We use cookies to ensure that our site works correctly and provides you with the best experience. If you continue using our site without changing your browser settings, we'll assume that you agree to our use of cookies. Find out more about the cookies we use and how to manage them by reading our cookies policy.
In this round-up we will be looking at some of the developments and challenges surrounding artificial intelligence.
Development and Collaborations
The Organisation for Economic Development (OECD) has launched its Artificial Intelligence (AI) Observatory, which aims to help countries encourage, nurture and monitor the responsible development of trustworthy AI systems for the benefit of society.
The Observatory works with policy communities across and beyond the OECD - from the digital economy and science and technology policy, to employment, health, consumer protection, education and transport policy – considering the opportunities and challenges posed by current and future AI developments in a coherent, holistic manner.
The AI Observatory is being built on evidence-based analysis and provides a centre for the collection and sharing of information on AI, leveraging the OECD’s reputation for measurement methodologies. The Observatory will also engage a wide spectrum of stakeholders from the technical community, the private sector, academia, civil society and other international organisations, providing a hub for dialogue and collaboration.
According to a report produced by the European Institute of Innovation and Technology (EIT) Health and The McKinsey Centre for Government (MCG), AI can increase productivity and the efficiency of care delivery, allowing healthcare systems to provide better outcomes for patients.
The WHO estimates that by 2030 the world will be short of 9.9 million doctors, nurses and midwives, which adds to the challenges faced by an already overburdened healthcare system. Supporting the widespread adoption and scaling of AI could help alleviate this shortfall, the report says, by streamlining or even eliminating administrative tasks, which can occupy up to 70% of a healthcare professional’s time.
The issues highlighted, among others, means that ‘AI is now ‘top-of-mind’ for healthcare decision makers, governments, investors and innovators and the EU itself,’ the report states.₁
To fully unlock the potential and capabilities of AI, there is an urgent need to attract and up-skill a generation of data-literate healthcare professionals.
Sustainable Development
Artificial intelligence (AI) is influencing larger trends in global sustainability. Many communities in developing nations do not have access to clean water, which impacts health and has economic and environmental implications.
AI has the capacity and ability to adapt and process large amounts of data in real time. This makes it an ideal tool for managing water resource, whereby utility managers can maximise current revenue, effectively forecasting and planning for the years ahead.
Currently, the development of AI is accelerating, but legal and ethical guidelines are yet to be implemented. In order to prepare the future generations of business leaders and national and international policy makers, the academic community will be playing a large role in this.
It has been a year since Prime Minister Theresa May announced the launch of the Industrial Strategy Challenge Fund at CBI’s annual conference. At the time, May said the fund would ‘help to address Britain’s historic weakness on commercialisation and turning our world-leading research into long-term success’.
Since then, Innovate UK has worked closely with the government and research councils to identify the great innovation challenges the UK faces.
‘Innovate UK have been in this right from the very beginning,’ said Ruth McKernan, Chief Executive of Innovate UK, speaking at Innovate 2017. McKernan explained that the organisation has held several engagement events to find out what ‘industry and researchers see as the challenges of the future and where economic growth can be developed in the UK’.
The first three challenges sponsored by the Industrial Strategy Challenge Fund were announced in April this year: The Faraday challenge, medicines manufacturing, and robotics and autonomous systems.
Andrew Tyrer, Interim Director of Robotics and Autonomous Systems is now responsible for the £69m investment into research on AI in extreme conditions.
Research projects in this cohort include robotics in deep mining, space exploration, and off-shore energy. ‘One of the challenges is that you cannot put people in these environments,’ he said.
Space is just one of the dangerous environments being researched in robotics projects.Image: NASA
However, the UK does not currently have the research capacity to access the global market, Tyrer explained. For example, he said ‘the nuclear decommissioning market in five years will be at £150bn a year in Europe alone’ – a market the UK is currently struggling to make an impact.
‘The programme is about taking academic and business excellence, linking those value chains together, and building those industries,’ Tyrer said.
On the other end of the spectrum, is the Faraday Challenge – a ‘commitment’ to research into the battery development of driverless cars and an area of research the UK has already seen success in – headed by Jacqui Murray and Kathryn Magnay.
The UK have pledged to have all petrol and diesel vehicles off roads by 2040. Image: Wikimedia Commons
‘Automotive has been a real success story in the UK in the last 10 years,’ said Murray, with the UK reaching ‘world-class’ in productivity levels.
However, there are ways the UK needs to improve, said Magnay. ‘In the UK we have a huge gap between the research that we do and how you scale that up in the manufacturing process,’ she said.
This is the inspiration for the upcoming £65m Faraday Battery Institute, which will serve as a hub for universities, as well as other academic institutions and industry partners, to further their science. Magnay said that Innovate UK wants to ‘provide a facility that companies and researchers can go to and take their ideas to trial them at scale’.
Will smart energy solutions be the next challenge?
Further challenges under the Industrial Strategy Challenge Fund are currently unknown, although there are rumours of an early 2018 announcement. Which challenge will be next?
Artificial intelligence (AI) – the ability of any man-made device to perceive its environment, identify a goal, and take rational actions to that end – can seem like a concept of science fiction. Recently, however, exponential growth in the field, with developments such as driverless cars, has made the prospect very real. The pace of change has led many to express concern about the dangers of artificial AI, although most of the potential benefits are yet to be realised.
A key aspect when trying to understand AI is knowledge of ‘machine learning’. Previously, software had to be ‘taught’ everything by the programmer, but this is no longer the case. DeepMind, one of the world’s leading groups in developing artificial intelligence, has seen considerable investment from high profile figures such as Elon Musk and has recently been acquired by Google’s parent company, Alphabet.
DeepMind claims to have developed software that mimics human imagination by considering the possible consequences of their actions and interpreting the results, ignoring irrelevant information. This allows the software to plan ahead, solving tasks in fewer steps and performing much better than conventional AI.
A decade ago, truck drivers were thought to be irreplaceable; now, Tesla and many other companies are making autonomous self-driving cars a reality. The pharmaceutical industry may also see immense changes; incredibly complex computational biological models will soon be able to fully predict drug mechanisms and interactions, allowing for much better analysis and speeding up the currently painstakingly slow clinical trial process for new drugs.
Uber’s self-driving car being testing in Pittsburgh. Image: Rex
It isn’t only drivers that are at risk of losing their jobs. Historian Yuval Noah Harari states that, just like the industrial revolution lessened the requirement for manual labour, the AI revolution will create vast amounts of unemployable people as their skills become redundant.
Carl Benedikt Frey and Michael A Osborne from the University of Oxford predict that 47% of jobs are at high risk of being taken over by computer algorithms by 2033. Their list of jobs is striking – insurance underwriters, chefs, waiters, carpenters, and lifeguards are all at high risk of being superfluous. The displacement of human workers because of AI will be one of the key issues that policymakers and governments must consider going into the future.
Elon Musk, Founder of SpaceX and CEO of Tesla, Inc. Image: TED Conference
What could go wrong?
Facebook had to shut down its most recent AI system after it discovered that its chatbots were communicating between themselves in a new language that used English words but could not be understood by humans. Although the AI agents were rewarded for negotiating efficiently, they were not confined to just using English. The result was that they deviated from it and instead opted to create a language that was easier and faster for them to communicate, causing the social media giant to pull the plug on the system.
Elon Musk, founder of SpaceX and co-founder of PayPal, has very strong views about the development of AI, famously stating that AI is an ‘existential risk for human civilisation’. He raises interesting questions about cybersecurity and malicious AI that may be exploited by hackers to destabilise the outdated and less intelligent software that often controls the electricity and water of the world’s cities.
Above: Musk in Conversation with Max Tegmark, author of Life 3.0: Being Human in the Age of Artificial Intelligence
AI is a rare case where we need to be proactive in regulation instead of reactive because ‘if we’re reactive in AI regulation it’s too late’, he said. At the moment, the technology is far from the apocalyptic, self-evolving software that haunts Musk. But we are becoming more and more accustomed to AI in our daily life; for example, Apple’s Siri interpreting voice commands and Facebook’s targeted advertising system.
SCI is running a Public Evening Lecture in London on Wednesday 25 October – Machine Intelligence: Are Machines Better than Humans?The talk will be given byHermann Hauser, co-founder of Amadeus Capital Partners, Acorn Computers, and ARM. It is free to attend, but spaces are limited. Don’t miss out – book your place here.
Machine Intelligence: Are Machines Better than Humans? A free Public Evening Lecture at SCI
Hermann Hauser, co-founder of Amadeus Capital Partners, Acorn Computers, and ARM, is coming to SCI in London on Wednesday 25 October 2017 to discuss one of the most important issues of our time – the future of artificial intelligence.
Machine Intelligence: Are Machines Better than Humans? A free Public Evening Lecture at SCI
Hermann Hauser, co-founder of Amadeus Capital Partners, Acorn Computers, and ARM, is coming to SCI in London on Wednesday 25 October 2017 to discuss one of the most important issues of our time – the future of artificial intelligence.