Blog search results for Tag: fish

Health & Wellbeing

Food safety refers to handling, preparing and storing food in a way that best reduces the risk of people becoming sick, and it’s a topic that’s high on everyone’s agenda. Here we explore three recent scientific advances in the area of food safety.  

Antibiotic detection in dairy products

pouring milk gif

Originally posted by butteryplanet

Antibiotics are the largest group of medicines and, due to their use in treating animals, they have been making their way into the food chain and into food products. Consuming food that contain antibiotics could result in poor health outcomes, such as allergic reactions and other events. Antibiotics that accumulate in cattle milk can transfer into dairy products and so it’s urgent that we detect and address the issue.

A new test has been developed that showed, in a recent study, that it can detect antibiotics in food products. The precision of the test means that it can test for a wide range of antibiotics and the testing process is very simple and easy to conduct. It could also detect antibiotics at all stages of the food production process, which is great news in the fight to reduce antibiotics in the food chain.

Reducing contamination of smoked fish

 smoked fish

Smoked fish is very popular in developing countries, as it is a good source of protein. The preparation of it involves hotā€smoking on traditional kilns using wood fuel. This practice is associated with high levels of a substance known as polycyclic aromatic hydrocarbons (PAHs) in the food, which has an impact on health. 

An improved kiln has been introduced by the Food and Agriculture Organization of the United Nations to address the levels of PAHs in smoked fish. A recent study showed that the improved kiln not only works just as well at smoking the fish, but does so with safer levels of PAHs. This means that people can continue to consume this valuable protein source without the potentially cancer-causing chemicals. 

The safest way to prepare fruit and veg?

swirling gif

Originally posted by konczakowski

Pesticides have been reported to find their way into our fruit and vegetables, albeit at minimal amounts. A recent study looked at food preparation techniques to compare what methods were the most effective in removing pesticides, with interesting results.

The simplest and most effective way was shown to be peeling the skin of fruit or trimming the outer layers of vegetables before cooking. Whilst this is the most effective, most of the vitamins may be stored close to the skin surface and so these are lost in this process.

Washing and soaking were sometimes effective and sometimes not. Washing causes less loss of nutrients and is less time consuming than peeling and it reduces the pesticide residue by a reasonable amount but it wasn’t always shown to be effective. How effective it could depended on the type of skin of the food. 

Blanching was another method that was explored. Blanching vegetables in boiling water for one minute loses less nutrients than cooking, whilst removing pesticides very efficiently.  

The results certainly give us food for thought in our meal preparation! 


Sustainability & Environment

The IHNV virus has spread worldwide and is fatal to salmon and rainbow trout – costing millions in sales of lost farmed fish. The current vaccination approach requires needle injection of fish, one by one. Now, however, Seattle-based Lumen Bioscience has come up with a new technology to make recombinant vaccines in a type of blue-green algae called Spirulina that costs pennies to produce and can be fed to fish in their feed.

To be effective, oral vaccines have not only to survive the gut environment intact but must also target the appropriate gut-associated immune cells. The approach developed by Lumen overcomes many of the problems with complex and expensive encapsulation strategies attempted in the past, according to CEO Brian Finrow.

fish gif

Originally posted by zandraart

‘[It] focuses on a new oral-vaccine platform [using] engineered Spirulina to express high amounts of target antigen in a form that is both provocative to the immune system – ie generates a desirable immune response that protects against future infection – and can be ingested orally without purification, in an organism that has been used as a safe food source for both humans and fish for decades.’

To produce the new oral vaccine, the Lumen researchers first developed a strain of Spirulina that manufactures recombinant proteins in its cell walls that the salmon immune system recognises as IHNV viruses. They then rapidly grew the strain in a large-scale indoor production system – requiring only light, water, salt and trace nutrients – and harvested and dried all the raw Spirulina biomass. This dried powder can then be fed to the fish.