Blog search results for Tag: emissions

Sustainability & Environment

The world’s biggest ever survey of public opinion on climate change was published on 27th January, covering 50 countries with over half of the world’s population, by the United Nations Development Programme (UNDP) and the University of Oxford. Of the respondents, 64% believe climate change is a global emergency, despite the ongoing Covid-19 pandemic, and sought broader action to combat it. Earlier in the month, US President Joe Biden reaffirmed the country's commitment to the Paris Agreement on Climate Change.

It is possible that the momentum, combined with the difficulties many countries currently face, may make many look again to geoengineering as an approach. Is it likely that large scale engineering techniques could mitigate the damage of carbon emissions? And is it safe to do so or could we be exacerbating the problem?

The term has long been controversial, as have many of the suggested techniques. But it would seem that some approaches are gaining more mainstream interest, particularly Carbon Dioxide Removal (CDR) and Solar Radiation Modification (SRM), which the 2018 Intergovernmental Panel on Climate Change (IPCC) report for the UN suggested were worth further investigation (significantly, it did not use the term "geoengineering" and distinguished these two methods from others).

One of the most covered CDR techniques is Carbon Capture and Storage (CCS) or Carbon Capture, Utilisation, and Storage (CCUS), the process of capturing waste carbon dioxide, usually from carbon intensive industries, and storing (or first re-using) it so it will not enter the atmosphere. Since 2017, after a period of declining investment, more than 30 new integrated CCUS facilities have been announced. However, there is concern among many that it will encourage further carbon emissions when the goal should be to reduce and use CCS to buy time to do so.

CDR techniques that utilise existing natural processes of natural repair, such as reforestation, agricultural practices that absorb carbon in soils, and ocean fertilisation are areas that many feel could and should be pursued on a large scale and would come with ecological and biodiversity benefits, as well as fostering a different, more beneficial relationship with local environments.

SCIblog - Geoengineering: how much can technology help us combat climate change? - image of a school of fish

A controversial iron compound deposition approach has been trialled to boost salmon numbers and biodiversity in the Pacific Ocean.

The ocean is a mostly untapped area with huge potential and iron fertilisation is one very promising area. The controversial Haida Salmon Corporation trial in 2012 is perhaps the most well-known example and brings together a lot of the pros and cons frequently discussed in geoengineering — in many ways, we can see it as a microcosm of the bigger issue.

The trial deposited 120 tonnes of iron compound in the migration routes of pink and sockeye salmon in the Pacific Ocean 300k west of Haida Gwaii over a period of 30 days, which resulted in a 35,000km2, several month long phytoplankton bloom that was confirmed by NASA satellite imagery. That phytoplankton bloom fed the local salmon population, revitalising it — the following year, the number of salmon caught in the northeast Pacific went from 50 million to 226 million. The local economy benefited, as did the biodiversity of the area, and the increased iron in the sea captured carbon (as did the biomass of fish, for their lifetimes).

SCIblog - Geoengineering: how much can technology help us combat climate change? - image of phytonplankton

Small but mighty, phytoplankton are the laborers of the ocean. They serve as the base of the food web.

But Environment Canada believes the corporation violated national environmental laws by depositing iron without a permit. Much of the fear around geoengineering is how much might be possible by rogue states or even rogue individuals, taking large scale action with global consequences without global consent.

The conversation around SRM has many similarities — who decides that the pros are worth the cons, when the people most likely to suffer the negative effects, with or without action, are already the most vulnerable? This is a concern of some of the leading experts in the field. Professor David Keith, an expert in the field, has publicly spoken about his concern around climate change and inequality, adding after the latest study that, "the poorest people tend to suffer most from climate change because they’re the most vulnerable. Reducing extreme weather benefits the most vulnerable the most. The only reason I’m interested in this is because of that."

But he doesn't believe anywhere near sufficient research has been done into the viability of the approach or the possible consequences and cautions that there is a need for "an adequate governance system in place".

There is no doubt that the research in this field is exciting but there are serious ethical and governance problems to be dealt with before it can be considered a serious component of an emissions reduction strategy.

Energy

Introduction

The Industrial Decarbonisation Challenge (IDC) is funded by UK government through the Industrial Strategy Challenge Fund. One aim is to enable the deployment of low-carbon technology, at scale, by the mid-2020’s [1]. This challenge supports the Industrial Clusters Mission which seeks to establish one net-zero industrial cluster by 2040 and at-least one low-carbon cluster by 2030 [2]. This latest SCI Energy Group blog provides an overview of Phase 1 winners from this challenge and briefly highlights several on-going initiatives across some of the UK’s industrial clusters.

Phase 1 Winners

In April 2020, the winners for the first phase of two IDC competitions were announced. These were the ‘Deployment Competition’ and the ‘Roadmap Competition’; see Figure 1 [3].

 Phase 1 Industrial Decarbonisation Challenge

Figure 1 - Winners of Phase 1 Industrial Decarbonisation Challenge Competitions.

Teesside

Net-Zero Teesside is a carbon capture, utilisation and storage (CCUS) project. One aim is to decarbonise numerous carbon-intensive businesses by as early as 2030. Every year, up to 6 million tonnes of COemissions are expected to be captured. Thiswill be stored in the southern North Sea which has more than 1,000Mt of storage capacity. The project could create 5,500 jobs during construction and could provide up to £450m in annual gross benefit for the Teesside region during the construction phase [4].

For further information on this project, click here.

 Industrial Skyscape of Teesside Chemical Plants

Figure 2 – Industrial Skyscape of Teesside Chemical Plants

The Humber

In 2019, Drax Group, Equinor and National Grid signed a Memorandum of Understanding (MoU) which committed them to work together to explore the opportunities for a zero-carbon cluster in the Humber. As part of this initiative, carbon capture technology is under development at the Drax Power Station’s bioenergy carbon capture and storage (BECCS) pilot. This could be scaled up to create the world’s first carbon negative power-station. This initiative also envisages a hydrogen demonstrator project, at the Drax site, which could be running by the mid-2020s. An outline of the project timeline is shown in Figure 3 [5].

For further information on this project, click here.

 Overview of Timeline for Net-Zero Humber Project

Figure 3 - Overview of Timeline for Net-Zero Humber Project

North West

The HyNet project envisions hydrogen production and CCS technologies. In this project, COwill be captured from a hydrogen production plant as well as additional industrial emitters in the region. This will be transported, via pipeline, to the Liverpool Bay gas fields for long-term storage [6]. In the short term, a hydrogen production plant has been proposed to be built on Essar’s Stanlow refinery. The Front-End Engineering Design (FEED) is expected to be completed by March 2021 and the plant could be operational by mid-2024. The CCS infrastructure is expected to follow a similar timeframe [7].

For further information on the status of this project, click here.

Scotland

Project Acorn has successfully obtained the first UK COappraisal and storage licence from the Oil and Gas Authority. Like others, this project enlists CCS and hydrogen production. A repurposed pipeline will be utilised to transport industrial COemissions from the Grangemouth industrial cluster to St. Fergus for offshore storage, at rates of 2 million tonnes per year. Furthermore, the hydrogen production plant, to be located at St. Fergus, is expected to blend up to 2% volume hydrogen into the National Transmission System [8]. A final investment decision (FID) for this project is expected in 2021. It has the potential to be operating by 2024 [9].  

For further information on this project, click here.

 Emissions from Petrochemical Plant at Grangemouth

Figure 4 - Emissions from Petrochemical Plant at Grangemouth

SCI Energy Group October Conference

The chemistry of carbon dioxide and its role in decarbonisation is a key topic of interest for SCI Energy Group. In October, we will be running a conference concerned with this topic. Further details can be found here.

Sources: 

[1] https://www.ukri.org/innovation/industrial-strategy-challenge-fund/industrial-decarbonisation/

[2]https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/803086/industrial-clusters-mission-infographic-2019.pdf

[3] https://www.netzeroteesside.com/project/

[4] https://www.zerocarbonhumber.co.uk/

[5]https://hynet.co.uk/app/uploads/2018/05/14368_CADENT_PROJECT_REPORT_AMENDED_v22105.pdf

[6]https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866401/HS384_-_Progressive_Energy_-_HyNet_hydrogen.pdf

[7]https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866380/Phase_1_-_Pale_Blue_Dot_Energy_-_Acorn_Hydrogen.pdf

[8] https://pale-blu.com/acorn/


Sustainability & Environment

Momentum for a post-pandemic ‘green recovery’ continues, as the UK government and the European Commission set out steps to accelerate their recoveries, while supporting the paths to net zero by 2050. Here we round-up just some of the initiatives announced in recent weeks to achieve these goals.

 Human hands holding earth globe and tree

Human hands holding earth globe and tree

Plans for preservation of biodiversity

Speaking on the 3rd June 2020, at the Organisation for Security and Cooperation in Europe (OSCE) Economic and Environmental Committee Meeting, the UK’s Second Secretary from the UK Delegation, Justin Addison, said; ‘As we recover, we have an opportunity to protect and restore nature, reducing our exposure to deadly viruses and climate impact.’

Highlighting the UK’s global outlook on addressing climate change, Addison added, ‘The UK will soon announce a £64 million package to support Colombia to tackle deforestation and build a cleaner and more resilient economy in areas affected by Covid-19 and conflict.’

smoke rising in rainforest

Originally posted by travelinglighttoday

As well as the UK’s efforts to preserve biodiversity, the European Commission will be looking to protect and restore biodiversity and natural ecosystems. Frans Timmermans, the European Commission’s Executive Vice President added that, ‘It can boost our resilience and prevent the emergence and spread of future virus outbreaks. We have now seen that this relationship between us and the natural environment is key to our health.’ 

 earth held in human hands

Earth held in human hands 

Enabling low-carbon solutions and boosting clean growth

EU:

In early June, a letter was sent to decision-makers across the European Union from more than 100 investors, urging the EU to ensure a green recovery from the covid-19 pandemic is delivered.

Investors are keen to ensure the government builds on The European Green deal to deliver a long term commitment that will accelerate the economy into one that is more green and carbon resilient post coronavirus.

The European Green deal, set out before the pandemic, details some of their targets including, a 50-55% emissions reduction by 2030; a climate law to reach net-zero emissions by 2050; a transition fund worth €100bn and a series of new sector policies to ensure all industries are able to decarbonise.

 A shoot of a plant and planet Earth

A shoot of a plant and planet Earth 

UK:

To boost clean growth, the UK Government has recently launched a £40 million Clean Growth Fund that will ‘supercharge green start-ups’.

This fund will enable UK clean growth start-ups to scale up low-carbon solutions and drive a green economic recovery.

Potential examples of projects the fund could support include areas in power and energy, buildings, transport and waste.

Business Secretary Alok Sharma said: ‘This pioneering new fund will enable innovative low-carbon solutions to be scaled up at speed, helping to drive a green and resilient economic recovery.’


Sustainability & Environment

In a recent paper published in Nature Climate Change, an international group of researchers are urging countries to reconsider their strategy to remove CO2 from the atmosphere. While countries signed up to the Paris Agreement have individual quotas to meet in terms of emissions reduction, they argue this cannot be achieved without global cooperation to ensure enough CO2 is removed in a fair and equitable way.

 harmful factory emissions

Harmful emissions

The team of international researchers from Imperial College London, the University of Girona, ETH Zürich and the University of Cambridge, have stated that countries with greater capacity to remove CO2 should be more proactive in helping those that cannot meet their quotas.

Co-author Dr Niall Mac Dowell, from the Centre for Environmental Policy and the Centre for Process Systems Engineering at Imperial, said, ‘It is imperative that nations have these conversations now, to determine how quotas could be allocated fairly and how countries could meet those quotas via cross-border cooperation.’

The team’s modelling and research has shown that while the removal quotas vary significantly, only a handful of countries will have the capacity to meet them using their own resources.

 reforestation

Reforestation

A few ways to achieve carbon dioxide removal:

(1)    Reforestation

(2)    Carbon Capture and Storage (CCS)  

(3)    CCS coupled to bioenergy – growing crops to burn for fuel. The crops remove CO2 from the atmosphere, and the CCS captures any CO2 from the power station before its release.

However, deploying these removal strategies will vary depending on the capabilities of different countries. The team have therefore suggested a system of trading quotas. For example, due to the favourable geological formations in the UK’s North Sea, the UK has space for CCS, and therefore, they could sell some of its capacity to other countries.

 Global cooperation

Global cooperation 

Co-lead author Dr Carlos Pozo from the University of Girona, concluded; ‘By 2050, the world needs to be carbon neutral - taking out of the atmosphere as much CO2 as it puts in. To this end, a CO2 removal industry needs to be rapidly scaled up, and that begins now, with countries looking at their responsibilities and their capacity to meet any quotas.’

DOI:  https://www.nature.com/articles/s41558-020-0802-4



Sustainability & Environment

Introduction

This latest SCI Energy Group blog introduces the possible avenues of carbon dioxide utilisation, which entails using carbon dioxide to produce economically valuable products through industrial processes. Broadly, utilisation can be categorised into three applications: chemical use, biological use and direct use. For which, examples of each will be highlighted throughout.

Before proceeding to introduce these, we can first consider utilisation in relation to limiting climate change. As has been discussed in previous blogs, the reduction of carbon dioxide emissions is crucial. Therefore, for carbon dioxide utilisation technologies to have a beneficial impact on climate change, several important factors must be considered and addressed.

1) Energy Source: Often these processes are energy intensive. Therefore, this energy must come from renewable resources or technologies.

2) Scale: Utilisation technologies must exhibit large scaling potential to match the limited timeframe for climate action.

3) Permanence: Technologies which provide permanent removal or displacement of CO2 emissions will be most impactful¹.

 CO2 sign

Figure 1: CO2 sign 

Chemical Uses

Carbon dioxide, alongside other reactants, can be chemically converted into useful products. Examples of which include urea, methanol, and plastics and polymers. One of the primary uses of urea includes agricultural fertilisers which are pivotal to crop nutrition. Most commonly, methanol is utilised as a chemical feedstock in industrial processes.

 Fertilizing soil

Figure 2: Fertilizing soil

One of the key challenges faced with this application of utilisation is the low reactivity of CO2 in its standard conditions. Therefore, to successfully convert it into products of economic value, catalysts are required to significantly lower the molecules activation energy and overall energy consumption of the process. With that being said, it is anticipated that, in future, the chemical conversion of CO2 will have an important role in maintaining a secure supply of fuel and chemical feedstocks such as methanol and methane².

Biological Uses

Carbon dioxide is fundamental to plant growth as it provides a source of required organic compounds. For this reason, it can be utilised in greenhouses to promote carbonic fertilisation. By injecting increased levels of COinto the air supplied to greenhouses, the yield of plant growth has been seen to increase. Furthermore, COfrom the flue gas streams of chemical processes has been recognised, in some studies, to be of a quality suitable for direct injection³.

 Glass greenhouse

Figure 3: Glass greenhouse planting vegetable greenhouses

These principles are applicable to encouraging the growth of microorganisms too. One example being microalgae which boasts several advantageous properties. Microalgae has been recognised for its ability to grow in diverse environments as well as its ability to be cultured in numerous types of bioreactors. Furthermore, its production rate is considerably high meaning a greater demand for CO2 is exhibited than that from normal plants. Micro-algal biomass can be utilised across a range of industries to form a multitude of products. These include bio-oils, fuels, fertilisers, food products, plant feeds and high value chemicals. However, at present, the efficiency of CO2 fixation, in this application, can be as low as 20-50%.

 Illustration of microalgae

Figure 4: Illustration of microalgae under the microscope

Direct Uses

It is important to note that, at present, there are many mature processes which utilise CO2 directly. Examples of which are shown in the table below.

 CO2 processes

Summary

Many carbon dioxide utilisation technologies exist, across a broad range of industrial applications. For which, some are well-established, and others are more novel. For such technologies to have a positive impact on climate action, several factors need to be addressed such as their energy source, scaling potential and permanence of removal/ displacement of CO2.

The chemistry of carbon dioxide and its role in decarbonisation is a key topic of interest for SCI Energy Group. In the near future, we will be running a webinar concerned with this. Further details of this will be posted on the SCI website in due course.

Links:

1. http://co2chem.co.uk/wp-content/uploads/2012/06/CCU%20in%20the%20green%20economy%20report.pdf

2. https://www.carbonbrief.org/guest-post-10-ways-to-use-co2-and-how-they-compare

3. https://www.intechopen.com/books/greenhouse-gases 



Energy

Engineers say they have demonstrated a cost-effective way to remove carbon dioxide from the atmosphere. The extracted  CO2 could be used to make new fuels or go to storage.

The process of direct air capture (DAC) involves giant fans drawing ambient air into contact with an aqueous solution that traps CO2 . Through heating and several chemical reactions, CO2 is re-extracted and ready for further use.

‘The carbon dioxide generated via DAC can be combined with sequestration for carbon removal, or it can enable the production of carbon-neutral hydrocarbons, which is a way to take low-cost carbon-free power sources like solar or wind and channel them into fuels to decarbonise the transportation sector,’ said David Keith, founder of Carbon Engineering, a Canadian clean fuels enterprise, and a Professor of Physics at Harvard University, US.

Fuel from the Air – Sossina Haile. Video: TEDx Talks

DAC is not new, but its feasibility has been disputed. Now, Carbon Engineering reports how its pilot plant in British Columbia has been using standard industrial equipment since 2015. Keith’s team claims that a 1 Mt- CO2 /year DAC plant will cost $94-$232/ton of  CO2 captured. Previous theoretical estimates have ranged up to $1000/ton.

Energy

Renewables outstripped coal power for the first time in electricity generation in Europe in 2017, according to a new report. The European Power Sector in 2017 – by think-tanks Sandbag and Agora Energiewende – predicts renewables could provide half of Europe’s electricity by 2030.

Wind, solar and biomass generation collectively rose by 12% in 2017 – to 679 Terawatt hours  – generating 21% of Europe’s electricity and contributing to 30% of the energy mix. ‘This is incredible progress considering just five years ago coal generation was more than twice that of wind, solar and biomass,’ the report says.

image

Hydroelectric power is the most popular renewable energy source worldwide. Image: PxHere

However, growth is variable. The UK and Germany alone contributed to 56% of the expansion in the past three years. There is also a ‘bias’ for wind, with a 19% increase in 2017, due to good wind conditions and huge investments, the report says. 

‘This is good news now the biomass boom is over, but bad news in that solar was responsible for just 14% of the renewables growth in 2014 to 2017.’

New analysis by trade group WindEurope backs up the findings on wind power, showing that countries across Europe installed more offshore capacity than ever before: 3.14GW. This corresponds to 560 new offshore wind turbines across 17 wind farms. Fourteen projects were fully completed and connected to the grid, including the first floating offshore wind farm. Europe now has a total installed offshore wind capacity of 15.78GW.

The EU’s 2030 goals for climate and energy. Video: European Commission 

Germany remains top of the European league, with the largest total installed wind-power capacity; worth 42% of the EU’s new capacity in 2017, followed by Spain, the UK, and France. Denmark boasts the largest share of wind in its power mix at 44% of electricity demand.

Sustainability & Environment

Researchers at the University of Waterloo, Canada, have developed an innovative method for capturing renewable natural gas from cow and pig manure for use as a fuel for heating homes, powering industry, and even as a replacement for diesel fuel in trucks.

It is based on a process called methanation. Biogas from manure is mixed with hydrogen, then run through a catalytic converter, producing methane from carbon dioxide in the biogas through a chemical reaction.

 A biogas plant

A biogas plant. Image: Pixabay

The researchers claim that power could be taken from the grid at times of low demand or generated on-site via wind or solar power to produce the hydrogen. 

The renewable natural gas produced would yield a large percentage of the manure’s energy potential and efficiently store electricity, while emitting a fraction of the gases produced when the manure is used as a fertiliser.

‘The potential is huge,’ said David Simakov, Professor of Chemical Engineering at Waterloo. 'There are multiple ways we can benefit from this single approach.’

See a Farm Convert Pig Poop Into Electricity. Video: National Geographic

Using a computer model of a 2,000-head dairy farm in Ontario, which already collects manure and converts it into biogas in anaerobic digesters before burning it in generators, the researchers tested the concept. 

They estimated that a $5-million investment in a methanation system would have a five-year payback period, taking government subsidies for renewable natural gas into account.

'This is how we can make the transition from fossil-based energy to renewable energy using existing infrastructure, which is a tremendous advantage,’ Simakov said.

Sustainability & Environment

The Haber process currently helps feed more than half the world, producing 150m tonnes of ammonia a year. This is forecast to rise further, in line with the food demand of a growing world population.

And yet, it has serious drawbacks. In its traditional form, the process requires high temperatures – around 500°C – to make the extremely stable molecule nitrogen reactive.

fire gif

Originally posted by foreverfallll

The Haber process takes place at extremely high temperatures, similar to that of an average fire.

It also needs high pressure to shift the equilibrium towards the desired product. The process is sensitive to oxygen, meaning that nitrogen and hydrogen must be introduced as purified elements, rather than as air and water.

These requirements together make the process extremely energy-hungry; estimated to consume between 1% and 2% of global primary energy production. In 2010, the ammonia industry emitted 245m tonnes of CO2 globally, corresponding to half the UK’s emissions. 

 Carl Bosch

The Haber process was developed by Carl Bosch (left) and Fritz Haber (right) in the early 20th century. Image: Wikimedia Commons

In nature, the process relies on the highly complex enzyme nitrogenase, operating at an ambient pressure and temperature. But using the entire biological system would not be economical for large-scale industrial synthesis, and thus the search for an inorganic system that matches the performance of the biological has become an important challenge.  

In recent years, novel electrochemical approaches and new catalysts have yielded promising results suggesting that, at least for small-scale synthesis, other ways may have a future.

The chemical reaction that feeds the world. Video: TED-Ed  

‘The last [few] years brought some spectacular results on ammonia synthesis research,’ comments Hans Fredriksson from Syngaschem at Eindhoven, Netherlands.

‘On the catalyst side, there is the discovery of ‘super promoters’, helping N2 dissociation, allowing lower process temperatures, while optimised catalyst formulations yield significant improvements in activity. 

‘Perhaps even more exciting are new approaches in processing, for example by electrochemistry, or simply running the reaction in an electric field, or bringing plasmas into play,’ he said.

electricity gif

Originally posted by mondo80s90spictorama

In 2013, Shanwen Tao, then at the University of Strathclyde, Glasgow, UK, and colleagues demonstrated for the first time the production of ammonia from air and water, at ambient temperature and pressure, using a proton-conducting Nafion membrane in an electrochemical approach. 

Nafion, a Teflon-like material that conducts cations but neither electrons nor anions, is also used in fuel cells. 

‘Electrochemical synthesis of ammonia is an important new approach for efficient synthesis of ammonia using green renewable electricity as the energy source. This could be a key technology for a possible ‘ammonia economy’,’ where ammonia replaces or complements hydrogen as an energy carrier, says Tao.

 renewable energy

Researchers hope new approaches will be supported by renewable energy, reducing CO2 emissions. Image: Pexels

Separate efforts using different routes are being developed in Japan, with a particular focus on ruthenium as an efficient catalyst. One approach is to apply super promoters to provide electrons that destabilise nitrogen by weakening the triple bond and making the molecule more reactive for ammonia synthesis.

This was first reported in 2012 by Hideo Hosono’s group at the Tokyo Institute of Technology, who used ruthenium catalysts in combination with ‘electrides’ – a new class of ionic materials where electrons serve as the anions.

The method operates at atmospheric pressure and temperatures between 250 and 400°C, and hydrogen poisoning of ruthenium catalysts is no longer a problem.

 Ruthenium

Ruthenium is a type of metal in the platinum group. Image: Metalle-w/      Wikimedia Commons

‘This catalyst exhibits the highest activity and excellent long-term stability,’ says Hosono, who sees the future of his methods in distributed, small-scale applications of ammonia synthesis.

Hans Niemantsverdriet, director of SynCat@Beijing, China, acknowledges the rapid progress being made, but also strikes a note of caution.

‘In spite of interesting discoveries, I find it hard to imagine that these improvements will be able to replace the current large-scale and fully optimised technology,’ he says. ‘In the fertiliser area, novel technology will at best become a niche market for very special situations. Also, the CO2 footprint is hardly diminished.’

 fertiliser3

Ammonia is a core component of fertiliser, feeding nitrogen to plants for photosynthesis. Image: Maurice van Bruggen/Wikimedia Commons

In the long term, Niemantsverdriet has hope for the ammonia economy as championed by Tao and others, providing carbon-free hydrogen from renewable energies. 

‘I strongly believe that there will be scope for large industrial parks where this technology can be cleverly integrated with gasification of coal in China, and perhaps biomass elsewhere,’ he says. ‘If dimensioned properly, this has the potential to reduce the carbon footprint in the future.’

 

Science & Innovation

In 1942 the Leverhulme Trust endowed a lecture in memory of the first Viscount Leverhulme, founder of the Lever Brothers 

The Lecture is given every three years before the Liverpool and North West Regional Group to promote chemical or technological research or education.

Prof Maitland is the 20th recipient of this prestigious award and gave his lecture on ‘Avoiding catastrophic climate change; Paris 2015 set the targets, can the UK deliver?’.

Read our full write-up on the lecture here   

 Board of Trustees

Geoffrey Maitland (second left) receives his award from Alan Bayliss, Chair of the Board of Trustees, with Trevor Rhodes (left), Chair of SCI’s Liverpool and North West Group, and Sharon Todd, SCI’s Executive Director. Image: Mike Halliday

 Chemical Engineering degree

Reace Edwards, from Chester University, collects her award from Prof Maitland. She is the top scoring second year student on the BEng/MEng Chemical Engineering degree course. Image: Mike Halliday

 Oliver Stanfield

Oliver Stanfield won his award for highest-achieving third year student on the BSc Chemistry with Industrial Experience course at the University of Bangor. Image: Mike Halliday

 Aaisha Patel

Aaisha Patel, from Liverpool John Moores University, is the best second year student on the BSc (Hons) Chemical and Pharmaceutical Science programme. Image: Mike Halliday

Sustainability & Environment

 Clean Water Act

The US’ environment agency and Clean Water Act is in trouble. Image: Public Domain Pictures

Budget proposals will slash the US Environmental Protection Agency’s funding by almost a third, and its workforce by 20%, quite apart from a major refocusing of its agenda. The new EPA administrator Scott Pruitt – whose time as attorney general in Oklahoma was notable for its opposition to environmental measures and the filing of multiple lawsuits against EPA – has certainly hit the ground running.

In contrast to Trump, Pruitt is actually getting stuff done, often going over the heads of his own staff. Planned regulations such as the chemical accident safety rule and a rule covering methane leaks from oil and gas wells have been delayed. Others have been reversed, including a ban on the neurotoxic pesticide chlorpyrifos, flying in the face of scientific advice from his own agency.

 Clean Water Act

Trump faced harsh criticism from several nations after pulling out of the Paris Agreement. Image: Gage Skidmore@Flickr

Other moves come in response to executive orders from the president. Trump’s earlier criticism of Obama’s use of executive orders hasn’t stopped him from throwing them around like confetti – in his first 100 days, he signed almost as many as Obama averaged in a year.

For example, at the end of February, he signed one requiring a review of the Waters of the United States (WOTUS) rule, which defines what constitutes navigable waters. This might sound obscure, but it led to the EPA announcing at the end of June that it will rescind the 2015 Clean Water Rule.

‘WOTUS provided clarity on what bodies of water are subject to protections under the Clean Water Act,’ said Massachusetts congressman Mike Capuano. Essentially, the 2015 definition extended its scope to bring small waterways such as wetlands and streams under federal environmental rules, and not just big rivers and lakes.

‘The federal government won’t have the authority to regulate pollution in certain waterways because they don’t qualify under the EPA’s new definition,’ Capuano continued. ‘This will surely impact drinking water in many communities all across the country, since 117m Americans currently get their drinking water from small streams.’

EPA even published a press release that featured multiple quotes from Republican governors, senators and representatives across the country supporting the move. Quotes from those like Capuano – who believe it is a step backwards in water safety – were notable by their absence.

 Seven US scientific societies wrote to Trump condemning his actions

Seven US scientific societies wrote to Trump condemning his actions. Image: Max Pixel

So is mention of any scientific rationale. A letter from US scientists, drafted by conservation group American Rivers, states that the Clean Water Rule was developed using the best available, peer-reviewed science to clarify which bodies of water are, and are not, protected under the act. Importantly, it says that tributaries, intermittent streams and waters adjacent to them such as wetlands, are protected because of their physical, chemical and biological connections to navigable waterways. ‘We are disappointed that the current Administration has proposed dismantling the Rule with minimal consultation and without scientific justification,’ it says.

Much has been made of Trump’s withdrawal from the Paris Climate Agreement, but that’s not the only signal that the air in the US is set to get dirtier. An executive order on energy independence signed by Trump at the end of March 2017 led to an instant response from EPA that it would review the Clean Power Plan. The order asked the various agencies to submit plans to revise or rescind regulatory barriers that impede progress towards energy independence, as well as wiping out several of Obama’s executive orders and policies in the field of climate change.

 climate change

Experts are worried that US air and water will become dirtier. The country is already the second biggest contributor to climate change in the world. Image: Pixabay

Top of the list for a potential resurgence: dirty energy. EPA has been directed to review, revise and rescind regulations that ‘may place unnecessary, costly burdens on coal-fired electric utilities, coal miners, and oil and gas producers’.

‘Our EPA puts America first,’ claimed Pruitt. ‘President Trump has a clear vision to create jobs, and his vision is completely compatible with a clean and healthy environment. By taking these actions today, the EPA is returning the agency to its core mission of protecting public health, while also being pro-energy independence.’

Many others beg to differ, including New Jersey senator Cory Booker. ‘It’s simply shameful that President Trump continues to put the interests of corporate polluters ahead of the health and safety of New Jersey families,’ he said. ‘The Administration’s repeated denial of clear science and proposed gutting of the EPA jeopardises the welfare of all Americans. 

‘Under no circumstance should we allow the fundamental right of each and every American to live in a safe and healthy environment be undermined by such destructive and irresponsible policies.’

Science & Innovation

 Concrete

Concrete is a common fixture in the building blocks of everyday life. Image: US Navy@Wikimedia Commons

Concrete is the most widely used construction material in the world, with use dating back to Ancient Egypt. 

Predictably, our needs concerning construction and the environment have changed since then, but the abundance of concrete and its uses have not. We still use concrete to build infrastructure, but building standards have changed dramatically.

 Dubai city landscape

Dubai city landscape. Concrete is predominantly used in residential buildings and infrastructure. Image: Pixabay

Its immense use, from house foundations to roads, means that problems cannot easily be fixed through removal of the old and replacement with the new. Such constraints have seen researchers focus on unique ways to solve the problems that widespread use of concrete can create for industry.


Self-healing concrete

In the UK, four universities have created ‘self-healing’ concrete as part of a collaborative project, known as Resilient Materials 4 Life (RM4L), to produce materials that can repair themselves. Currently, monitoring and fixing building materials costs the UK construction industry £40 billion a year.

construction gif

Originally posted by dddribbble

Microcapsules are mixed through the cement which then break apart when tiny cracks begin to appear. The group have also tested shape-memory polymers that can close the cracks together closely and prevent further damage. These techniques have shown success in long-term trials and in scaled-up structural elements, said Prof Bob Lark, speaking to Materials World magazine. Lark is lead investigator for RM4L at Cardiff University.

RM4L already has 20 industry partners and there is hope that, in the future, technologies can be transferred to other materials, although it has not yet reached the commercialisation stage.

Lark said: ‘What we have to do now is improve the reliability and reduce the cost of the techniques that we have developed so far, but we also need to find other, more efficient and perhaps more tailored approaches that can ensure we address the full range of damage scenarios that structures can experience.’


Making concrete eco-friendly

The abundance of concrete globally comes with an equally large carbon footprint, with concrete production equating to 5% of the annual CO2 produced by humans. For every tonne of concrete made, we contribute one tonne of CO2 to our surroundings. It is primarily due to the vast quantity produced each year that leads to this high level of environmental damage, as concrete is otherwise a ‘low impact’ material.

This inherent characteristic has led some scientists to develop stronger types of concrete. Here, the building features and low environmental impact of the material remain the same, but because less is needed of the stronger concrete to perform the same job, carbon emissions are reduced significantly.

Carbon Upcycling: Turning Carbon Dioxide into CO2NCRETE from UCLA Luskin on Vimeo.

Another method aimed at tackling emissions is the ‘upcycling’ of concrete. At UCLA, researchers have created a closed-loop process by using carbon capture from power plants that would be used to create a 3D-printed CO2NCRETE.

‘It could be a game-changer for climate policy,’ said Prof JR DeShazo, Director at the Luskin Centre for innovation, UCLA. ‘It takes what was a problem and turns it into a benefit in products and services that are going to be very much needed and valued in places like India and China.’