Blog search results for Tag: nuclear

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on sodium and its role in the next series of innovative nuclear energy systems.

 sodium

Sodium; the sixth most abundant element on the planet is being considered as a crucial part of nuclear reactors. Implementing new safety levels in reactors is crucial as governments are looking for environmentally friendly, risk-free and financially viable reactors. Therefore, ensuring new safety levels is a main challenge that is being tackled by many industries and projects.

safety sign gif

Originally posted by contac

In the wake of Fukushima, several European nations and a number of U.S plants have shut down and switched off their ageing reactors in order to eliminate risk and safety hazards.

The sodium- cooled fast reactor (SFR), a concept pioneered in the 1950s in the U.S, is one of the nuclear reactors developed to operate at higher temperatures than today’s reactors and seems to be the viable nuclear reactor model. The SFR’s main advantage is that it can burn unwanted byproducts including uranium, reducing the need for storage. In the long run, this is deemed cost-competitive as it can produce power without having to use new natural uranium.

 nuclear reactor

 Nuclear reactor. Source: Hallowhalls

However, using sodium also presents challenges. When sodium comes into contact with air, it burns and when it is mixed with water, it is explosive. To prevent sodium from mixing with water, nitrogen - driven turbines are in the process of being designed as a solution to this problem.

colourful explosion gif

Originally posted by angulargeometry

A European Horizon 2020 Project, ESFR-SMART project (European Sodium Fast Reactor Safety Measures Assessment and Research Tools), launched in September 2017, aims to improve the safety of Generation-IV Sodium Fast Reactors (SFR). This project hopes to prove the safety of new reactors and secure its future role in Europe. The new reactor is designed to be able to reprocess its own waste, act more reliably in operation, more environmentally friendly and more affordable. It is hoped that this reactor will be considered as one of the SFR options by Generation IV International Forum (GIF), who are focused on finding new reactors with safety, reliability and sustainability as just some of their main priorities.

 EU flag

European Horizon. Source: artjazz

Globally, the SFR is deemed an attractive energy source, and developments are ongoing, endeavouring to meet the future energy demands in a cost-competitive way.  


Energy

Energy is critical to life. However, we must work to find solution to source sustainable energy which compliments the UK’s emission targets. This article discusses six interesting facts concerning the UK’s diversified energy supply system and the ways it is shifting towards decarbonised alternatives.

Finite Resources

1. In 2015, UK government announced plans to close unabated coal-fired power plants by 2025.

 A coalfired power plant

A coal-fired power plant 

In recent years, energy generation from coal has dropped significantly. In March 2018, Eggborough power station, North Yorkshire, closed, leaving only seven coal power plants operational in the UK. In May this year, Britain set a record by going one week without coal power. This was the first time since 1882!

2. Over 40% of the UK’s electricity supply comes from gas.

 A natural oil and gas production in sea

A natural oil and gas production in sea

While it may be a fossil fuel, natural gas releases less carbon dioxide emissions compared to that of coal and oil upon combustion. However, without mechanisms in place to capture and store said carbon dioxide it is still a carbon intensive energy source.

3. Nuclear power accounts for approximately 8% of UK energy supply.

hazard gif

Originally posted by konczakowski

Nuclear power generation is considered a low-carbon process. In 2025, Hinkley Point C nuclear power-plant is scheduled to open in Somerset. With an electricity generation capacity of 3.2GW, it is considerably bigger than a typical power-plant.

Renewable Resources

In 2018, the total installed capacity of UK renewables increased by 9.7% from the previous year. Out of this, wind power, solar power and plant biomass accounted for 89%.

4. The Irish Sea is home to the world’s largest wind farm, Walney Extension.

 The Walney offshore wind farm

The Walney offshore wind farm.

In addition to this, the UK has the third highest total installed wind capacity across Europe. The World Energy Council define an ‘ideal’ wind farm as one which experiences wind speed of over 6.9 metres per second at a height of 80m above ground. As can be seen in the image below, at 100m, the UK is well suited for wind production.

5. Solar power accounted for 29.5% of total renewable electricity capacity in 2018.

 solar panels

This was an increase of 12% from the previous year (2017) and the highest amount to date! Such growth in solar power can be attributed to considerable technology cost reductions and greater average sunlight hours, which increased by up to 0.6 hours per day in 2018. 

Currently, the intermittent availability of both solar and wind energy means that fossil fuel reserves are required to balance supply and demand as they can run continuously and are easier to control.

6. In 2018, total UK electricity generation from bioenergy accounted for approximately 32% of all renewable generation.

 A biofuel plant in Germany

A biofuel plant in Germany.

This was the largest share of renewable generation per source and increased by 12% from the previous year. As a result of Lynemouth power station, Northumberland, and another unit at Drax, Yorkshire, being converted from fossil fuels to biomass, there was a large increase in plant biomass capacity from 2017.


Science & Innovation

Robotic technology has a large part in the UK’s chemical industry in reducing individual’s exposure to ionising radiation, from nuclear decommissioning to synthesis of radiopharmaceuticals.

robotic technology

Improvements in robots and robotic technologies has fuelled huge advancements across many industries in recent years. The UK Industrial Strategy has several Sector Deals in which robotic innovations play a role, particularly in Artificial Intelligence (AI), Life Sciences and Nuclear.

cartoon gif

Originally posted by various-cartoon-awesomeness

Innovative robotics have a place in all industries to improve efficiency and processes, however, in industries where radioactive materials are commonly used, using robots can help to manage risk. This could be by limiting exposure of employees to radioactive substances or preventing potential accidents.

In the UK, legislation exists as to how much exposure to ionising radiation employees may have each year – an adult employee is classified, and therefore must be monitored, if they receive an effective dose of greater than 6mSv per year. The average adult in the UK receives 2.7 mSv of radiation per year.

Snake-like robot is used to dismantle nuclear facilities. Video: Tech Insider

Through using robots, very few professionals in the chemical industry come close to this limit, and are subsequently safe from long-term health effects, such as skin burns, radiation sickness and cancer.


Science & Innovation

Robotic technology has a large part in the UK’s chemical industry in reducing individual’s exposure to ionising radiation, from nuclear decommissioning to synthesis of radiopharmaceuticals.

robotic technology

Improvements in robots and robotic technologies has fuelled huge advancements across many industries in recent years. The UK Industrial Strategy has several Sector Deals in which robotic innovations play a role, particularly in Artificial Intelligence (AI), Life Sciences and Nuclear.

cartoon gif

Originally posted by various-cartoon-awesomeness

Innovative robotics have a place in all industries to improve efficiency and processes, however, in industries where radioactive materials are commonly used, using robots can help to manage risk. This could be by limiting exposure of employees to radioactive substances or preventing potential accidents.

In the UK, legislation exists as to how much exposure to ionising radiation employees may have each year – an adult employee is classified, and therefore must be monitored, if they receive an effective dose of greater than 6mSv per year. The average adult in the UK receives 2.7 mSv of radiation per year.

Snake-like robot is used to dismantle nuclear facilities. Video: Tech Insider

Through using robots, very few professionals in the chemical industry come close to this limit, and are subsequently safe from long-term health effects, such as skin burns, radiation sickness and cancer.