Blog search results for Tag: engineering

Materials

Dinosaurs were some of the largest creatures to ever roam the Earth, but the mystery of how they supported their great weight remains. A new study published in PLOS ONE now indicates that the answer may lie in their unique bone structure, which differs from mammals and birds.

The bone is made up of different layers of different consistency, including the spongy interior, or trabecular. This part of the bone is formed of porous, honeycomb like structures.

A group of inter-disciplinary researchers, including palaeontologists, mechanical engineers, and biomedical engineers, analysed trabecular bone structure in a range of dinosaur samples, ranging from only 23 kg to 8000 kg in body mass. Their study found that the structure of dinosaur bones possessed unique properties allowing them to support large weights.

‘The structure of the trabecular, or spongy bone that forms in the interior of bones we studied is unique within dinosaurs,’ said Tony Fiorillo, palaeontologist and one of the study authors. ‘Unlike in mammals and birds, the trabecular bone does not increase in thickness as the body size of dinosaurs increase, instead it increases in density of the occurrence of spongy bone. Without this weight-saving adaptation, the skeletal structure needed to support the hadrosaurs would be so heavy, the dinosaurs would have had great difficulty moving.’

Their analysis included scanning the distal femur and proximal tibia bones from dinosaur fossils, and modelling how mechanical behaviour may have occurred. The research team also used allometry scaling – a method of understanding how physical characteristics change with physical size. They then compared the architecture of the bones to scans of both living and extinct large animals, such as Asian elephants and mammoths.

a walking cartoon dinosaur gif

Originally posted by manucalavera

Researchers hope that they can apply their findings to design other lightweight structures such as those used in aerospace, construction, or vehicles.

‘Understanding the mechanics of the trabecular architecture of dinosaurs may help us better understand the design of other lightweight and dense structures,’ said Trevor Aguirre, mechanical engineer and lead author of the paper.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237042


Agrifood

A growing population is placing greater pressure on limited resources including land, oceans, water and energy. If agricultural production continues in its present form, water degradation, biodiversity loss and climate change will continue. As a result, people are adopting an increased interest in the environmental impact of food choice, choosing alternatives like insects.

This round-up explores examples of the various insect-based alternative foods.

Insect Snacks

According to data from Grand View Research, a US-based market research company, the global healthy snacks market is expected to reach $32.88 billion by 2025. Companies across Europe are developing healthy snack products based on insects, tapping into our desire for a variety of foods and tastes.

 insect

 Insect

Eat Grub, established in 2013 and based in London UK, developed an insect snack made from house crickets, which are farmed in Europe. They are a sustainable, nutritious and tasty source of food, rich in protein. Research has indicated that insects are good for gut health due to their high chitin content. Chitinous fibre has been linked to increased levels of a metabolic enzyme associated with gut health.

Insect Beer

A start-up Belgian beer company, Belgium Beetles Beer, described their drink as a real Belgium blond beer enriched with insect vitamins and proteins.

Upon ‘accidentally’ developing this product, they realised that the dry beetle powder offered a rich, light sweet, slightly bitter flavour.

 insect beer

Beer

Insect Burger

A growing number of companies are now focusing their efforts on producing a product that looks and tastes like a traditional meat-based burger.

Bugfoundation’s burgers are based on buffalo worms, which are the larvae of the Alphitobius Diaperinus beetle. The company’s founders said that they decided to use buffalo worms because of their ‘slightly nutty flavour.’

The idea stemmed from a trip to Asia, where co-founder, Max Charmer came across fried crickets. His experience inspired him to bring these flavours to the west, hoping to please western tastes and comply with evolving European regulations.

 insect burger

 Burger

Concerns regarding the livestock system have prompted novel inventions in the food space; insects, considered a source of protein, could outperform conventional meats to reduce environmental impacts.

So, will consumers soon be able to introduce insects to their everyday diets? Only time will tell.

 fried insects

Fried insects


Agrifood

A growing population is placing greater pressure on limited resources including land, oceans, water and energy. If agricultural production continues in its present form, water degradation, biodiversity loss and climate change will continue. As a result, people are adopting an increased interest in the environmental impact of food choice, choosing alternatives like insects.

This round-up explores examples of the various insect-based alternative foods.

Insect Snacks

According to data from Grand View Research, a US-based market research company, the global healthy snacks market is expected to reach $32.88 billion by 2025. Companies across Europe are developing healthy snack products based on insects, tapping into our desire for a variety of foods and tastes.

 insect

 Insect

Eat Grub, established in 2013 and based in London UK, developed an insect snack made from house crickets, which are farmed in Europe. They are a sustainable, nutritious and tasty source of food, rich in protein. Research has indicated that insects are good for gut health due to their high chitin content. Chitinous fibre has been linked to increased levels of a metabolic enzyme associated with gut health.

Insect Beer

A start-up Belgian beer company, Belgium Beetles Beer, described their drink as a real Belgium blond beer enriched with insect vitamins and proteins.

Upon ‘accidentally’ developing this product, they realised that the dry beetle powder offered a rich, light sweet, slightly bitter flavour.

 insect beer

Beer

Insect Burger

A growing number of companies are now focusing their efforts on producing a product that looks and tastes like a traditional meat-based burger.

Bugfoundation’s burgers are based on buffalo worms, which are the larvae of the Alphitobius Diaperinus beetle. The company’s founders said that they decided to use buffalo worms because of their ‘slightly nutty flavour.’

The idea stemmed from a trip to Asia, where co-founder, Max Charmer came across fried crickets. His experience inspired him to bring these flavours to the west, hoping to please western tastes and comply with evolving European regulations.

 insect burger

 Burger

Concerns regarding the livestock system have prompted novel inventions in the food space; insects, considered a source of protein, could outperform conventional meats to reduce environmental impacts.

So, will consumers soon be able to introduce insects to their everyday diets? Only time will tell.

 fried insects

Fried insects


Careers

Nearly two years ago, while attending admissions day in the Department of Chemical Engineering at Imperial College London, I was asked, ‘Why Chemical Engineering?’ That is also the question I will attempt to answer today, before beginning my second year at Imperial.

sheldon gif

Originally posted by keep-calm-and-allons-y-whovians

1.  ChemEng is everywhere

If you look around, you will see countless things whose production involved chemical engineers. From a plastic bottle on your desk, through cosmetics and medicines, to the fuel that your car uses – all those products involve complex chemical processes designed and improved by engineers. I see chemical engineering as a job full of opportunities – and of many diverse ones, as well.

Not only are there numerous industry sectors to work in, but also possibilities beyond the scope of ChemEng. For example, other areas of employment stretch across research, finance and management, as chemical engineering equips students with many useful transferrable skills, such as problem-solving abilities or analytical thinking.

monica gif

Originally posted by livelovecaliforniadreams

2.      Chemical engineers can make the world a better place

It may sound like a slogan, but I really believe it’s true. Today’s society faces serious problems, some of which are caused by human activity. It is hard to ignore the changes in the natural environment and the problems such as climate change, but chemical engineers are here to find a way to fight it.

Nowadays, the focus in designing chemical processes is increasingly shifting towards environmental sustainability. Even our department has a carbon capture pilot plant, and when implemented on a chemical plant, carbon capture is aimed at reducing CO2 emissions. Chemical engineers can make production processes more eco-friendly and help to develop clean energy generation, which is crucial for today’s world.

 CO2 emissions graphic

Another big challenge of the 21st century is ageing society. It results in increased occurrence of diseases such as cancer, cardiovascular diseases, and many other types of illnesses. Subsequently, this increases the demand for various kinds of medicines, increases the consequent development of pharma industries, and thus, more opportunities for chemical engineers to benefit society.

 yoga stance

3.      ChemEng is fun!

To be perfectly honest, this course can be challenging at times. But at the same time, I find it really exciting and rewarding. Its multidisciplinary nature is what makes it interesting; we study elements of maths, physics, mechanics, some elementary programming and different branches of chemistry. It is also a course full of practical work – lab experiments and group projects, which develop co-operation skills and the ability to solve real-life problems, but it is also a fun way to learn and to meet new people!

Originally posted by kane52630

The most important thing is to enjoy what you study, and ChemEng is an ideal fit for those enjoying STEM subjects and willing to solve practical problems. And that is probably why I am so excited to come back to uni and start second year.


Science & Innovation

Robotic technology has a large part in the UK’s chemical industry in reducing individual’s exposure to ionising radiation, from nuclear decommissioning to synthesis of radiopharmaceuticals.

robotic technology

Improvements in robots and robotic technologies has fuelled huge advancements across many industries in recent years. The UK Industrial Strategy has several Sector Deals in which robotic innovations play a role, particularly in Artificial Intelligence (AI), Life Sciences and Nuclear.

cartoon gif

Originally posted by various-cartoon-awesomeness

Innovative robotics have a place in all industries to improve efficiency and processes, however, in industries where radioactive materials are commonly used, using robots can help to manage risk. This could be by limiting exposure of employees to radioactive substances or preventing potential accidents.

In the UK, legislation exists as to how much exposure to ionising radiation employees may have each year – an adult employee is classified, and therefore must be monitored, if they receive an effective dose of greater than 6mSv per year. The average adult in the UK receives 2.7 mSv of radiation per year.

Snake-like robot is used to dismantle nuclear facilities. Video: Tech Insider

Through using robots, very few professionals in the chemical industry come close to this limit, and are subsequently safe from long-term health effects, such as skin burns, radiation sickness and cancer.


Science & Innovation

Spaceflight is a high-risk business. Spacecraft break down all the time and when that happens funding and careers evaporate. Back in the late 1960s, NASA decided to double the odds of success and send two spacecraft on one mission. Voyagers 1 and 2, for example, were the spacecraft that returned the first detailed pictures of the outer planets of our solar system and introduced us to the neighbourhood. Launched in 1977, both are still flying.

Any spacecraft must have three components: a payload, an engine and a fuel supply – by far the heaviest component. But what if we could do away with the onboard fuel supply and replace it with an external fuel supply? Say light itself?

Can you push a spacecraft with light? Video: Physics Girl

The idea of solar sail technology has been floating around for decades. Indeed, the notion of a solar pressure can be traced back to 1610 in a letter that Johannes Kepler wrote to Galileo. 

But it was only in the 20th century that solar sails began to be considered as an achievable engineering reality. Broadly, solar sails fall into two categories: those using light from natural sources – the sun and ambient starlight in space; and those using coherent light from lasers.

 

Science & Innovation

North Carolina State University researchers have created a new 3D printing ink which generates soft and flexible structures. These structures can be controlled with a magnetic field while floating on water and have the potential to be used in a variety of applications in the future.

3D printing technology is becoming increasingly common in research and industry, but its use is limited due to lack of availability of specialist inks that can be used to generate novel structures. In this study, scientists first made an ink from silicone microbeads, bound in liquid silicone and water. This mixture has a paste-like consistency, similar to household toothpaste, where it can be easily manipulated, but retains its shape and does not drip.

What is 3D Printing and how does it work? Video: Funk-e Studios

The ink was then fed into a 3D printer and used to create mesh patterns. The final structures are cured in an oven and contain embedded iron carbonyl particles, which allow the researchers to use magnetic fields to manipulate it.

Sustainability & Environment

Plant breeders are increasingly using techniques to produce new varieties they say are indistinguishable from those developed through traditional breeding methods. New genome editing technologies can introduce new traits more quickly and precisely.

However, in July, 2018, the European Court of Justice decreed they alter the genetic material of an organism in a way that does not occur naturally, so they should fall under the GMO Directive. This went against the opinion of the Advocate General.

In October 2018, leading scientists representing 85 European research institutions endorsed a position paper warning that the ruling could lead to a de facto ban of innovative crop breeding. 

crops gif

Originally posted by sunbursts-and-marblehalls

The paper argues for an urgent review of European legislation, and, in the short term, for crops with small DNA adaptations obtained through genome editing to fall under the regulations for classically bred varieties.

‘As European leaders in the field of plant sciences […] we are hindered by an outdated regulatory framework that is not in line with recent scientific evidence,’ says one of the signatories, Dirk Inzé, Scientific Director at Life Sciences Institute VIB in Belgium.

 

Sustainability & Environment

Plants generate their energy from sunlight via photosynthesis, however many crops have a photosynthetic glitch, which costs them a significant amount of energy that could be used for growth. This glitch has been shortened using careful engineering by researchers from the University of Illinois and US Department of Agriculture’s Agricultural Research Service, to generate plants with a 40% increase in productivity in real-world conditions.

 tobacco seedlings

Tobacco seedlingsImage: Claire Benjamin/RIPE project

During photosynthesis, carbon dioxide (CO2) and water are converted into sugars by the enzyme Rubisco, which is fuelled by energy from sunlight. Rubisco is the planets most abundant protein, but its efficiency has resulted in an oxygen-rich atmosphere, and it cannot reliably distinguish between CO2 and oxygen (O2). Approximately 20% of the time, O2 is grabbed by Rubisco instead of CO2, and then converted into a compound which is toxic to plants. This compound can be recycled through a process known as photorespiration.

 research team

The research team.  Image: Claire Benjamin/RIPE project

In this study, alternate routes for the process have been engineered, allowing the plant to save resources better utilised for growth. The scientists generated three alternate routes using different sets of promoters and genes, which were then stress tested in 1,700 individual plants to find the best performers.


Health & Wellbeing

Biopharmaceuticals are sourced from living organisms.

Researchers at Massachusetts Institute of Technology (MIT), US, have developed a portable drug manufacturing system that can make several different biopharmaceuticals to be used in precision medicine or to treat outbreaks in developing countries.

Biopharmaceuticals are drugs made up of proteins such as antibodies and hormones, and are produced in bioreactors using bacteria, yeast or mammalian cells. They must be purified before use, so the process has dozens of steps and it can therefore take weeks or months to produce a batch.

The Challenges in Manufacturing Biologics. Video: Amgen  

Due to the complex nature of the process and its time restrictions, biopharmaceuticals are usually produced at large factories dedicated to a single drug – often one that can treat a wide range of patients.

To help supply smaller, more specific groups of patients with drugs, a group of researchers at MIT have developed a system that can be easily configured to produce three different pharmaceuticals – human growth factor, interferon alpha 2b and granulocyte colony-stimulating factor – all of a comparable quality to commercially available counterparts.

 old man with walking stick

Biopharmaceuticals can treat autoimmune diseases, such as arthritis. Image: Pixabay

‘Traditional biomanufacturing relies on unique processes for each new molecule that is produced,’ said J Christopher Love, a Chemical Engineering Professor at MIT’s Koch Institute for Integrative Cancer Research. ‘We’ve demonstrated a single hardware configuration that can produce different recombinant proteins in a fully automated, hands-free manner.’


Health & Wellbeing

Traditional electronics are made from rigid and brittle materials. However, a new ‘self-healing’ electronic material allows a soft robot to recover its circuits after it is punctured, torn or even slashed with a razor blade.

Made from liquid metal droplets suspended in a flexible silicone elastomer, it is softer than skin and can stretch about twice its length before springing back to its original size.

Soft Robotics & Biologically Inspired Robotics at Carnegie Mellon University. Video: Mouser Electronics 

‘The material around the damaged area automatically creates new conductive pathways, which bypass the damage and restore connectivity in the circuit,’ explains first author Carmel Majidi at Carnegie Mellon University in Pittsburgh, Pennsylvania. The rubbery material could be used for wearable computing, electronic textiles, soft field robots or inflatable extra-terrestrial housing.

‘There is a sweet spot for the size of the droplets,’ says Majidi. ‘We had to get the size not so small that they never rupture and form electronic connections, but not so big they would rupture even under light pressure.’

Energy

A 3D battery made using self-assembling polymers could allow devices like laptops and mobile phones to be charged much more rapidly.

Usually in an electronic device, the anode and cathode are on either side of a non-conducting separator. But a new battery design by Cornell University researchers in the US intertwines the components in a 3D spiral structure, with thousands of nanoscale pores filled with the elements necessary for energy storage and delivery.

image

Originally posted by novelty-gift-ideas

This type of ‘bottom-up’ self-assembly is attractive because it overcomes many of the existing limitations in 3D nanofabrication, enabling the rapid production of nanostructures at large scales.

In the Cornell design, the battery’s anode is made of gyroidal (spiral) thin films of carbon, generated by block copolymer self-assembly. They feature thousands of periodic pores around 40nm wide. The pores are coated with a 10 nm-thick separator layer, which is electronically insulating but ion-conducting. Some pores are filled with sulfur, which acts as the cathode and accepts electrons but doesn’t conduct electricity.

Adaptive battery can charge in seconds. Video: News Direct

‘This is potentially ground-breaking, if the process can be scaled up and the quality of the electrodes can be ensured,’ comments Yury Gogotsi, director of A.J. Drexel Nanomaterials Institute, Philadelphia, US. ‘But this is still an early-stage development, proof of concept. The main challenge is to ensure that no short-circuits occur in the structure.

Health & Wellbeing

Using 2D imaging techniques to diagnose problems with the heart can be challenging due to the constant movement of the cardiac system. Currently, when a patient undergoes a cardiac MRI scan they have to hold their breath while the scan takes snapshots in time with their heartbeat.

Still images are difficult to obtain with this traditional technique as a beating heart and blood flow can blur the picture. This method becomes trickier if the individual has existing breathing problems or an irregular heartbeat.

These problems can lead to trouble in acquiring accurate diagnostics.  

 beating heart still image

Now, a team based at the Cedars-Sinai Medical Center in California, US, have detailed a new technique – MR Multitasking – that can resolve these issues by improving patient comfort and shortening testing time.

‘It is challenging to obtain good cardiac magnetic resonance images because the heart is beating incessantly, and the patient is breathing, so the motion makes the test vulnerable to errors,’ said Shlomo Melmed, Dean of the Cedars-Sinai Center faculty.

 An MRI Scanner

An MRI Scanner. Image: Wikimedia Commons

‘By novel approaches to this longstanding problem, this research team has found a unique solution to improve cardiac care for patients around the world for years to come.’

By developing what the team consider a six-dimensional imaging technique, the Center has embraced the motion of a heartbeat by capturing image data continuously – creating a product similar to a video.

heartbeat detection gif

Originally posted by suckerfordeep

‘MR Multitasking continuously acquires image data and then, when the test is completed, the program separates out the overlapping sources of motion and other changes into multiple time dimensions,’ said Anthony Christodoulou, first author and PhD researcher at the Center’s Biomedical Imaging Research Institute.

‘If a picture is 2D, then a video is 3D because it adds the passage of time,’ said Christodoulou. ‘Our videos are 6D because we can play them back four different ways: We can playback cardiac motion, respiratory motion, and two different tissue processes that reveal cardiac health.’

Your guide to a cardiac MRI. Video: British Heart Foundation

Testing ten healthy volunteers and ten cardiac patients, the team said the group found that the method was more comfortable for patients and took just 90 seconds – significantly quicker than the conventional MRI scan used in hospitals. For each of the participants, the scan produced accurate results.

The team are now looking to extend its work into MR Multitasking by focusing on other disease areas, such as cancer.


Science & Innovation

 Concorde

The Concorde was the first commercial supersonic aircraft to have been built. Image: Wikimedia Commons

In 2011, a chance encounter under the wings of Concorde at Duxford Air Museum, Cambridge, with Trinity College Dublin Professor Johnny Coleman, would set in motion a series of events that would lead, six years later, to the development of a 20t/year graphene manufacturing plant.

As soon as we got talking, I was impressed by Johnny’s practical, non-nonsense approach to solving the scalability issue with graphene production.

Coleman is a physicist, not a chemist, and believed that the solution lay in mechanical techniques. Following the conference, Thomas Swan agreed to fund his group for four years to develop a scalable process for the manufacture of graphene.

 graphene

Just a nanometer thick, graphene consists of a single layer of carbon atoms joined in a hexagonal lattice. Image: Pixabay

Coleman and his team initially considered sonication – when sound waves are applied to a sample to agitate its particles – but quickly ruled it out due to its lack of scalability. He then sent one of his researchers out to the shops to buy a kitchen blender. They threw together some graphite, water, and a squirt of washing-up liquid into the blender, switched it on, and went for a cup of coffee.

When they later analysed the ‘grey soup’ they had created, they found they had successfully made few-layer graphene platelets. The group then spent months optimising the technique and worked closely with Thomas Swan scientists to transfer the process back to Thomas Swan’s manufacturing HQ in Consett, Ireland.

spongebob gif

Originally posted by spongebob-squarepants-is-my-hero

Graphene is 300 times stronger than steel.

The plant can make up to 20t/year of high quality graphene. It uses a high sheer continuous process to exfoliate graphite flakes into few-layer graphene platelets in an aqueous dispersion.

The dispersion is stabilised by adding various surfactants before separating out the graphene using continuous cross-flow filtration devices developed with the support of the UK’s Centre for Process Innovation (CPI), part of the High Value Manufacturing Catapult – a government initiative focused on fostering innovation and economic growth in specific research areas.

 sticky tape

 

Using sticky tape, scientists pulled off graphene sheets from a block of graphite. Image: Pixabay

This de-risking of process development using a Catapult is a classic example of effective government intervention to support innovative SMEs. CPI not only showed us it worked, but also optimised the technique for us.

The company quickly realised that selling graphene in a powder form with no application data was not going to work. Instead, we developed a range of performance data to assist the sales team by highlighting what graphene can do if adopted into a range of applications.

 

The potential of graphene can be commercialised using composites. Video: The University of Manchester – The home of graphene

We also moved to make the product available in ‘industry friendly’ forms such as epoxy resin dispersions or polymer masterbatches. This move, slightly downstream from the raw material, has recently led to Thomas Swan announcing its intention to expand its range of formulated graphene materials, with a prototype product focusing on the manufacture of a carbon fibre composite.

Our application data shows that graphene has significant benefits as an industrial additive. Presenting this data to composite-using downstream customers is starting to open doors and create supply chain partnerships to get a raw material all the way to a fully integrated application.

 2010 Nobel Prize in Physics

Andre Geim and Kostya Novoselov won the 2010 Nobel Prize in Physics for their discovery of graphene. Image: Wikimedia Commons

The move downstream, to develop useable forms of graphene, is common in the industry, with most graphene suppliers now making their products available as an ink, dispersion or masterbatch. Thomas Swan’s experience with single-wall carbon nanotubes has made us aware of the need to take more control of graphene application development to ensure rapid market adoption.

Graphene applications drawing most interest include composites, conductive inks, battery materials, and resistive heating panels, although much of this demand is to satisfy commercial R&D rather than full commercial production.

Graphene science | Mikael Fogelström | TEDxGöteborg. Video: TEDx Talks

Thanks to innovations like our continuous high sheer manufacturing process, Thomas Swan believes that graphene is about to become very easy to make. Before it can be considered a commodity, however, it will also need to deliver real value in downstream applications. Therefore, the company is also increasing its efforts to understand market driven demand and application development.

As the initial hype over the ‘wonder’ material graphene starts to wane, progress is being made to develop scalable manufacturing techniques and to ensure graphene delivers some much-promised benefits to downstream applications.

Sustainability & Environment

Scientists have developed a new process to manufacture ‘green’ plastic that could significantly reduce costs and provide a cleaner alternative to current materials.

Using fructose and gamma-Valerolactone (GVL) – a plant-derived solvent – researchers from the University of Wisconsin-Madison,US, have found a way to produce furandicarboxylic acid (FDCA) that is both cost-effective and high-yielding, meaning a large amount of the product can be made. FDCA is a precursor to the renewable plastic polyethylene furanoate (PEF).

 furandicarboxylic acid

A crystal of furandicarboxylic acid (FDCA) a plastic precursor created with biomass instead of petroleum. Image: Ali Hussain Motagamwala and James Runde for UW-Madison

‘Until now, FDCA has had a very low solubility in practically any solvent you make it in,’ says co-author Ali Hussain Motagamwala. ‘You have to use a lot of solvent to get a small amount of FDCA, and you end up with high separation costs and undesirable waste products.’

Currently, the plastics market relies heavily on the production of polyethylene terephthalate (PET), which is derived from petroleum, to meet increasing demand for plastic products.

How is FDCA made in industry? Video: Avantium

The team, alongside Motagamwala, have been able to convert fructose to FDCA in a two-step process using a solvent system of one-part GVL and one-part water.

According to Motagamwala, using GVL as a solvent is the key to reducing the high expenses that FDCA production incurs. ‘Sugars and FDCA are both highly soluble in [GVL], you get high yields, and you can easily separate and recycle the solvent,’ he says.

 Fructose

Fructose is a plant-based sugar found in most fruits. Image: Pexels

The team’s study also includes an extensive techno-economic analysis of the ‘green’ process, suggesting that FDCA could be produced for around £1,000 a tonne – reduced further if the reaction time and cost of feedstock could be lowered through further research.

A more cost-effective alternative to PET could have a significant impact on the plastics market, which produces an estimated 1.5m tonnes a year.

coke gif

Originally posted by peteneems

Major companies – from Coca-Cola to Procter & Gamble – are committing to 100% use of PEF in their plastic products, providing a huge market need for its precursor FDCA.

‘We think this is the streamlined and inexpensive approach to making FDCA that many people in the plastics industry has been waiting for,’ says James Dumesic, team-leader and Professor of Chemical and Biological Engineering at the university.

 plastic waste

Introducing cost-competitive renewable plastics to the market could significantly reduce plastic waste. Image: Pixabay

‘Our hope is that this research opens the door even further to cost-competitive renewable plastics.’

Process development is an essential area of research that underpins advances in a huge range of industries. 

Sustainability & Environment

In May 2018, the first full-scale mobile marine plastics collection system, developed by The Ocean Cleanup, will leave San Francisco, California, bound for the ‘Great Pacific Garbage Patch,’ also known as the Pacific trash vortex. The plan, ultimately, is to use 60 of these $5m systems to clean up half of the debris in the Pacific Garbage Patch within five years, according to Boyan Slat, CEO of Netherlands foundation The Ocean Cleanup, speaking at the Cefic Chemical Congress held in Vienna, Austria, at the end of October 2017.

Each collection system comprises a 1km U-shaped barrier, which floats on the surface of the ocean and supports a 4m deep screen to channel floating plastic debris to a central collection point, for future recycling. A 100m prototype system has already been tested in the North Sea.

 San Francisco

The system will leave from the San Francisco bay area. Image: Giuseppe Milo

The environmental cost of the Pacific’s plastic waste currently stands at roughly $13bn/year, while an estimated 600 wildlife species are threatened with extinction partly as a result of ingesting it. Plastic microbeads and particles only represent 5% of the plastics in the oceans, ‘but the remaining 95% will break down into small particles and chemicals that are already in the tuna we eat,’ Slat said. The larger plastics debris are all found in the top 4m of the oceans, the same depth as the system’s screens.

 Plastic debris

Plastic debris can end up in the food we eat. Image: Pixabay

Also speaking in Vienna, Emily Woglom, executive VP, Ocean Conservancy, said that 8m t/year of plastics goes into the oceans – ‘one city dump truck every minute’; between 2010 and 2025 the amount in the oceans will double. As much as ‘30% of fish on sale have plastics in them,’ she said. Most of the plastics now come from the developing economies, mainly in Asia, she added, noting that the Trash Free Seas Alliance, founded by the Ocean Conservancy and supported by the American Chemistry Council, Dow Chemical, P&G and the World Plastics Council as well as several big-name food and beverage companies have recently adopted the goal of launching a $150m fund for waste management in South East Asia.

How we roll. Video: The Ocean Cleanup 

Meanwhile, Slat says that the mobile collection systems can also be used to trap plastic pollution closer to the source, for example in rivers and estuaries. Researchers at The Ocean Cleanup estimate that rivers transport between 115 and 241 m t/years of plastic waste into the oceans, with two-thirds coming from just 20 rivers, mostly in Asia.

The Pacific trash vortex forms as a result of circular ocean currents created by wind patterns and the forces created by the Earth’s rotation. Similar gyres are found in the South Pacific, Indian Ocean, and North and South Atlantic.

Careers

Artificial intelligence (AI) – the ability of any man-made device to perceive its environment, identify a goal, and take rational actions to that end – can seem like a concept of science fiction. Recently, however, exponential growth in the field, with developments such as driverless cars, has made the prospect very real. The pace of change has led many to express concern about the dangers of artificial AI, although most of the potential benefits are yet to be realised.

A key aspect when trying to understand AI is knowledge of ‘machine learning’. Previously, software had to be ‘taught’ everything by the programmer, but this is no longer the case. DeepMind, one of the world’s leading groups in developing artificial intelligence, has seen considerable investment from high profile figures such as Elon Musk and has recently been acquired by Google’s parent company, Alphabet.

 

DeepMind claims to have developed software that mimics human imagination by considering the possible consequences of their actions and interpreting the results, ignoring irrelevant information. This allows the software to plan ahead, solving tasks in fewer steps and performing much better than conventional AI.

Could machines become better than humans?

There is plenty to suggest that AI, if managed correctly, could positively benefit society, tackling issues such as global warming and healthcare. On the other hand, sceptics argue that the developments in AI will drastically disrupt many industries. 

A decade ago, truck drivers were thought to be irreplaceable; now, Tesla and many other companies are making autonomous self-driving cars a reality. The pharmaceutical industry may also see immense changes; incredibly complex computational biological models will soon be able to fully predict drug mechanisms and interactions, allowing for much better analysis and speeding up the currently painstakingly slow clinical trial process for new drugs.

 Ubers selfdriving car

Uber’s self-driving car being testing in Pittsburgh. Image: Rex

It isn’t only drivers that are at risk of losing their jobs. Historian Yuval Noah Harari states that, just like the industrial revolution lessened the requirement for manual labour, the AI revolution will create vast amounts of unemployable people as their skills become redundant. 

Carl Benedikt Frey and Michael A Osborne from the University of Oxford predict that 47% of jobs are at high risk of being taken over by computer algorithms by 2033. Their list of jobs is striking – insurance underwriters, chefs, waiters, carpenters, and lifeguards are all at high risk of being superfluous. The displacement of human workers because of AI will be one of the key issues that policymakers and governments must consider going into the future.

 Elon Musk

Elon Musk, Founder of SpaceX and CEO of Tesla, Inc. Image: TED Conference

What could go wrong?

Facebook had to shut down its most recent AI system after it discovered that its chatbots were communicating between themselves in a new language that used English words but could not be understood by humans. Although the AI agents were rewarded for negotiating efficiently, they were not confined to just using English. The result was that they deviated from it and instead opted to create a language that was easier and faster for them to communicate, causing the social media giant to pull the plug on the system.

Elon Musk, founder of SpaceX and co-founder of PayPal, has very strong views about the development of AI, famously stating that AI is an ‘existential risk for human civilisation’. He raises interesting questions about cybersecurity and malicious AI that may be exploited by hackers to destabilise the outdated and less intelligent software that often controls the electricity and water of the world’s cities.

Above: Musk in Conversation with Max Tegmark, author of Life 3.0: Being Human in the Age of Artificial Intelligence 

AI is a rare case where we need to be proactive in regulation instead of reactive because ‘if we’re reactive in AI regulation it’s too late’, he said. At the moment, the technology is far from the apocalyptic, self-evolving software that haunts Musk. But we are becoming more and more accustomed to AI in our daily life; for example, Apple’s Siri interpreting voice commands and Facebook’s targeted advertising system.


 Hermann Hauser

Hermann Hauser Image: Franz Johann Morgenbesser

Interested in AI?

SCI is running a Public Evening Lecture in London on Wednesday 25 October – Machine Intelligence: Are Machines Better than Humans? The talk will be given by Hermann Hauser, co-founder of Amadeus Capital Partners, Acorn Computers, and ARM. It is free to attend, but spaces are limited. Don’t miss out – book your place here. 

Sustainability & Environment

Cellular agriculture involves making food from cell cultures in bioreactors. The products are chemically identical to meat and dairy products, and it’s claimed they have the same taste and texture.

The technology is an attractive option because it would reduce the world’s reliance on livestock, which is unsustainable, and would have potential knock-on benefits of lower greenhouse gas emissions, and reduced water, land, and energy usage than traditional farming.

milk gif

Originally posted by butteryplanet

IndieBio helps biotechnology start-ups. Since 2014, it has funded several new US-based businesses in cellular agriculture: Perfect Day, formerly Muufri, makes milk from cell culture; Clara Foods is developing a way to make egg whites from cell culture; and Memphis Meats is focusing on animal-free meat using tissue engineering.

Growth is driven by the clear benefits this technology can offer, says Ron Sigeta, IndieBio’s Chief Scientific Officer. ‘It takes 144 gallons of water to make a gallon of milk or 53 gallons of water to make an egg. Cellular agriculture products don’t require such large water supplies, or large tracts of land, or produce the same level of greenhouse gas emissions.’

 Salmonella

Salmonella bacteria are not present in cell-cultured milk so there is no risk of infection. Image: Wikimedia Commons

Food safety is also a significant issue. ‘Cellular agriculture makes products in an entirely controlled environment so it’s a source of food we can understand with a transparency that is simply not possible now,’ says Sigeta. For example, raw, unpasteurised milk can carry bacteria, such as salmonella, which is not a problem for Perfect Day’s milk as there are no bacteria-carrying animals are involved.


So how does it work?

Cellular agriculture products can be acellular – made of organic molecules like proteins and fats – or cellular – made of living or once-living cells.

Meat industry critics argue that it is not sustainable and lab-grown meat is the future. Video: Eater

Acellular products are made without using microbes like yeast or similar bacteria. Scientists alter the yeast by inserting the gene responsible for making the desired protein. Since all cells read the same genetic code, the yeast, now carrying recombinant DNA, makes the protein molecularly identical to the protein an animal makes.

Other products like meat and leather are produced by a cellular approach. Using tissue engineering techniques muscle, fat or skin cells can be assembled on a scaffold with nutrients. The cells can be grown in large quantities and then combined to make the product.

 cultured beef patty

The first cultured beef patty was made in 2013. Image: Public Domain Pictures

Mark Post at Maastricht University, the Netherlands, made the first cultured beef hamburger in 2013 using established tissue engineering methods to grow cow muscle cells. The process, however, was expensive and time-consuming, but his team has been working on improvements.

‘We are focusing on hamburgers because our process results in small tissues that are large enough for minced meat applications, which accounts for half of the meat market. To make a steak, one would need to impose a larger 3D structure to the cells to grow in.

‘It is very important that such a structure contains a channel system to perfuse the nutrients and oxygen through to the developing tissue and to remove waste as a result of metabolic activity. This technology is being developed, but is not yet ready for large scale production.’

 genetically engineered meat

Surveys have shown that the public are behind genetically engineered meat alternatives. Image: Ben Amstutz@Flickr 


Future outlook

Commercial challenges include finding a cost-effective medium for cell nutrition developing a bioreactor for industrial scale production. Public perception may also be a challenge: Will people buy synthetically engineered food?

A recent crowdfunding campaign shows the global massive support for the idea of clean meat, says Koby Barak, SuperMeat’s chief operating officer and co-founder. However, he believes these will be overcome shortly, and it will not be long before companies see ‘massive funding’ in this field and the creation of clean meat factories worldwide.