narrower,’ she added. ‘Some of it, ironically, is to make the system fairer, but objectivity in creativity is a total pipe dream. You end up crushing creativity by narrowing the criteria.’

She noted that those with mixed careers – interwoven with varied experiences – are to be welcomed. ‘That’s nothing to do with compromising excellence,’ she said. ‘Real excellence comes in multiple forms.’

>> Would you like to attend more talks like this one? Check out our Events page.

 

Challenging times

However, Leyser also spoke of the need to level up the UK from a productivity perspective. One way to do this is through smart specialisation and industry clusters. She mentioned Lincoln as an area where this approach worked well. Lincoln is home to extensive agriculture and the multinational technology corporation Siemens. As such, it made sense to help make it a centre for agricultural robotics.

SCIblog - 12 October 2021 - Making science and technology more accessible - image of a wind turbine

UKRI is investing heavily in research and innovation into Net Zero energy solutions.

As the largest public funder of research and innovation in the UK, UKRI has a major role to play in funding such industry clusters and intelligent innovation. It has funded more than 54,000 researchers and innovators, and UKRI grants have generated almost 900 spinouts since 2004.

These include Oxford Nanopore, a biotech company whose DNA sequencing technology is now valued at £2.5bn. It has also cast an eye on the future, including delivering more than £1bn in R&D relevant to Artificial Intelligence and in excess of £1bn towards Net Zero energy solutions.

Leyser noted that the UKRI’s goal is to embed research and innovation more broadly across society – for it to be ‘by the people and for the people, rather than the exclusive domain of the privileged few’.

It is a grand challenge, but such sentiments are certainly encouraging.

Energy

Where once a country might have wanted to strike gold, now hitting upon a hydrocarbon find feels like a prize. But finding a hydrocarbon is only the beginning of the process and might not be worth it — as Lebanon is discovering.

First, a little background: for some time, Lebanon has been experiencing an energy crisis. Without resources of their own, the industry (which is government-owned) is reliant on foreign imports, which are expensive. Electricity in early 2020 was responsible for almost 50% of Lebanon's national debt. Major blackouts were common.

This contributed to a spiralling financial crisis, prompting public protests and riots as the middle class disappeared and even wealthier citizens struggled. Before Covid-19 and the devastating August 2020 blast in Beirut, Lebanon was in crisis.

The idea that the country might be able to switch from foreign oil to local gas was understandably appealing, especially when a major find was literally right there on the Lebanese shore. In 2019, a consortium of Israeli and US firms discovered more than 8tcm of natural gas in several offshore fields in the Eastern Mediterranean, much of it in Lebanese waters.

SCIblog 22 February 2021 - Hydrocarbon resources - image of pigeon rocks raouche beirut lebanon

A hydrocarbon find off the Beirut coast has failed to live up to its early promise.

But a find is only the beginning. With trust in Lebanese politicians low (the country ranks highly in most government corruption indexes) and a system that has repeatedly struggled to deliver a stable government, there are additional difficulties, not least a delay in the licensing rounds and a lack of trust — both internally, from citizens, and externally, from potential bidders. Meanwhile, Lebanon's neighbours race ahead to exploit their own finds, which ratchets up tensions.

Amid all that, a drilling exploration managed to go ahead last summer. But the joint venture between Total, ENI, and Novatek, which operated a well 30km offshore Beirut and drilled to approximately 1,500 metres, did not bring back the hoped-for results. The results confirmed the presence of a hydrocarbon system generally but did not encounter any reservoirs of the Tamar formation, which was the target.

Offshore exploration is a long process, with a lot of challenges and uncertainties and Ricardo Darré, Managing Director of Total E&P Liban, said afterwards, "Despite the negative result, this well has provided valuable data and learnings that will be integrated into our evaluation of the area". But the faith national politicians have long put in the hydrocarbon find, selling it as an answer to all Lebanon's problems, seems to have only worsened the domestic situation since.

And domestic politics is just the start of the problems…

SCIblog 22 February 2021 - Hydrocarbon resources - image of oil pipeline desert qatar middle east

Unlike other countries in the Middle East, Lebanon has no pipeline infrastructure of its own.

Israel, Egypt, and Jordan already have pipelines, which go to Italy. Turkey is working with Libya on a pipeline. Lebanon has no pipeline infrastructure of its own yet, although Russia has storage facilities and pipelines in the country and an eye on possible competition in the gas market.

None of that is an issue if the supply is intended for domestic use but that might not be profitable enough for investors and the Lebanese government would struggle to underwrite production on its own. Cyprus has encountered similar issues exploiting its share of the find.

Lebanon has also set an ambitious goal of having 30% of domestic energy mix sourced from renewable energy by 2030. The hoped-for gas was intended to support the renewable energy mix but, with the clock ticking, it might be that priorities shift to focusing on renewables. The Covid-19 pandemic will significantly impact the budgets of drilling companies and the push for renewable energy, both from governments and investors, seems to be growing as a way to boost economic recovery.

It may be that, after all the excitement around the hydrocarbon find, Lebanon starts to look elsewhere for its energy provision.

Science & Innovation

June 27th 2020 marked the fourth Micro-, Small and Medium-sized Enterprise (MSME) day, established by the International Council for Small Businesses (ICSB).

Along with online events, the ICSB published its annual report highlighting not only the importance of MSMEs as they relate to the United Nations Sustainable Development Goals but also calling for further political and regulatory support for the sector as the global economy looks to make a recovery.

 Concept of a green economy

Concept of a green economy 

Ahmed Osman, President of the ICSB, used the annual report to share his perspectives on the future for MSMEs in the post pandemic world and posed the question ‘What is the new normal for MSMEs?’  

‘There are six key factors every MSME or start-up needs to keep in mind post Covid-19,’ Osman stated, the first of these being financial assessment and security. Encouraging MSMEs to put in place a financial action plan, obtaining information about government relief packages and getting a clear picture of investor expectations, Osman said;  ‘Once this financial risk assessment and support ecosystem are in place, one can execute the plan. This may involve deciding on a potential pay cut, pull back on investments related to infrastructure or expansion, halting new recruitment etc…’

 Digital Business and Technology Concept

Digital Business and Technology Concept 

Having secured the financial footing the next factor was to re-evaluate the business plan in light of the new conditions. Osman stressed the importance of involving all stakeholders to come up with a mutually agreed set of new targets. The third factor to consider, according to Osman, was creating a ‘strong digital ecosystem.’ ‘If there is one thing that Covid-19 has taught businesses. It is the power of digital engagement. Even as an MSME, it helps to be present and active on digital media…Additionally, a digitally enabled internal ecosystem also needs to be in place that can accommodate remote working…without compromising data  security or productivity of employees.’

The fourth factor Osman highlighted was adoption of the fourth revolution for business. ‘…This is also time to leverage the new age technology innovations and adopt the fourth revolution for business. While most SMEs and MSMEs look at this as an ‘out of league’ investment, it is actually very simple and can be incorporated for a higher ROI in the long run. Be it automation, CRM, ERP, IoT, a well planned strategy to scale to technology-enabled, highly productive next generation business can be worked out with a two to three year plan,’ Osman said.

 Bulb future technology

Bulb future technology

Less reliance on physical space was the fifth factor Osman highlighted, anticipating a reversal in the trend that led to increasing the number of people in an office and home working becoming more normal.

The final factor Osman highlighted was the need to have a crisis management strategy in place. ‘It is vital to chalk up an effective crisis management plan that will take into consideration both immediate and long-term impact,’ he said.

Encouraging MSMEs to take stock, Osman asked ‘How did you help in the great pandemic? Quantify what you did for your employees, customers, community and country. Leverage the opportunity to build a better business, have credible solutions to the new major challenge and think globally act locally.’


Sustainability & Environment

Momentum for a post-pandemic ‘green recovery’ continues, as the UK government and the European Commission set out steps to accelerate their recoveries, while supporting the paths to net zero by 2050. Here we round-up just some of the initiatives announced in recent weeks to achieve these goals.

 Human hands holding earth globe and tree

Human hands holding earth globe and tree

Plans for preservation of biodiversity

Speaking on the 3rd June 2020, at the Organisation for Security and Cooperation in Europe (OSCE) Economic and Environmental Committee Meeting, the UK’s Second Secretary from the UK Delegation, Justin Addison, said; ‘As we recover, we have an opportunity to protect and restore nature, reducing our exposure to deadly viruses and climate impact.’

Highlighting the UK’s global outlook on addressing climate change, Addison added, ‘The UK will soon announce a £64 million package to support Colombia to tackle deforestation and build a cleaner and more resilient economy in areas affected by Covid-19 and conflict.’

smoke rising in rainforest

Originally posted by travelinglighttoday

As well as the UK’s efforts to preserve biodiversity, the European Commission will be looking to protect and restore biodiversity and natural ecosystems. Frans Timmermans, the European Commission’s Executive Vice President added that, ‘It can boost our resilience and prevent the emergence and spread of future virus outbreaks. We have now seen that this relationship between us and the natural environment is key to our health.’ 

 earth held in human hands

Earth held in human hands 

Enabling low-carbon solutions and boosting clean growth

EU:

In early June, a letter was sent to decision-makers across the European Union from more than 100 investors, urging the EU to ensure a green recovery from the covid-19 pandemic is delivered.

Investors are keen to ensure the government builds on The European Green deal to deliver a long term commitment that will accelerate the economy into one that is more green and carbon resilient post coronavirus.

The European Green deal, set out before the pandemic, details some of their targets including, a 50-55% emissions reduction by 2030; a climate law to reach net-zero emissions by 2050; a transition fund worth €100bn and a series of new sector policies to ensure all industries are able to decarbonise.

 A shoot of a plant and planet Earth

A shoot of a plant and planet Earth 

UK:

To boost clean growth, the UK Government has recently launched a £40 million Clean Growth Fund that will ‘supercharge green start-ups’.

This fund will enable UK clean growth start-ups to scale up low-carbon solutions and drive a green economic recovery.

Potential examples of projects the fund could support include areas in power and energy, buildings, transport and waste.

Business Secretary Alok Sharma said: ‘This pioneering new fund will enable innovative low-carbon solutions to be scaled up at speed, helping to drive a green and resilient economic recovery.’


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on Nickel.

Nickel, a silvery-white lustrous metal with a slight golden tinge may be commonly known as a US five cent coin, however, today nickel is one of the most widely used metals. According to the Nickel Institute, the metal is used in over 300,000 various products. It is also commonly used as a catalyst for hydrogeneration, cathodes for batteries and metal surface treatments.

 nickel coins

Nickel in batteries:

Historically, nickel has been widely used in batteries; nickel cadmium (NiCd) and in nickel metal hydride (NiMH) rechargeable batteries. These batteries were used in power tools and early digital cameras. Their success as batteries in portable devices became a stepping stone that led to the significant use of NiMH batteries in car vehicles, such as the Toyota Prius.

 nickel battery

The demand for nickel will increase even further as we move away from fossil fuel energy. More energy wll need to be stored in the cathode part of lithium-ion batteries as a result.

Socio-economic data on nickel demonstrates the importance the nickel value chain has on industries, which includes mining through end use to recycling.

The data reflects that globally, the nickel value chain supports a large number of jobs, primarily ones in manufacturing and chemical engineering. The output generated by nickel related industries is approximately €130bn, providing around 750,000 jobs.

 nickel machine

Nickel is fully recyclable without its qualities being downgraded, making it very sustainable. It is difficult to destroy and its qualities – corrosion resistance, high-temperature stability, strength, recyclability, and catalytic and electromagnetic properties are enabling qualities required for sustainability.

reduce reuse recycle gif

Originally posted by thesustainer


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on zinc and its contribution towards a sustainable future.  

image

Foods high in zinc: Evan Lorne

Zinc is a naturally occurring element, considered a ‘life saving commodity’ by the United Nations. As well as playing a fundamental role in the natural development of biological processes, it is also highly recyclable which means that once it has reached the end of its life cycle, it can be recycled, and returned to the cycle as a new source of raw material. Statistically, around 45% of zinc in Europe and in the United States is recovered and recycled once it has reached the end of its life cycle.

image

Circular and linear economy showing product life cycle:  Petovarga 

Circular economy is an economic model that focuses on waste reduction and ensuring a product that has reached its end cycle is not considered for disposal, but instead becomes used as a new source of raw material. Zinc fits this model; its lifecycle begins from mining and goes through a refining process to enable its use in society. Finally, it is recycled at the end of this process.

image

The production of zinc-coated steel mill: gyn9037

Zinc contributes to the planet in various ways:

1.  Due to its recyclable nature, it lowers the demand for new raw material

2.  As zinc provides a protective coating for steel, it extends the lifecycle of steel products

3.  Coating steel reduces carbon dioxide emissions

As reported by the Swedish Environmental Protection Agency, zinc uses the lowest energy on a per unit weight and per unit volume basis, (with the exception of iron). Only a small amount of zinc is needed to conserve the energy of steel, and during electrolytic zinc production, only 7% of energy is used for mining and mineral processing.

image

Green technology:  Petrmalinak

According to a new report published by The World Bank, ‘The Growing Role of Minerals and Metals for a Low-Carbon Future,’ a low carbon future and a rise in the use of green energy technologies will lead to an increased demand in a selected range of minerals and metals. These metals include aluminium, copper, lead, lithium, manganese, nickel, silver, steel, zinc and rare earth minerals. Hence, zinc will be one of the main metals to fill this demand.

Sustainability & Environment

The concept of a hydrogen economy is not new to anyone involved or familiar with the energy sector. Until the 1970s, hydrogen was a well-established source of energy in the UK, making up 50% of gas used. For several reasons, the sector moved on, and a recent renewed interest into the advantages of hydrogen has put the gas at the forefront in the search for green energy.

Confidence behind the viability of hydrogen was confirmed last October when the government announced a £20m Hydrogen Supply programme that aims to lower the price of low carbon hydrogen to encourage its use in industry, power, buildings, and transport.

Hydrogen - the Fuel of the Future? Video: Real Engineering

‘In a way, hydrogen is more relevant than ever, because in the past hydrogen was linked with transportation,’ UCL fuel cell researcher Professor Dan Brett explained to The Engineer. ‘But now with the huge uptake of renewables and the need for grid-scale energy storage to stabilise the energy system, hydrogen can have a real role to play, and what’s interesting about that […] is that there’s a number of things you can do with it.

‘You can turn it back into electricity, you can put it into vehicles or you can do a power-to-gas arrangement where you pump it into the gas grid.’