Blog search results for Tag: green

Sustainability & Environment

Momentum for a post-pandemic ‘green recovery’ continues, as the UK government and the European Commission set out steps to accelerate their recoveries, while supporting the paths to net zero by 2050. Here we round-up just some of the initiatives announced in recent weeks to achieve these goals.

 Human hands holding earth globe and tree

Human hands holding earth globe and tree

Plans for preservation of biodiversity

Speaking on the 3rd June 2020, at the Organisation for Security and Cooperation in Europe (OSCE) Economic and Environmental Committee Meeting, the UK’s Second Secretary from the UK Delegation, Justin Addison, said; ‘As we recover, we have an opportunity to protect and restore nature, reducing our exposure to deadly viruses and climate impact.’

Highlighting the UK’s global outlook on addressing climate change, Addison added, ‘The UK will soon announce a £64 million package to support Colombia to tackle deforestation and build a cleaner and more resilient economy in areas affected by Covid-19 and conflict.’

smoke rising in rainforest

Originally posted by travelinglighttoday

As well as the UK’s efforts to preserve biodiversity, the European Commission will be looking to protect and restore biodiversity and natural ecosystems. Frans Timmermans, the European Commission’s Executive Vice President added that, ‘It can boost our resilience and prevent the emergence and spread of future virus outbreaks. We have now seen that this relationship between us and the natural environment is key to our health.’ 

 earth held in human hands

Earth held in human hands 

Enabling low-carbon solutions and boosting clean growth

EU:

In early June, a letter was sent to decision-makers across the European Union from more than 100 investors, urging the EU to ensure a green recovery from the covid-19 pandemic is delivered.

Investors are keen to ensure the government builds on The European Green deal to deliver a long term commitment that will accelerate the economy into one that is more green and carbon resilient post coronavirus.

The European Green deal, set out before the pandemic, details some of their targets including, a 50-55% emissions reduction by 2030; a climate law to reach net-zero emissions by 2050; a transition fund worth €100bn and a series of new sector policies to ensure all industries are able to decarbonise.

 A shoot of a plant and planet Earth

A shoot of a plant and planet Earth 

UK:

To boost clean growth, the UK Government has recently launched a £40 million Clean Growth Fund that will ‘supercharge green start-ups’.

This fund will enable UK clean growth start-ups to scale up low-carbon solutions and drive a green economic recovery.

Potential examples of projects the fund could support include areas in power and energy, buildings, transport and waste.

Business Secretary Alok Sharma said: ‘This pioneering new fund will enable innovative low-carbon solutions to be scaled up at speed, helping to drive a green and resilient economic recovery.’


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on Nickel.

Nickel, a silvery-white lustrous metal with a slight golden tinge may be commonly known as a US five cent coin, however, today nickel is one of the most widely used metals. According to the Nickel Institute, the metal is used in over 300,000 various products. It is also commonly used as a catalyst for hydrogeneration, cathodes for batteries and metal surface treatments.

 nickel coins

Nickel in batteries:

Historically, nickel has been widely used in batteries; nickel cadmium (NiCd) and in nickel metal hydride (NiMH) rechargeable batteries. These batteries were used in power tools and early digital cameras. Their success as batteries in portable devices became a stepping stone that led to the significant use of NiMH batteries in car vehicles, such as the Toyota Prius.

 nickel battery

The demand for nickel will increase even further as we move away from fossil fuel energy. More energy wll need to be stored in the cathode part of lithium-ion batteries as a result.

Socio-economic data on nickel demonstrates the importance the nickel value chain has on industries, which includes mining through end use to recycling.

The data reflects that globally, the nickel value chain supports a large number of jobs, primarily ones in manufacturing and chemical engineering. The output generated by nickel related industries is approximately €130bn, providing around 750,000 jobs.

 nickel machine

Nickel is fully recyclable without its qualities being downgraded, making it very sustainable. It is difficult to destroy and its qualities – corrosion resistance, high-temperature stability, strength, recyclability, and catalytic and electromagnetic properties are enabling qualities required for sustainability.

reduce reuse recycle gif

Originally posted by thesustainer


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on zinc and its contribution towards a sustainable future.  

image

Foods high in zinc: Evan Lorne

Zinc is a naturally occurring element, considered a ‘life saving commodity’ by the United Nations. As well as playing a fundamental role in the natural development of biological processes, it is also highly recyclable which means that once it has reached the end of its life cycle, it can be recycled, and returned to the cycle as a new source of raw material. Statistically, around 45% of zinc in Europe and in the United States is recovered and recycled once it has reached the end of its life cycle.

image

Circular and linear economy showing product life cycle:  Petovarga 

Circular economy is an economic model that focuses on waste reduction and ensuring a product that has reached its end cycle is not considered for disposal, but instead becomes used as a new source of raw material. Zinc fits this model; its lifecycle begins from mining and goes through a refining process to enable its use in society. Finally, it is recycled at the end of this process.

image

The production of zinc-coated steel mill: gyn9037

Zinc contributes to the planet in various ways:

1.  Due to its recyclable nature, it lowers the demand for new raw material

2.  As zinc provides a protective coating for steel, it extends the lifecycle of steel products

3.  Coating steel reduces carbon dioxide emissions

As reported by the Swedish Environmental Protection Agency, zinc uses the lowest energy on a per unit weight and per unit volume basis, (with the exception of iron). Only a small amount of zinc is needed to conserve the energy of steel, and during electrolytic zinc production, only 7% of energy is used for mining and mineral processing.

image

Green technology:  Petrmalinak

According to a new report published by The World Bank, ‘The Growing Role of Minerals and Metals for a Low-Carbon Future,’ a low carbon future and a rise in the use of green energy technologies will lead to an increased demand in a selected range of minerals and metals. These metals include aluminium, copper, lead, lithium, manganese, nickel, silver, steel, zinc and rare earth minerals. Hence, zinc will be one of the main metals to fill this demand.

Sustainability & Environment

In May 2018, the EU proposed a single-use plastics ban intended to protect the environment, save consumers money, and reduce greenhouse gas emissions. As part of the new laws, the EU aims for all plastic bottles to be recycled by 2025, and non-recyclable single-use items such as straws, cutlery, and cotton buds to be banned.

An ambitious step – and arguably necessary – but there is no denying that plastics are extremely useful, versatile and important materials, playing a role in countless applications.

The World’s Plastic Waste Could Bury Manhattan Two Miles Deep: How To Reduce Our Impact. Video: TIME

The challenge to science, industry and society is to keep developing, producing and using materials with the essential properties offered by the ubiquitous oil-based plastics of today – but improving the feedstocks and end-of-life solutions, and ensuring that consumers use and dispose of products responsibly.

A number of innovative solutions have been proposed to help plastics move towards a more sustainable future.


A sweet solution

 Deothymidine

Deothymidine is one of four nucleosides that make up the structure of DNA. Image: Karl-Ludwig Poggemann/Flickr

‘Chemists have 100 years’ experience with using petrochemicals as a raw material, so we need to start again using renewable feedstocks like sugars as a base for synthetic but sustainable materials,’ said Dr Antoine Buchard, a Whorrod Research Fellow at the University of Bath, UK.

Dr Buchard leads a group at the Centre for Sustainable Technologies at the University of Bath that are searching for a sustainable solution for single-use plastics. Using nature as their inspiration, the team have developed a plastic derived from thymidine – the sugar found in DNA – and CO2.


Sustainability & Environment

With a rapidly increasing population, the world is struggling to meet the demand for food, water, energy, and medicine. In 2011, the global population reached 7bn – approximately the amount of grains of sand you can fit it a post box, says Sir Martyn Poliakoff – and this number has since increased.

On Wednesday 25 April 2018 at his Public Evening Lecture, Sir Martyn discussed the role of photochemistry – the study of light’s effects on chemical reactions – in creating a greener and more sustainable society as essential resources deplete.

‘Chemists have to help address the sustainability challenges facing our society,’ he said. His research group at the University of Nottingham is proving that photochemistry can make an impact.

 

Fighting Malaria with Green Chemistry. Video: Periodic Videos

There are 1.3bn individuals in the world who are considered ‘profoundly’ poor. To define this Sir Martyn illustrated the profoundly poor ‘can, in their head, list everything they own’.

Today, there are more people worldwide that use mobile phones than toothbrushes. As no one wants to consume less, he asked: ‘Can we provide more for the poor without robbing the rich?’

Read the full article here....