Blog search results for Tag: periodic-table

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the exciting group one element, lithium!

 lithium

Lithium has a wide range of uses – it can even power batteries!


Bipolar disorder

Lithium was first discovered in mines in Australia and Chile, and was initially used to treat gout, an arthritic inflammatory condition. Its use as a psychiatric medication wasn’t established until 1949, when an Australian psychiatrist discovered the positive effect that lithium salts had on treating mania. Since then, scientists have discovered that lithium works as a mood stabiliser by targeting neurotransmitters in the brain.

brain activity gif

Originally posted by buddhaismyhomeboy

Neurotransmitters are chemicals that are released by one neuron to send a message to the next neuron. There are several types found in humans including dopamine, serotonin and glutamate. Each has a different role, and different levels of each neurotransmitter can be linked to a variety of mental illnesses. However, it is an increase in glutamate – an excitatory neurotransmitter that plays a role in learning and memory – and has been linked to the manic phase of bipolar disorder.

 lithium sals in tablet

Lithium salts have been used as a medication for mania effectively since 1949. Image: Pixabay

Lithium is thought to stabilise levels of glutamate, keeping it at a healthy and stable level. Though it isn’t a fully comprehensive treatment for bipolar disorder, lithium has an important role in treating the manic phase and helping researchers to understand the condition.


Battery power

One of the most common types of battery you will find in modern electronics is the lithium ion battery. This battery type was first invented in the 1970s, using titanium (IV) sulphide and lithium metal. Although this battery had great potential, scientists struggled to make a rechargeable version.

out of battery gif

Originally posted by wreckedteen

Initial rechargeable batteries were dangerous, mainly due to the instability of the lithium metal. This resulted in them failing safety tests and led to the use of lithium ions instead.

 liion battery

Lithium-ion batteries are widely used and developments in the technology continue today.

Developments in lithium ion technology continue to this day, in which the recently-founded Faraday Institute plays a large role. As part of the Faraday Battery Challenge, they are bringing together expertise from universities and industry, supporting projects that develop lithium-based batteries, along with new battery technologies.


Nuclear fusion

Nuclear fusion happens in a hollow steel donut surrounded by magnets. The large magnetic fields contain a charged gas known as plasma, which is heated to 100m Kelvin and leads to nuclear fusion of the deuterium and tritium in the plasma. Keeping the plasma stable and preventing it from cooling is one of the largest industrial problems to overcome. This is where lithium comes in.

nucleur fusion gif

Originally posted by civisiii

Results from studies in which lithium is delivered in a liquid form to the edge of the plasma, show that lithium is stable and maintains its temperature and could potentially be used in controlling the plasma. It can also increase the plasma temperature if injected under certain conditions, improving the overall conditions for fusion.

Lithium has uses in plasma stabilisation in nuclear fusion. Video: Tedx Talks

Aside from its uses in nuclear fusion, lithium has other uses in the nuclear industry. For example, it is used as an additive in coolant systems. Lithium fluoride and other similar salts have a low vapour pressure, meaning they can carry more heat than the same amount of water.

 


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about one of the most abundant and most used elements, carbon!

Carbon-based life

Carbon could be called the element of life – it can be found in every living creature on Earth in a variety of different forms, from the backbone of your DNA, to the taste receptors in your tongue and the hormones controlling your hunger. Carbon-based chemistry surrounds us – in the air we breathe, in the food we eat and in the soil beneath our feet.

So, why is carbon so important to life? Carbon’s chemistry allows it to form large, intricate 3D structures, which are the basis of its interaction in biology – like jigsaw pieces that come together to build a tree, an elephant or a human being.

blossoming flower gif

Originally posted by sun-moon-and-roses

The study of carbon-based chemistry, or organic chemistry, has allowed us to better understand our living world and the interactions that occur, leading to development of better tasting food, higher yielding crops and more efficient medicines to improve our health. 

In the early 19th century, chemist Justus von Liebig began synthesising organic, carbon-based molecules and said: ‘The production of all organic substances no longer belongs just to living organisms.’ 

Since then, hundreds of organic compounds for medicinal use have been synthesised – from adrenaline to ibuprofen – and hundreds of unique synthesis pathways have been described.

 carbon

Organic chemistry – the study of carbon-based chemistry – has given us hundreds of modern medicines. 


Carbon in materials

Atoms of carbon can make four bonds, each with another carbon attached, to arrange themselves into different molecular structures and form completely different substances. These molecular structures, known as allotropes, can result in vast differences in the end-result material. 

For example, one allotrope, diamond, is the hardest and highest thermally conductive of any natural material, whereas another, graphite, is soft enough to be used in pencils, and is highly conductive of electricity.

Graphene is carbon allotrope that exists in thin, 2-dimensional layers, with the carbon atoms arranged in a honeycomb formation. Scientists had theorised its existence for years, but it was not isolated and characterised until 2004 by Andre Geim and Konstantin Novoselov at the University of Manchester, UK. The pair won the 2010 Nobel Prize in Physics for their work. 

 carbon atoms in graphene

The structure of carbon atoms in graphene.

Graphene is a highly conductive, flexible and transparent – this means it can be used in electronics, medical biotechnology, and a variety of other innovative solutions.

Another innovative material made from carbon is carbon fibre, which can then produce carbon-fibre reinforced polymer (CFRP). CFRP is a polymer interwoven with fibres of carbon, which is 5-10μm in diameter. The mixture of these two materials gives an extremely strong but lightweight material, useful in building products from aerospace and automotive, to sports equipment and technology.


Fueling the world

The name carbon comes from the Latin carbo meaning coal, and until recently most of our energy was generated by the consumption of carbon through the burning of naturally occurring carbon-based fuels, or fossil fuels. When these fuels, such as coal, natural gas and oil, are burnt, the combustion reaction generates carbon dioxide (CO2). 

 burning fossil fuels

CO2, produced by burning fossil fuels, is thought to be a contributor to climate change. Image: Pixabay

High production of the by-product CO2, and its release into the atmosphere, is considered to have a negative environmental impact and is thought to contribute to global warming and climate change. Fossil fuels are not a renewable resource and supplies are expected to diminish in the next 50-100 years. 

Consequently, there has been a movement towards more renewable energy, from wind, solar and hydropower, driving a move towards a low-carbon economy. These energy sources are generally considered to be better for the environment, with lower amounts of CO2 being produced.

Chemical engineer Jennifer Wilcox previews some amazing technology to scrub carbon from the air, using chemical reactions that capture and reuse CO2. Video: TED

In this strive for a low-carbon economy, new technology is being used that prevents the release of COinto the atmosphere in the first place. Carbon capture and storage (CCS) takes waste COfrom large-scale industrial processes and transports it to a storage facility. This CCS technology is one of the only proven, effective methods of decarbonisation currently available.