Blog search results for Tag: pesticide

Sustainability & Environment

In April, EU Members States voted for a near complete ban of the use of neonicotinoid insecticides – an extension to restrictions in place since 2013. The ban, which currently includes a usage ban for crops such as maize, wheat, barley, and oats, will be extended to include others like sugar beet. Use in greenhouses will not be affected.

Some studies have argued that neonicotinoids contribute to declining honeybee populations, while many other scientists and farmers argue that there is no significant field data to support this.

In response to the recent ban, SCI’s Pest Management Science journal has made a number of related papers free to access to better inform on the pros and cons of neonicotinoids. 

Like to know more about neonicotinoids? Click the links below… 

The Editorial

Are neonicotinoids killing bees?

Robin Blake and Len Copping discuss the recent political actions on the use of neonicotinoids in agriculture, and the UK’s hazard-based approach following field research unsupportive of an outright ban on the insecticides.

The Mini-Review

bee hive gif

Originally posted by foxthebeekeeper

A beekeeper’s perspective on the neonicotinoid ban

Conflicting evidence on the effects of neonicotinoids on the honeybee population has beekeepers confused and has led to the increase in the use of older insecticides, reports one beekeeper.

The Perspectives

image

Three years of banning neonicotinoid insecticides based on sub‐lethal effects: can we expect to see effects on bees?

Following the 2013 EU partial ban on neonicotinoids, experts called for good field data to fill knowledge gaps after questioning of the validity of the original laboratory research. To encourage future debate, realistic field data is essential to discouraging studies using overdoses that are not of environmental relevance.

The adverse impact of the neonicotinoid seed treatment ban on crop protection in oilseed rape in the United Kingdom

This paper describes the consequences of the ban on neonicotinoid seed treatments on pest management in oilseed rape, including serious crop losses from cabbage stem flea beetles and aphids that have developed resistance to other insecticides.

The Research Articles

cartoon bees

Originally posted by annataberko

Characteristics of dust particles abraded from pesticide treated seeds: 1. Size distribution using different measuring techniques

Particle size is one of the most important properties affecting the driftability and behaviour of dust particles scraped from pesticide dressed seeds during sowing. Different species showed variable dust particle size distribution and all three techniques were not able to describe the real-size distribution accurately.

Characteristics of dust particles abraded from pesticide treated seeds: 2. Density, porosity and chemical content

Aside from particle size, drift of scraped seed particles during sowing is mainly affected by two other physical properties – particle shape and envelope density. The impact of these abraded seed particles on the environment is highly dependable on their active ingredient content. In this study, the envelope density and chemical content of dust abraded from seeds was determined as a function of particle size for six seed species.

Performance of honey bee colonies under a long‐lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid

Substantial honey bee colony losses have occurred periodically in the last decades, but the drivers for these losses are not fully understood. Under field conditions, bee colonies are not adversely affected by a long‐lasting exposure to sublethal concentrations of thiacloprid – a popular neonicotinoid. No indications were found that field‐realistic and higher doses exerted a biologically significant effect on colony performance.

Concentration‐dependent effects of acute and chronic neonicotinoid exposure on the behaviour and development of the nematode Caenorhabditis elegans


Agrifood

 Cassie Sims

Cassie Sims is a PhD researcher at Rothamsted Research in Harpenden, UK. Photo: Rothamsted

Rothamsted Research is the oldest agricultural research station in the world – we even have a Guinness World Record for the longest running continuous experiment! Established in 1843, next year we celebrate our 175th anniversary, and as a Chemistry PhD student at the institute today, I can’t wait to celebrate.

 Wheat samples2

Wheat samples from the record-breaking Broadbalk experiment. Photo: Cassie Sims

Rothamsted is known for many amazing scientific accomplishments, and it has a rich history, which I have explored through many of the exhibitions put on by the institute for the staff every month or so. 

 old labs set up

One of the old labs set up for the exhibitions we hold at Rothamsted. Photo: Cassie Sims

Working in what was the Biological Chemistry department, I am following in the footsteps of Chemists such as Michael Elliott, who developed a group of insecticides known as pyrethroids. These are one of the most prolific insecticides used in the world, still widely used today and researched here at Rothamsted – in particular, the now-prevalent insecticidal resistance to them. 

I was privileged to view an exhibit of Michael Elliott’s medals late last year at Rothamsted – one of the opportunities we are given as staff here. Recently, I was also able to view a collection of calculators and computers from the earliest mechanical ones, to Sir Ronald Fisher’s very own ‘Millionaire’ Calculator, which could multiply, add and subtract entirely mechanically.

 Sir Ronald Fishers Millionaire Calculator

Sir Ronald Fisher’s ‘Millionaire’ Calculator. Photo: Cassie Sims

In more recent times, Rothamsted has had an update (a little more than a lick of paint) with newer buildings, labs and equipment constantly being added. My office and lab are situated in the architecturally interesting Centenary building, which was built only 10 years ago. Some of the research has had an update too – plant science research is a bit more focused on molecular biology these days, and our chemistry has been significantly advanced over the last century by advances in analytical equipment. 

bug gif

Originally posted by fujinliow

A few years ago, Rothamsted was briefly the centre of media attention due to a ‘controversial’ GM field trial testing wheat made to emit (E)-β-farnesene, the aphid alarm pheromone, and whether the plants could repel aphids. 

SPOILER ALERT: 

…they couldn’t, but this was one of the first type of GM trials of its type, and it was an interesting study that combined many disciplines of science, from molecular biology and plant science, to entomology and chemical ecology.

sack race gif

Originally posted by southwestcollectionarchives

Rothamsted is not just about science, either – we have a few longstanding social traditions such as Hallowe’en parties and Harvest Festival, not forgetting of course my favourite; our summer Sports Day, which provides much entertainment in the form of serious research scientists participating in sack races to win some outstandingly tacky trophies. We also have an onsite bar (if that is what you could call it), which is a little more like a converted cricket club, and serves as a venue for most events, and has been the location of many of my great memories.

If I had to describe being a student at Rothamsted in one word, it would be weird! There is a lot of fun to be had, but we are also surrounded by an incredible history that we cannot forget as we forge a new path in our fields (literally and scientifically!).

 cassie sims2

I hope one day that I can leave some kind of mark here – but even if not, I will be happy to have been part of such a prestigious institute and to have worked alongside such great scientific minds.

What are the sustainability challenges being tackled by researchers at Rothamsted? Sir John Beddington, Chair of the Rothamsted Research Board gave this talk at SCI in London in September – part of our ongoing programme of free-to-attend public evening lectures.