Blog search results for Tag: fertilser

Agrifood

Russian researchers have developed new fertilisers based on nanopowders of transition metals. In field trials on agricultural crops, harvests increased by more than a quarter, compared with conventional fertilisers.

Iron, cobalt and copper affect a plant’s level of resistance to pests and diseases. These microelements are typically introduced into the soil as soluble salts, but rain and irrigation can wash them away, requiring further applications. They also have potential to disrupt local ecosystems as they pass into the groundwater.

 irrigation system

An irrigation system in Idaho, US. Image: Jeroen Komen@Wikimedia Commons

The team, led by the National University of Science and Technology (NUST) in Moscow, has developed a group of fertilisers that are applied as a powder to plant seeds, without losses to the soil or water systems. In this way, ‘the future plant is provided with a supply of necessary microelements at the stage of seeding,’ reports Alexander Gusev, head of the project at NUST’s Department of Functional Nanosystems. 

‘[It’s] a one-seed treatment by a product containing the essential microelements in nanoform. These particles of transition metals – iron, copper, cobalt – have a powerful stimulating effect on plant growth in the initial growth phase.’

Gusev reports improved field germination and increased yields of 20-25%.

image

Originally posted by magical-girl-stims

The main difficulty was to produce a powder from the nanoparticles, which tended to quickly stick together as aggregates, says Gusev – a problem they solved by using organic stabilisers and then subjecting the colloidal solutions to ultrasonic processing.

Gusev now wants to discvover how the new fertiliser acts in different soils, and in relation to different plant cultures. Its environmental safety also needs to be evaluated before widespread use, he adds.

But Steve McGrath, head of sustainable agricultural sciences at Rothamsted Research, is sceptical. Plants are adapted to take up ionic forms of these microelements, not nanoparticles, he says. ‘Also, seeds do not take up much micronutrients. Roots do that, and depending on the crop and specific nutrient, most uptake is near to the growing ends of the root, and throughout the growing season, when the seed and nearby roots are long gone.’

 fertiliser2

Critics are skeptical of the efficacy of the new kind of fertiliser. Image: Pexels

If there is an effect on crop yield, he thinks it is more likely to be due to the early antifungal and antibacterial effects of nanoparticles. ‘They have a large and highly reactive surface area and if they are next to membranes of pathogens when they react they generate free radicals that disrupt those membranes. So, in a soil that is particularly disease-infected, there may be some protection at the early seedling stage.’