Blog search results for Tag: element

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on titanium and its various uses in industries.

 titanium

What is titanium?

Titanium is a silver- coloured transition metal, exhibiting low density, high strength and a strong resistance to corrosion from water and chlorine. Suitably, titanium delivers many uses to various industries with approximately 6.6 million tonnes produced annually. 

Titanium Dioxide 

Titanium Dioxide is the most popular usage of titanium, composed of approximately of 90%. It is a white powder with high opacity; its properties have been made for a broad range of applications in paints, plastic good, inks and papers. Titanium dioxide is manufactured through the chloride process or the sulphate process. The sulphate process is the more popular process making up 70% of the production within the EU. 

 titanium in production

Aerospace industry 

Titanium’s characteristics - lightweight, strong and versatile, make titanium a valuable metal in the aerospace industry. In order for aircrafts to be safely airborne, the aerospace industry need parts which are both light and strong, and at the same time safe. Thus, titanium is seen as the most ideal match for these specifications.

 Aircraft

Dentistry

Titanium implants have been used with success, becoming a promising material in dentistry. As a result of its features, including its physiological inertia, resistance to corrosion, and biocompatibility, titanium plays an important role in the dental market.

 titanium dentistry

However, despite this, the technologies and systems used in the machining, casting and welding of titanium is slow and expensive. Despite the wide availability of these technologies and systems used in the process of creating dental prosthesis from titanium, it does depend on the technological advancements and the availability of resources, to create a more profitable and efficient manufacturing process.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on silicon’s positive effects on the body.

Silicon was not originally regarded as an important element for human health, as it was seen to have a larger presence in (other) animal and plant tissue. It was not until a 2002 ‘The American Journal of Clinical Nutrition’ paper that surmised that accumulating research found that silicon plays an important role in bone formation in humans.  

Silicon was first known to ‘wash’ through biology with no toxological or biological properties. However, in the 1970s, animal studies provided evidence to suggest that silicon deficiency in diets produced defects in connective and skeletal tissues. Ongoing research has added to these findings, demonstrating the link between dietary silicon and bone health.

health and fitness gif

Originally posted by tvneon

Silicon plays an important role in protecting humans against many diseases.  Silicon is an important trace mineral essential for strengthening joints. Additionally, silicon is thought to help heal and repair fractures.

The most important source of exposure to silicon is your diet. According to two epidemiological studies (Int J Endocrinol. 2013: 316783 ; J Nutr Health Aging. 2007 Mar-Apr; 11(2): 99–110) conducted, dietary silicon intake has been linked to higher bone mineral density.

pullup gif

Originally posted by ckhrrr

Silicon is needed to repair tissue, as it is important for collagen synthesis – the most abundant protein in connective tissue in the body – which is needed for the strengthening of bones. 

However, silicon is very common in the body and therefore it is difficult to prove how essential it is to this process when symptoms of deficiency vary among patients. 

brain gif

Originally posted by civisiii

There has also been a plausible link between Alzheimer’s disease and human exposure to aluminium. Research has been underway to test whether silicon-rich mineral waters can be used to reduce the body burden of aluminium in individuals with Alzheimer’s disease. 

However, longer term study is needed to prove the aluminium hypothesis of Alzheimer’s disease.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the various uses of nitrogen.

nitrogen

Nitrogen – an imperative part of DNA

The polymer that makes up the genetic code of is a sequence of nitrogen bases laid out on a backbone of sugar and phosphate molecules and blended into a double helix. 

The nitrogen bases are translated into proteins and enzymes which regulate most our system’s biochemical reactions. 

double helix gif

Originally posted by dimensao7

Explosive potential

RDX is a nitrogen explosive. This means its explosive properties are primarily caused by the presence of many nitrogen–nitrogen bonds, which are extremely unstable, especially as nitrogen atoms want to come together to produce nitrogen gas due to the triple bond. 

Ultimately, the more nitrogen–nitrogen bonds a molecule has, the more explosive it is. RDX is normally combined with other chemicals to make it less sensitive or less likely to explode.

nitrogen explosion

Originally posted by roguetoo

One of the most powerful explosive chemicals is PETN, containing nitro groups and nitroglycerin in dynamite. Despite its powerful explosions, the chemical rarely will detonate alone. PETN was used frequently during World War II, whereby PETN was used to create exploding bridgewire detonators, using electric currents for detonations.

Among the least stable explosives is aziroazide azide,  with 14 unstable nitrogen bonds, most of them bonded into unstable nitrogen–nitrogen bonds. Touching or handling this chemical can cause it to detonate, making it one of the most dangerous non-nuclear chemicals.

Nitrogen and plants

Originally posted by mnaturegif

Nitrogen plays a significant role for plants to keep healthy. Plants usually contain 3-4% nitrogen in their above-ground tissues. Nitrogen is a major component of chlorophyll which plants use to capture sunlight energy to produce sugars, and a major component of amino acids, which are the building blocks of life.

Overall, nitrogen is a significant component to DNA, a key nutrient to plants, and the uses of nitrogen in everyday life span across various chemical industries including the production of fertilisers and explosives.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the importance of potassium in human health.

Why is potassium biologically important?

Potassium plays an essential role to health, being the third most important mineral in the body. The human body requires at least 1000mg of potassium a day in order to support key bodily processes. 

Potassium regulates fluid balance in the body, controls the electrical activity of the heart, muscles, and helps in activating nerve impulses throughout the nervous system. 

According to an article from Medical News Today Knowledge Center, the possible health benefits to a regular diet intake of potassium include maintaining the balance of acids and bases in the body, supporting blood pressure, improving cardiovascular health, and helping with bone and muscle strength.

These powerful health benefits are linked to a potassium rich diet. Potassium is present in all fruits, vegetables, meat and fish.

 Receptors on a cell membrane

Receptors on a cell membrane.


Can it go wrong?

The body maintains the potassium level in the blood. If the potassium level is too high in the body (hyperkalemia) or if it is too low (hypokalemia) then this can cause serious health consequences, including an abnormal heart rhythm or even a cardiac arrest. 

Fortunately, cells in the body store a large reservoir of potassium which can be released to maintain a constant level of potassium in blood.

What is hyperkalemia? Video: Osmosis

Potassium deficiency leads to fatigue, weakness and constipation. Within muscle cells, potassium would normally send signals from the brain that stimulate contractions. However, if potassium levels steep too low, the brain is not able to relay these signals from the brain to the muscles, the results end in more prolonged contractions which includes muscle cramping.

As potassium is an essential mineral carrying out wide ranging roles in the body, the low intakes can lead to an increase in illness. The FDA has made a health claim, stating that ‘diets containing foods that are a good source of potassium and that are low in sodium may reduce the risk of high blood pressure and stroke.’

Originally posted by stydiamccall

This suggests that consuming more potassium might reduce the risks of high blood pressure and the possibility of strokes. However, more research on dietary and supplemental potassium is required before drawing towards a set conclusion.