Blog search results for Tag: healthcare

Health & Wellbeing

The week provides the opportunity for participants to promote overall awareness for the wide ranging aspects of wellbeing, including social, physical, emotional, financial, career and environmental. 

This week, 22-26 June, 2020 is World Wellbeing Week. The observance began in Jersey, the Channel Islands in 2019 and has since been taken up across the world.

 woman meditating

Wellbeing and healthy lifestyle concept

Since the beginning of the global lockdown, people have been encouraged to maintain some sort of physical activity or exercise. While it is known that exercise is beneficial for overall physical and mental health and wellbeing, researchers from the University of Cambridge and University of Edinburgh UK, have released a study in which they say that physical activity prevents 3.9 million early deaths each year.

Publishing their work in The Lancet Global Health the researchers said that there is often too much focus on the negative health consequences of poor levels of physical activity, when we should be celebrating what we gain from physical activity.

 Exercises and warm up before run

Exercises and warm up before run

Researchers from the Medical Research Council Epidemiology Unit at the University of Cambridge looked at previously published data for 168 countries which covered the proportion of the population meeting WHO global recommendation of at least 150 minutes of moderate-intensity throughout the week or 75 minutes of vigorous-intensity activity.

By combining these data, with estimates of the relative risk of dying early for active people compared to inactive people, the researchers were able to estimate the proportion of premature deaths that were prevented because people were physically active.

They found that globally, due to physical activity, the number of premature deaths was an average 15% lower than it would have been, equating to 3.9 million lives saved each year. Despite the considerable variation in physical activity levels between countries, the positive contribution of physical activity was remarkably consistent across the globe, with a broad trend towards a greater proportion of premature deaths averted for low and middle income countries.

 Hands holding red heart

Hands holding red heart representing healthy heart and wellbeing

The researchers argue that the debate on physical activity has often been framed in terms of the number of early deaths due to the lack of exercise, currently estimated at 3.2 million each year. But showing how many deaths are averted it might be possible to frame the debate in a positive way which could have benefits for policy and population messaging.

 Fitness session

Fitness session

Dr Tess Strain from the Medical Research Council Epidemiology Unit at the University of Cambridge  said; ‘We’re used to looking at the downsides of not getting enough activity – whether that’s sports or a gym or just a brisk walk after lunch time. But by focusing on the number of lives saved, we can tell a good news story of what is already being achieved…We hope our finding will encourage governments and local authorities to protect and maintain services in these challenging times.’


Health & Wellbeing

Macular degeneration is a leading cause of blindness – and emerging techniques to treat it could see the end of painful eye injections.

Macular degeneration

Of all places to have an injection, the eyeball is probably near the bottom of anybody’s list. Yet this is how macular degeneration – the leading cause of sight loss in the developed world – is commonly treated.

 Macular degeneration blurred vision

Individuals who have macular degeneration will have blurred or no vision in the center of their visual fields (as shown above).

In the UK, nearly 1.5m people are affected by macular disease, according to the Macular Society. In its commonest ‘wet’ form, macular degeneration is caused by the growth of rogue blood vessels at the back of the eye, due to over-production of a protein called vascular endothelial growth factor (VEGF).

The blood vessels leak, causing damage to the central part of the retina – the macula – and a loss of central vision. Regular injections of so-called anti-VEGF drugs help to alleviate the problem.

eye gif

Originally posted by f-u-g-i-t-i-v-o

As well as being time-consuming, these injections can be stressful and upsetting for sufferers, many of whom are elderly. Because the condition is prevalent among older people, it is usually referred to as age-related macular degeneration, or AMD.

However, a number of emerging treatments – including eye drops, inserts and a modified ‘contact lens’ – could spell the end of regular injections, and treat the condition less invasively.

Anatomy of the eye. Video: Handwritten Tutorials

At the same time, emerging stem cell therapy, which has reversed sight loss for two patients with the ‘dry’ form of macular degeneration, could find wider use within a few years.


Health & Wellbeing

Scientists are closer to developing 3D printed artificial tissues that could help heal bones and cartilage, specifically those damaged in sports-related injuries. Scaffolds for the tissues have been successfully engineered.

3d printer

Small injuries to osteochondral tissue – a hard bone that sits beneath a layer of cartilage that appears smooth – can be extremely painful and heal slowly. These injuries are very common in athletes and can stop their careers in their tracks. Osteochondral tissue can also lead to arthritis over time.

 injuries in athletes

These types of injuries are commonly seen in athletes.

As osteochondral tissue is somewhere between bone and cartilage, and is quite porous and very difficult to reproduce. But now, bioengineering researchers at Rice University, Texas, US, have used 3D printing techniques to develop a material that may be be suitable in future for medical use.

A porous scaffold, with custom polymer mixes for cartilage and ceramic for bone, was engineered. The imbedded pores allow cells and blood vessels from the patient to infiltrate, integrating the scaffold into the natural bone and cartilage.

running gif

Originally posted by operationenvy

‘For the most part, the composition will be the same from patient to patient,’ said Sean Bittner, graduate student at Rice University and lead author of the study.


Health & Wellbeing

Each year, the World Health Organisation celebrates World Heath Day, an international health awareness day which aims to draw attention particular health challenges across the world. The theme for 2019 is universal health coverage for everyone, everywhere.

world health day globe

In honour of World Health Day, held on 7 April 2019 annually, we have collated the five most innovative healthcare projects we have featured on SCI’s website over the past year. 


New cardiac MRI scan improves diagnostic accuracy

beating heart gif

Originally posted by medschoolgeek

Using 2D imaging techniques to diagnose problems with the heart can be challenging due to the constant movement of the cardiac system. Currently, when a patient undergoes a cardiac MRI scan they have to hold their breath while the scan takes snapshots in time with their heartbeat.

Still images are difficult to obtain with this traditional technique as a beating heart and blood flow can blur the picture. This method becomes trickier if the individual has existing breathing problems or an irregular heartbeat.


3D cell aggregates could improve accuracy of drug screening

 3d cell

An innovative new screening method using cell aggregates shaped like spheres may lead to the discovery of smarter cancer drugs, a team from the Scripps Research Institute, California, US, has reported.

The 3D aggregates, called spheroids, can be used to obtain data from potentially thousands of compounds using high throughput screening (HTS). HTS can quickly identify active compounds and genes in a specific biomolecular pathway using robotics and data processing.


Antibiotic combinations could slow resistance

 antibiotics

Several thousand antibiotic combinations have been found to be more effective in treating bacterial infections than first thought.

Antibiotic combination therapies are usually avoided when treating bacterial infections, with scientists believing combinations are likely to reduce the efficacy of the drugs used. Now, a group at UCLA, USA, have identified over 8,000 antibiotic combinations that work more effectively than predicted.


Mechanism that delays and repairs cancerous DNA damage discovered

 microscope

Researchers at the University of Copenhagen, Denmark, have identified a mechanism that prevents natural DNA errors in our cells. These errors can lead to permanent damage to our genetic code and potentially diseases such as cancer.

Mutations occurring in human DNA can lead to fatal diseases like cancer. It is well documented that DNA-damaging processes, such as smoking tobacco or being exposed to high levels of ultraviolet (UV) light through sunburn, can lead to increased risk of developing certain forms of cancer.


Alzheimer’s drugs made from Welsh daffodils

flowers gif

Originally posted by naturegifs

Treatments for Alzheimer’s disease can be expensive to produce, but by using novel cultivation of daffodils one small Welsh company has managed to find a cost-effective production method of one pharmaceutical drug, galanthamine.

Alzheimer’s disease is a neurodegenerative disease with a range of symptoms, including language problems, memory loss, disorientation and mood swings. Despite this, the cause of Alzheimer’s is very understood. The Alzheimer’s disease drug market is currently worth an estimated US$8bn.


Sustainability & Environment

Scientists studying DNA in soil samples from Svalbard in the High Arctic have discovered a surprisingly large number of clinically-important antibiotic resistance genes. In total, 131 antimicrobial resistance genes were identified, while five out of eight sites had abundant multidrug resistance genes.

 The Svalbard Islands

The Svalbard Islands are in Northern Norway.

The finding is all the more unexpected as the team was seeking a virgin environment to try and establish what a background level of antimicrobial resistance in soil bacteria looks like. 

 soil bacteria

Scientists found genes important to antimicrobial resistance in soil bacteria.

‘We took 40 samples to give us an idea of what the baseline of resistance might look like in nature, but we were surprised by how different the sites were from each other,’ says lead scientist David Graham at Newcastle University. Areas with high wildlife or human impact had greatest diversity of resistance DNA in the soil.

The results show that antibiotic resistance genes are accumulating even in the most remote locations. Included in a number of samples was a multidrug resistant gene called New Dehli strain, first isolated in India.

Newcastle University find antibiotic resistant genes in Arctic. Video: Newcastle University

Some sites had levels of antimicrobial resistance 10 times greater than others, particularly those with elevated levels of phosphorus, a nutrient usually scarce in Arctic soils. 

‘There was much greater resistance diversity in sites with strong signatures of faecal matter,’ says Graham, indicating that migratory birds most likely brought the antimicrobial resistance genes, depositing them via their guano.


Health & Wellbeing

Roughly 60% of the 12 million animal experiments in Europe each year involve mice. But despite their undoubted usefulness, mice haven’t been much help in getting successful drugs into patients with brain conditions such as autism, schizophrenia or Alzheimer’s disease. So too have researchers grown 2D human brain cells in a dish. However, human brain tissue comprises many cell types in complex 3D arrangements, necessary for true cell identity and function to emerge.

Researchers are hopeful that lab grown mini-brains – tiny 3D tissues resembling the early human brain – may offer a more promising approach. ‘We first published on them in 2013, but the number of brain organoid papers has since skyrocketed, with 300 just last year,’ says Madeline Lancaster at the Medical Research Council’s Laboratory of Molecular Biology lab in Cambridge, UK.

 pippette and petri dish

Lancaster was the first to grow mini-brains – or brain organoids – as a postdoc in the lab of Juergen Knoblich at the Institute of Molecular Biotechnology in Vienna, Austria. The miniature brains comprised parts of the cortex, hippocampus and even retinas, resembling a jumbled-up brain of a human foetus.

‘We were stunned by how similar the events in the organoids were to what happens in a human embryo,’ says Knoblich. To be clear, the brain tissue is not a downsized replicate. Lancaster compares the blobs of tissue to an aircraft disassembled and put back together, with the engine, cockpit and wings in the wrong place.

Growing mini brains to discover what makes us human | Madeline Lancaster. Video: TEDx Talks  

‘The plane wouldn’t fly, but you can study each of those components and learn about them. This is the same with brain organoids. They develop features similar to the human brain,’ she explains.


Health & Wellbeing

Biopharmaceuticals are sourced from living organisms.

Researchers at Massachusetts Institute of Technology (MIT), US, have developed a portable drug manufacturing system that can make several different biopharmaceuticals to be used in precision medicine or to treat outbreaks in developing countries.

Biopharmaceuticals are drugs made up of proteins such as antibodies and hormones, and are produced in bioreactors using bacteria, yeast or mammalian cells. They must be purified before use, so the process has dozens of steps and it can therefore take weeks or months to produce a batch.

The Challenges in Manufacturing Biologics. Video: Amgen  

Due to the complex nature of the process and its time restrictions, biopharmaceuticals are usually produced at large factories dedicated to a single drug – often one that can treat a wide range of patients.

To help supply smaller, more specific groups of patients with drugs, a group of researchers at MIT have developed a system that can be easily configured to produce three different pharmaceuticals – human growth factor, interferon alpha 2b and granulocyte colony-stimulating factor – all of a comparable quality to commercially available counterparts.

 old man with walking stick

Biopharmaceuticals can treat autoimmune diseases, such as arthritis. Image: Pixabay

‘Traditional biomanufacturing relies on unique processes for each new molecule that is produced,’ said J Christopher Love, a Chemical Engineering Professor at MIT’s Koch Institute for Integrative Cancer Research. ‘We’ve demonstrated a single hardware configuration that can produce different recombinant proteins in a fully automated, hands-free manner.’


Careers

Each year SCI’s Scotland group runs a competition where students are invited to write a short article describing how their PhD research relates to SCI’s strapline: where science meets business.

Jack Washington (right), a Pure and Applied Chemistry PhD student at the University of Strathclyde, was the overall winner of this year’s competition. His article ‘Clavulanic acid - The fight against antibiotic resistance’ is reproduced here:

Clavulanic acid - The fight against antibiotic resistance

 The molecular structure of clavulanic acid

The molecular structure of clavulanic acid. Image: Wikimedia Commons

If you were to say that cancer is the biggest threat to public health you would be wrong.

One of the most pre-eminent risks to human existence is antibiotic resistance. Antibiotics are medicines used to fight bacterial infections. However, bacteria are fighting back at an alarming rate. Without effective antibiotics, we could live in a world where infections borne from a simple wound could be deadly. Routine surgeries would no longer be possible. Whilst this bacterial apocalypse seems drastic, it’s a very real possibility, and one we could face in the near future.

 Alexander Fleming

Alexander Fleming. Image: Wikimedia Commons

Antibiotics are part of a multibillion-pound industry and are essential for life as we know it today. In 1928, the scientist Alexander Fleming, from Ayrshire in Scotland, serendipitously discovered penicillin. This chance discovery revolutionised the treatment of bacterial infections and spurred a wealth of antibiotic research. 88 years later, in the nearby town of Irvine, I started my PhD project in this field.

Penicillin is a β-lactam antibiotic, which made up of molecules containing a chemical entity known as a β-lactam. This β-lactam is a covalent warhead – a harpoon that grips its bacterial victim and doesn’t let go. This harpoon interrupts bacterial cell wall formation, causing the bacteria to rupture and die. 

Maryn McKenna: What do we do when antibiotics don’t work any more? Video: TED

However, bacteria can retaliate by producing aggressive enzymes that destroy this warhead. Another member of the β-lactam family, clavulanic acid, can thwart these enzymes. Clavulanic acid has weak antibiotic activity on its own so is used in a double act with another antibiotic, amoxicillin, to fight antibiotic-resistant bacteria as a team.

 

Health & Wellbeing

The field of regenerative medicine is at a ‘pivotal point’ in its development, according to a panel of experts speaking at the Bio meeting in Boston in June 2018. 

The past six months alone saw four new product approvals, which could be the ‘beginning of a large number of successes’, said moderator Morrie Ruffin, Managing Director of the Alliance for Regenerative Medicine, which now has over 300 members.

Clinical results emerging from cell therapies over the next two years will be comparable with the successes seen with CAR-T cancer therapies, predicts Mike Scott, Vice-President of Product development at Toronto-based Blue Rock Therapeutics, whose lead product uses pluripotent stem cells to grow new neurons that restore the lost dopamine function in Parkinson’s patients.

neurons gif

Originally posted by palerlotus

‘The area of regenerative medicine allows us to do something audacious: to strive for cures. If you think of CAR-T and gene therapies, there’s every reason to say we can achieve the same with regenerative medicines,’ agreed Felicia Pagliuca, Co-Founder of Boston biotech company Semma Therapeutics. 

Semma aims to replace the lost pancreatic beta cells of patients with Type 1 diabetes with its insulin producing equivalents grown in the lab. The technology is currently at preclinical stage.

 Regenerative medicine

Regenerative medicine could help to treat diseases like type 1 diabetes, in which pancreatic cells function abnormally. Image: Pixabay

Storing placental and cord blood cells at birth may no longer be necessary in the future, the researchers suggested. Traditional stem cell therapy approaches have used mesenchymal stem cells from these sources to regrow tissues and organs by differentiation into multiple cell types. However, newer technologies are increasingly making new cell types from pluripotent stem cells generated directly from adult cells such as skin.

 

Sustainability & Environment

With a rapidly increasing population, the world is struggling to meet the demand for food, water, energy, and medicine. In 2011, the global population reached 7bn – approximately the amount of grains of sand you can fit it a post box, says Sir Martyn Poliakoff – and this number has since increased.

On Wednesday 25 April 2018 at his Public Evening Lecture, Sir Martyn discussed the role of photochemistry – the study of light’s effects on chemical reactions – in creating a greener and more sustainable society as essential resources deplete.

‘Chemists have to help address the sustainability challenges facing our society,’ he said. His research group at the University of Nottingham is proving that photochemistry can make an impact.

 

Fighting Malaria with Green Chemistry. Video: Periodic Videos

There are 1.3bn individuals in the world who are considered ‘profoundly’ poor. To define this Sir Martyn illustrated the profoundly poor ‘can, in their head, list everything they own’.

Today, there are more people worldwide that use mobile phones than toothbrushes. As no one wants to consume less, he asked: ‘Can we provide more for the poor without robbing the rich?’

Read the full article here....

Materials

The eighth in its series, the Kinase 2018: towards new frontiers 8th RSC/SCI symposium on kinase design took place at the Babraham Institute, Cambridge – a world-leading biomedical science research hub.  

The focus of the event was to provide a space for the discussion of the ever-evolving kinase inhibitor landscape, including current challenges, opportunities and the road ahead.

A kinase is an enzyme that transfers phosphate groups to other proteins (phosphorylation). Typically, kinase activity is perturbed in many diseases, resulting in abnormal phosphorylation, thus driving disease. Kinases inhibitors are a class of drug that act to inhibit aberrant kinases activity.

Cell signalling: kinases & phosphorylation. Image: Phospho Biomedical Animation

Over 100 delegates from across the world working in both academia and industry attended the event, including delegates from GlaxoSmithKline, AstraZeneca, Genentech, and Eli Lilly and Co.

The event boasted world-class speakers working on groundbreaking therapeutics involving kinase inhibitors, including designing drugs for the treatment of triple negative breast cancer, complications associated with diabetes, African sleeping sickness and more.


How can kinase inhibitors revolutionise cancer treatment?

 Tsetse flies

Tsetse flies carry African sleeping sickness. Image: Oregon State University/Flickr

The keynote speaker, Prof Klaus Okkenhaug from Cambridge University, spoke about how the immune system can be manipulated to target and kill cancer cells by using kinase inhibitors.

Klaus is working on trying to better understand the effects of specific kinase inhibitors on the immune system in patients with blood cancer.

He also explored how his work can benefit those with APDS, a rare immunodeficiency disorder, which he helped to elucidate on a molecular level.


Solving graft rejection, one kinase at a time

 Organ grafts

Organ grafts are a surgical procedure where tissue is moved from one site in the body to another. Image: US Navy

Improving tolerance to organ grafts is at the forefront of transplantation medicine. James Reuberson from UCB Pharma UK, highlighted how kinase inhibitors can be utilised to improve graft tolerance.  

James took the delegates on a journey, describing the plight of drug discovery and development, highlighting the challenges involved in creating a drug with high efficacy. While still in its infancy, James’ drug shows potential to prolong graft retention.


Health & Wellbeing

An innovative new screening method using cell aggregates shaped like spheres may lead to the discovery of smarter cancer drugs, a team from the Scripps Research Institute, California, US, has reported.  

The 3D aggregates, called spheroids, can be used to obtain data from potentially thousands of compounds using high throughput screening (HTS). HTS can quickly identify active compounds and genes in a specific biomolecular pathway using robotics and data processing.

 A spheroid under a confocal microscope

A spheroid under a confocal microscope. Image: Kota et al./The Scripps Research Institute  

The spheroids – 100 to 600 microns thick in diameter – spread in a similar way to cancer cells in the body and are therefore more effective in identifying potential cancer drugs, the team hypothesises.

For this study, the team focused on KRAS – a gene belonging to the RAS family. It is estimated these genes account for one-third of all cancers.

 Robots handle assays in a HTS system

Robots handle assays in a HTS system. Image: NIH/Flickr

DOI: 10.1038/s41388-018-0257-5


Sustainability & Environment

Water scarcity is a truly global problem, affecting each continent and a total of 2.8bn people across the world. By 2025, 15% of the global population will not have access to sufficient water resources.

Water usage is expected to grow by 40% in the coming 20 years as demand grows from industry and agriculture, driven by accelerating population growth and increased urbanisation.

train gif 3

Originally posted by skunkandburningtires

Insufficient water supply affects the health of children disproportionally, as a decrease in food and nutrient intake can lead to problems with growth and an individual’s immune system.

A shortage of water can lead to communities relying on poorly sanitised water, allowing infections that can cause diarrhoea and intestinal parasites. Both can be deadly in areas without access to quality healthcare.

 A family in Somalia collects their daily water allowance

A family in Somalia collects their daily water allowance. Image: Oxfam International/Flickr

But it is not only a scarcity of clean drinking water that presents a global health challenge – the agriculture industry relies on an increasing supply of fresh water for food production. It is estimated that the number of crops such as wheat, rice, and maize will decrease by 43% by the end of the 21st century.

Agriculture accounts for 70% of the world’s water use, and is constantly competing with domestic and industrial uses for an already dwindling water supply. The World Wide Fund for Nature claims that many countries, such as the US, China, and India, have already reached their renewable water resource limits.

 stacking hay

Agriculture is responsible for 70% of the world’s water usage. 

The most popular current desalination methods – the process by which salt and minerals are removed from water – are thermal and membrane desalination. Both are energy-intensive and often not cost-efficient for developing countries, which are the most likely to struggle with poor water sanitation and shortages.

As a result, both the healthcare and agricultural industries are desperately searching for a solution.


Graphene membrane

 A grapheneoxide membrane

A graphene-oxide membrane is at the forefront of new water filtration techniques. Image: University of Manchester

In Manchester, UK, the development of graphene – a material comprised of a single-layer of carbon in a honeycomb structure – is revolutionising modern membrane desalination and water filtration techniques.

An ultra-thin graphene-oxide membrane developed at the University of Manchester is not only able to separate water and salt – proving to be completely impermeable to all solvents but water – but other compounds as well.

 

A reverse osmosis desalination plant. Image: James Grellier/Wikimedia Commons

The technology – called organic solvent nanofiltration – separates organic compounds by charge and can differentiate solvents by the nanometre. The group tested the membranes using alcohol, such as whisky and cognac, and various dyes with successful results.

‘The developed membranes are not only useful for filtering alcohol, but the precise sieve size and high flux open new opportunities to separate molecules from different organic solvents for chemical and pharmaceutical industries,’ said Rahul Nair, team leader at the National Graphene Institute and Professor of Chemical Engineering and Analytical Science at the University of Manchester.

‘This development is particularly important because most of the existing polymer-based membranes are unstable in organic solvents, whereas the developed graphene-oxide membrane is highly stable.’

Graphene: Membranes and their practical applications. Video: The University of Manchester - The home of graphene

The graphene-oxide membrane is made up of sheets that are stacked in a way that creates pinholes connected by graphene nanochannels. The structure forms an atomic-scale sieve allowing the flow of solvents through the membrane.

Not only is the technology able to filter smaller molecules than existing filtration techniques – it also improves filtration efficiency by increasing the solvent flow rate.

‘Chemical separation is all about energy, with various chemical separation processes consuming about half of industrial energy usage,’ said Prof Nair. ‘Any new efficient separation process will minimise the consumption of energy, which is in high demand now.’



Health & Wellbeing

The US is in the midst of a healthcare epidemic. Tens of thousands of people are dying each year from opioid drugs, including overdoses from prescription painkillers such as OxiContin (oxycodone) and the illicit street drug heroin, and each year the numbers rise.

The opioid epidemic is currently killing almost twice as many people as shootings or motor vehicle accidents, with overdoses quadrupling since 1999. According to Gary Franklin, medical director of the Washington State Department of Labour and Industries and a professor of health at the University of Washington, the opioid epidemic is ‘the worst man-made epidemic in modern medical history in the US’.

 Montgomery Ohio

Montgomery, Ohio, is at the centre of the epidemic, with the most opioid-related deaths per capita this year. Image: Wikimedia Commons

Incredibly, an influx of synthetic opioids is making the problem worse. Fentanyl, a licensed drug to treat severe pain, is increasingly turning up on the street as illicit fentanyl, often mixed with heroin. According to the NCHS, fentanyl and synthetic opioids are blamed for 20,145 of the 64,070 overdose deaths in 2016. Heroin contributed to 15,446 deaths, while prescription opioids caused 14,427.


Potent opioid

Fentanyl (C22H28N20), a lipophilic phenylpiperidine opioid agonist, is generally formulated as a transdermal patch, lollipop and dissolving tablet. Like the opioids derived from opium poppies, such as morphine, fentanyl binds to opioid receptors in the brain and other organs of the body, specifically the mu-receptor.

 opium poppy

Heroin and other opioids come from the opium poppy.  Image: Max Pixel

Such binding mimics the effects of endogenous opiates (endorphins), creating an analgesic effect, as well as a sense of well-being when the chemical binds to receptors in the rewards region in the brain. Drowsiness and respiratory depression are other effects, which can lead to death from an overdose.


Rise of illicit fentanyl

The opioid epidemic can be traced back to the 1990s when pharmaceutical companies began producing a new range of opioid painkillers, including oxycodone, touting them as less prone to abuse. In addition, prescribing rules were relaxed, while advocates championed the right to freedom from pain. Soon, opioids were being prescribed at alarming rates and increasing numbers of patients were becoming hooked.

 

Why is there an opioid crisis? Video: SciShow

Franklin, who was the first person to report in 2006 on the growing death rate from prescribed opioids, says: ‘OxyContin is only a few atoms different to heroin – I call it pharmaceutical heroin.’

A crackdown on prescribing was inevitable. But then, with a shortage of prescription opioids, addicts turned to illicit – and cheaper – heroin. According to Franklin, 60% of heroin users became addicted via a prescribed opioid. ‘You don’t have to take these drugs for very long before it’s very hard to get off,’ he says: ‘Just days to weeks.’ Heroin use soared and with it increased tolerance, leading users to seek out more potent highs. By 2013, there were almost 2m Americans struggling with an opioid-use disorder.


Drugs to fight drugs

 public health emergency

President Trump declared the opioid crisis a public health emergency in October. Image: Pixabay 

Attention is finally being given to the epidemic. US president Donald Trump recently declared a public health emergency, although no new funds will be assigned to deal with the crisis.

There is particular interest around research into a vaccine against fentanyl. Developed by Kim Janda at The Scripps Research Institute, California, US, the vaccine, which has only been tested in rodents, can protect against six different fentanyl analogues, even at lethal doses. ‘What we see with the epidemic, is the need to find alternatives that can work in conjunction with what is used right now,’ he says.

This vaccine could treat heroin addiction. Video: Seeker

The vaccine works by taking advantage of the body’s immune system to block fentanyl from reaching the brain. Its magic ingredient is a molecule that mimics fentanyl’s core structure, meaning the vaccine trains the immune system to recognise the drug and produce antibodies in its presence. These antibodies bind to fentanyl when someone takes the drug, which stops it from reaching the brain and creating the ‘high’.

 

Science & Innovation

The second annual Huxley Summit, run by the British Science Association, aimed to explore The will of the people? Science and innovation in a post-truth world. The leadership event invites delegates from political, academic, and corporate backgrounds to debate key scientific themes that present social challenges for the 21st Century.

A running debate throughout the day was the use of big data and the rise of artificial intelligence, with a panel of experts ready to discuss the problems of the present and the immediate future.


Protect your privacy

image

Online shopping is one of the ways consumers share their personal information. Image: Shutterstock

Big data is a topic that the public engages with every day, sometimes without knowing it. Each time you buy some new shoes, even book an appointment at the GP online, you are sharing data.

Banks can now reportedly predict when a couple is about to get divorced, based on how much a husband lowers his wife’s credit limit in the months leading to the split, said Pippa Malmgren, founder of H Robotics.

image

Originally posted by hollywoodmarcia

While a funny anecdote, facts like this are part of ongoing concerns over the ethics of data use. Should artificial intelligence be programmed to find facts like these if a person isn’t willing for their data to be used in this way?

The lack of regulation of big data and understanding of the importance of our personal information means data can sometimes be misused. ‘PayPal’s data agreement is 36,000 words. All of Hamlet is 30,000. So the quick click we do to accept T&C’s makes all of us liars,’ said Richard Thomas, who was the UK’s first Information Commissioner, from 2002-09.


Data breach

Chi Onwurah speaking at the 2017 Huxley Summit. Video: British Science Association

There are arguments that we are too late in the game when implementing data regulations, said the panel. After years of sharing data, it is only now, after several major controversies, that the government is seriously considering penalties for companies that do not inform customers about data breaches.

Uber’s recent infamous coverup and the security breach of all 3 billion Yahoo accounts are just two well-known examples. Companies should no doubt be responsible for informing their customers when they have been hacked, agreed the panel, but are they liable for the breach itself? These are the questions that need to be explored immediately, said Chi Onwurah, Shadow Science Minister.

image

The Uber hack reportedly affected 57,000 customers and drivers. Image: Wikimedia Commons 

So, ‘how do we deal with the politics of data?’ said Azeem Azhar, a strategist and analyst known for his technology newsletter Exponential View. ‘And how do we make sure that these automated systems facilitate to build a world that we want from the data we’ve given it, not merely reinforce the world that we have?’


A better world

One of the great advantages of data sharing will be in healthcare, said Azhar. It has been reported that the average human body contains nearly 150tr GB of information – the equivalent of 75bn 16GB iPads.

How big data could transform the healthcare industry. Video: HuffPost

With greater access to this huge data resource, healthcare experts could develop systems that can accurately predict the occurrence of disease and revolutionise treatments for patients. The NHS already has a running data management hub – a collaborate effort funded by the National Institute for Health Research, among others – that researchers and staff use to access secure data for R&D.

While a costly and time-consuming task today, it is these breakthroughs that will make the difference in the societies of the future.

Careers

The second annual Huxley Summit, run by the British Science Association, aimed to explore The will of the people? Science and innovation in a post-truth world. The leadership event invites delegates from political, academic, and corporate backgrounds to debate key scientific themes that present social challenges for the 21st Century.

A running debate throughout the day was the use of big data and the rise of artificial intelligence, with a panel of experts ready to discuss the problems of the present and the immediate future.


Protect your privacy

 Online shopping

Online shopping is one of the ways consumers share their personal information. Image: Shutterstock

Big data is a topic that the public engages with every day, sometimes without knowing it. Each time you buy some new shoes, even book an appointment at the GP online, you are sharing data.

Banks can now reportedly predict when a couple is about to get divorced, based on how much a husband lowers his wife’s credit limit in the months leading to the split, said Pippa Malmgren, founder of H Robotics.

phone call gif

Originally posted by hollywoodmarcia

While a funny anecdote, facts like this are part of ongoing concerns over the ethics of data use. Should artificial intelligence be programmed to find facts like these if a person isn’t willing for their data to be used in this way?

The lack of regulation of big data and understanding of the importance of our personal information means data can sometimes be misused. ‘PayPal’s data agreement is 36,000 words. All of Hamlet is 30,000. So the quick click we do to accept T&C’s makes all of us liars,’ said Richard Thomas, who was the UK’s first Information Commissioner, from 2002-09.


Data breach

Chi Onwurah speaking at the 2017 Huxley Summit. Video: British Science Association

There are arguments that we are too late in the game when implementing data regulations, said the panel. After years of sharing data, it is only now, after several major controversies, that the government is seriously considering penalties for companies that do not inform customers about data breaches.

Uber’s recent infamous coverup and the security breach of all 3 billion Yahoo accounts are just two well-known examples. Companies should no doubt be responsible for informing their customers when they have been hacked, agreed the panel, but are they liable for the breach itself? These are the questions that need to be explored immediately, said Chi Onwurah, Shadow Science Minister.

 The Uber hack

The Uber hack reportedly affected 57,000 customers and drivers. Image: Wikimedia Commons 

So, ‘how do we deal with the politics of data?’ said Azeem Azhar, a strategist and analyst known for his technology newsletter Exponential View. ‘And how do we make sure that these automated systems facilitate to build a world that we want from the data we’ve given it, not merely reinforce the world that we have?’


A better world

One of the great advantages of data sharing will be in healthcare, said Azhar. It has been reported that the average human body contains nearly 150tr GB of information – the equivalent of 75bn 16GB iPads.

How big data could transform the healthcare industry. Video: HuffPost

With greater access to this huge data resource, healthcare experts could develop systems that can accurately predict the occurrence of disease and revolutionise treatments for patients. The NHS already has a running data management hub – a collaborate effort funded by the National Institute for Health Research, among others – that researchers and staff use to access secure data for R&D.

While a costly and time-consuming task today, it is these breakthroughs that will make the difference in the societies of the future.

Materials

Platinum is one of the most valuable metals in the world. Precious and pretty, it’s probably best known for jewelry – and that is almost certainly its oldest use. But its value has become far greater than its decorative ability; today, platinum powers the world. From agriculture to the oil markets, energy to healthcare, we use platinum far more than we realise.


1. Keep the car running

 fuel

Platinum is needed to make fuel for transport. Image: Pixabay

Platinum catalysts are crucial in the process that converts naphtha into petrol, diesel, and jet-engine fuel, which are all vital to the global economy. The emissions from those petroleum fuels, however, can be toxic, and platinum is also crucial in the worldwide push to reduce them through automotive catalytic converters. In fact, 2% of global platinum use in 2016 was in converting petroleum and 41% went into reducing emissions – a circle of platinum use that’s more impressive than a ring.


2. Feed the world

 fertilisers

Nitric acid is a by-product of platinum which is used in fertilisers. Image: Pixabay

Another vital global sector that makes use of platinum catalysts is agriculture. Without synthetic fertilisers, we would not be able to produce nearly as much food as we need. Nitric acid is essential for producing those fertilisers and platinum is essential for producing nitric acid. Since 90% of the gauzes required for nitric acid are platinum, we may need to use more of it as we try to meet the global food challenge.


3. Good for your health

 A pacemaker

A pacemaker. Image: Steven Fruitsmaak@Wikimedia Commons 

Platinum is extremely hard wearing, non-corrosive, and highly biocompatible, making it an excellent material to protect medical implants from acid corrosion in the human body. It is commonly used in pacemakers and stents. It is also used in chemotherapy, where platinum-based chemotherapeutic agents are used to treat up to 50% of cancer patients.


4. The fuel is clean

london gif

Originally posted by jig-r

In addition to powering the cars of the present and reducing their environmental impact, platinum might well be crucial to the future of transport in the form of fuel cells. Platinum catalysts convert hydrogen and oxygen into clean energy, with water the only by-product.


5. Rags to riches

 The Spaniards

The Spaniards invaded the Inca Empire, South America, in 1532. Painted by Juan B Lepiani. Image: MALI@Wikimedia Commons

Amazingly, despite all this, platinum was once considered worthless - at least in Europe. In fact, it was considered a nuisance by the Spanish when they first discovered it in South America - as a corruption in the alluvial deposits they were earnestly mining and they would quite literally throw it away. It wasn’t until the 1780s that the Spanish realised it might have some value.

Because platinum is essential to so many aspects of our economy, there are concerns about supply meeting demand – particularly as nearly 80% is currently mined in South Africa, which has seen its mining industry repeatedly crippled by strikes in recent years. 

 Two Rivers platinum mine

Two Rivers platinum mine, South Africa. Image: Wikimedia Commons

Some believe the solution to the issue of supply is space mining, arguing the metal could be found in asteroids.

Others, such as researchers at MIT, are working to create synthetic platinum, using more commonly found materials. Neither approach is guaranteed to work but, given our increasing dependence on this precious metal, we could be more reliant on their success than we realise.

 

Health & Wellbeing

Around 10 million medical devices are implanted each year into patients, while one-third of patients suffer some complication as a result. Now, researchers in Switzerland have developed a way to protect implants by dressing them in a surgical membrane of cellulose hydrogel to make them more biocompatible with patients’ own tissues and body fluids.  

‘It is more than 60 years since the first medical implant was implanted in humans and no matter how hard we have tried to imitate nature, the body recognises the implant as foreign and tends to initiate a foreign body reaction, which tries to isolate and kill the implant,’ says Simone Bottan at, who leads ETH Zurich spin-off company Hylomorph.

 Hylomorph

Hylomorph is a spin-off company of ETH Zurich, Switzerland. Image: ETH-Bibliothek@Wikimedia Commons

Up to one-fifth of all implanted patients require corrective intervention or implant replacement due toan immune response that wraps the implant in connective tissue (fibrosis), which is also linked with infections and can cause patients pain. Revision surgeries are costly and require lengthy recovery times.

The new membrane is made by growing bacteria in a bioreactor on micro-engineered silicone surfaces, pitted with a hexagonal arrangement of microwells. When imprinted onto the membrane, the microwells impede the formation of layers of fibroblasts and other cells involved in fibrosis.

 pacemaker

25,000 people in the UK have a pacemaker fitted each year. Image: Science Photo Library

The researchers ‘tuned’ the bacteria, Acetobacter xylinum, to produce ca 800 micron-thick membranes of cellulose nanofibrils that surgeons can wrap snuggly around implants. The cellulose membranes led to an 80% reduction of fibrotic tissue thickness in a pig model after six weeks, according to a study currently in press. Results after three and 12 months should be released in January 2018.

It is hoped the technology will receive its first product market authorisation by 2020. First-in-man trials will focus on pacemakers and defibrillators and will be followed by breast reconstruction implants. The strategy will be to coat the implant with a soft cellulose hydrogel, consisting of 98% water and 2% cellulose fibres.  

The membrane will improve the biocompatibility of implants. Video: Wyss Zurich

‘Fibrosis of implantables is a major medical problem,’ notes biomolecular engineer Joshua Doloff at Massachusetts Institute of Technology, adding that many coating technologies are under development.

‘[The claim] that no revision surgery due to fibrosis will be needed is quite a strong claim to make,’ says Doloff, who would also like to see data on the coating’s robustness and longevity.

The silicone topography is designed using standard microfabrication techniques used in the electronics industry, assisted by IBM Research Labs.