Blog search results for Tag: physics

Health & Wellbeing

Yesterday was Shrove Tuesday, the traditional feast day before the start of Lent. Also known as Pancake Day, many people will have returned to traditional recipes or experimented with the myriad of options available for this versatile treat. 

But you may not realise pancakes are helping to advance medicine. Here we revisit some interesting research

In a study that was published in Mathematics Today, researchers found that understanding the textures and patterns of pancakes helped improve surgical methods for treating glaucoma. 

The appearance of pancakes depends on how water escapes the batter mix during the cooking process. This is impacted by the batter thickness. Understanding the physics of the process can help in producing the perfect pancake, but also provides insights into how flexible sheets, like those found in human eye, interact with flowing vapour and liquids.

 healthy eye

Illustration of a healthy eye, glaucoma, cataract

The researchers at University College London (UCL), UK, compared recipes for 14 different types of pancake from across the world. For each pancake the team analysed and plotted the aspect ratio, i.e. the pancake diameter to the power of three in relation to the volume of batter. They also calculated the baker’s percentage, the ratio of liquid to flour in the batter.

 Pancake batter

Pancake batter

It was found that thick, almost spherical pancakes had the lowest aspect ratio at three, whereas large thin pancakes had a ratio of 300. The baker’s percentage did not vary as dramatically, ranging from 100 for thick mixtures to 175 for thinner mixtures.

Co-author Professor Sir Peng Khaw, Director of the NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology said; ‘We work on better surgical methods for treating glaucoma, which is a build-up of pressure in eyes caused by fluid. To treat this, surgeons create an escape route for the fluid by carefully cutting the flexible sheets of the sclera.’

‘We are improving this technique by working with engineers and mathematicians. It’s a wonderful example of how the science of everyday activities can help us with medicinal treatments of the future.’

 Classic american pancakes

Classic american pancakes 


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. Discoveries made by British physicists have changed the way we see the world, and are still used and celebrated today.

One of the world’s most recognisable scientists is mathematician and physicist Isaac Newton (1643-1727), who is credited with the discovery of the law of gravitation.

It is scientific legend that during one afternoon in his garden in 1666, during which Newton was sat under an apple tree, that an apple fell on his head. This led to a moment of inspiration from which he based his theory of gravity.

Gravity is an invisible force that pulls objects towards each other – anything with mass is affected by gravity – and is the reason why we don’t float off into space and why objects fall when you throw or drop them.

 Isaac Newton

An illustration of Isaac Newton in 1962.

The Earth’s gravity comes from its mass, which ultimately determines your weight. As the different plants in our universe are different masses, our weight on Earth is different to what it would be on Saturn or Uranus.

Whilst Newton’s theory has since been superseded by Einstein’s theory of relativity, it remains an important breakthrough in scientific history. The apple tree that supposedly led to his theory can still be found at Newton’s childhood home, Woolsthorpe Manor, in Grantham, UK.

 Newtons apple tree

Newton’s apple tree. Image: Martin Pettitt/Flickr


The Higgs boson

As a Senior Research Fellow at the University of Edinburgh, physicist Peter Higgs hypothesised that when the universe began, all particles had no mass. This changed a second later when they came into contact with a theoretical field – later named the Higgs field – and each particle gained mass.

The more a particle interacts with the field, the more mass it acquires and therefore the heavier it is, he postulated. The Higgs boson is a physical manifestation of the field.

 higgs boson

A computer generated rendering of the Higgs boson.

Back in 2012, the scientific community celebrated an important discovery made by researchers at CERN using the Large Hadron Collider – the world’s most powerful particle accelerator. 

After years of theorised work, they found a particle that behaved the way that the Higgs boson supposedly behaved.

The celebration was warranted, as the discovery of the Higgs boson verified the Standard Model of Particle Physics, which states that the Higgs boson gives everything in the universe its mass. It has been estimated that it cost $13.25bn to find the Higgs boson.  

 Large Hadron Collider

Inside the Large Hadron Collider at CERN in Switzerland. Image: Thomas Cizauskas/Flickr

In 2013, Higgs was presented with the Nobel Prize in Physics, which he shared with Belgian researcher Franҫois Englert, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles’.

Having avoided the limelight and media since his retirement, Higgs found out about his win from an ex-neighbour on his way home as he did not have a mobile phone!

Beyond the Higgs: What’s Next for the LHC? Video: The Royal Institution

The success of British physics isn’t slowing down either. It was in Manchester that two Russian scientists discovered graphene, which has influenced a wave of new research and investment into the use of this versatile material set to be a cornerstone for the fourth Industrial Revolution.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today, on International Women’s Day, we look at the two elements radium and polonium and the part Marie Curie that played in their discovery.


Who is Marie Curie?

 Marie Sklodowska and her future husband Pierre Curie

Marie Sklodowska and her future husband Pierre Curie.

Marie Sklodowska-Curie was born in 1867 in Poland. As a young woman she had a strong preference for science and mathematics, so in 1891 she moved to Paris, France, and began her studies in physics, chemistry and mathematics at the University of Paris.

After gaining a degree in physics, Curie began working on her second degree whilst working in an industrial laboratory. As her scientific career progressed, she met her future husband, Pierre Curie, whilst looking for larger laboratory space. The two bonded over their love of science, and went on to marry, have two children and discover two elements together.

vial gif

Originally posted by savagebeastrecords

After finishing her thesis on ‘Studies in radioactivity’, Curie became the first woman to win a Nobel Prize, the first and only woman to win twice, and the only person to win in two different sciences.

Curie, along with husband Pierre and collaborator Henri Becquerel, won the 1903 Nobel prize in Physics for their radioactivity studies, and the 1911 Nobel prize in Chemistry for the isolation and study of elements radium and polonium.

 nobel prize

Curie won the Nobel prize twice in two different subjects. Image: Pixabay

As of 2018, Curie is one of only three women to have won the Nobel Prize in Physics and one of the five women to be awarded the Nobel Prize in Chemistry.


Polonium

Polonium, like radium, is a rare and highly reactive metal with 33 isotopes, all of which are unstable. Polonium was named after Marie Curie’s home country of Poland and was discovered by Marie and Pierre Curie from uranium ore in 1898.

 homer simpson radioactive gif

Polonium is not only radioactive but is highly toxic. It was the first element discovered by the Curies when they were investigating radioactivity. There are very few applications of polonium due to its toxicity, other than for educational or experimental purposes.


Radium

Radium is an alkaline earth metal which was discovered in the form of radium chloride by Marie and her husband Pierre in December 1898. They also extracted it from uranite (uranium ore), as they did with polonium. Later, in 1911, Marie Curie and André-Louis Debierne isolated the metal radium by electrolysing radium chloride.

 radiotherapy

The discovery of radium led to the development of modern cancer treatments, like radiotherapy.

Pure radium is a silvery-white metal, which has 33 known isotopes. All isotopes of radium are radioactive – some more than others. The common historical unit for radioactivity, the curie, is based on the radioactivity of Radium-226.

Famously, radium was historically used as self-luminescent paint on clock hands. Unfortunately, many of the workers that were responsible for handling the radium became ill – radium is treated by the body as calcium, where it is deposited in bones and causes damage because of its radioactivity. Safety laws were later introduced, followed by discontinuation of the use of radium paint in the 1960s.

Marie Curie: A life of sacrifice and achievement. Source: Biographics

Curie’s work was exceptional not only in its contributions to science, but in how women in science were perceived. She was an incredibly intelligent and hard-working woman who should be celebrated to this day.

 

Science & Innovation

Spaceflight is a high-risk business. Spacecraft break down all the time and when that happens funding and careers evaporate. Back in the late 1960s, NASA decided to double the odds of success and send two spacecraft on one mission. Voyagers 1 and 2, for example, were the spacecraft that returned the first detailed pictures of the outer planets of our solar system and introduced us to the neighbourhood. Launched in 1977, both are still flying.

Any spacecraft must have three components: a payload, an engine and a fuel supply – by far the heaviest component. But what if we could do away with the onboard fuel supply and replace it with an external fuel supply? Say light itself?

Can you push a spacecraft with light? Video: Physics Girl

The idea of solar sail technology has been floating around for decades. Indeed, the notion of a solar pressure can be traced back to 1610 in a letter that Johannes Kepler wrote to Galileo. 

But it was only in the 20th century that solar sails began to be considered as an achievable engineering reality. Broadly, solar sails fall into two categories: those using light from natural sources – the sun and ambient starlight in space; and those using coherent light from lasers.

 

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about the exciting group one element, lithium!

 lithium

Lithium has a wide range of uses – it can even power batteries!


Bipolar disorder

Lithium was first discovered in mines in Australia and Chile, and was initially used to treat gout, an arthritic inflammatory condition. Its use as a psychiatric medication wasn’t established until 1949, when an Australian psychiatrist discovered the positive effect that lithium salts had on treating mania. Since then, scientists have discovered that lithium works as a mood stabiliser by targeting neurotransmitters in the brain.

brain activity gif

Originally posted by buddhaismyhomeboy

Neurotransmitters are chemicals that are released by one neuron to send a message to the next neuron. There are several types found in humans including dopamine, serotonin and glutamate. Each has a different role, and different levels of each neurotransmitter can be linked to a variety of mental illnesses. However, it is an increase in glutamate – an excitatory neurotransmitter that plays a role in learning and memory – and has been linked to the manic phase of bipolar disorder.

 lithium sals in tablet

Lithium salts have been used as a medication for mania effectively since 1949. Image: Pixabay

Lithium is thought to stabilise levels of glutamate, keeping it at a healthy and stable level. Though it isn’t a fully comprehensive treatment for bipolar disorder, lithium has an important role in treating the manic phase and helping researchers to understand the condition.


Battery power

One of the most common types of battery you will find in modern electronics is the lithium ion battery. This battery type was first invented in the 1970s, using titanium (IV) sulphide and lithium metal. Although this battery had great potential, scientists struggled to make a rechargeable version.

out of battery gif

Originally posted by wreckedteen

Initial rechargeable batteries were dangerous, mainly due to the instability of the lithium metal. This resulted in them failing safety tests and led to the use of lithium ions instead.

 liion battery

Lithium-ion batteries are widely used and developments in the technology continue today.

Developments in lithium ion technology continue to this day, in which the recently-founded Faraday Institute plays a large role. As part of the Faraday Battery Challenge, they are bringing together expertise from universities and industry, supporting projects that develop lithium-based batteries, along with new battery technologies.


Nuclear fusion

Nuclear fusion happens in a hollow steel donut surrounded by magnets. The large magnetic fields contain a charged gas known as plasma, which is heated to 100m Kelvin and leads to nuclear fusion of the deuterium and tritium in the plasma. Keeping the plasma stable and preventing it from cooling is one of the largest industrial problems to overcome. This is where lithium comes in.

nucleur fusion gif

Originally posted by civisiii

Results from studies in which lithium is delivered in a liquid form to the edge of the plasma, show that lithium is stable and maintains its temperature and could potentially be used in controlling the plasma. It can also increase the plasma temperature if injected under certain conditions, improving the overall conditions for fusion.

Lithium has uses in plasma stabilisation in nuclear fusion. Video: Tedx Talks

Aside from its uses in nuclear fusion, lithium has other uses in the nuclear industry. For example, it is used as an additive in coolant systems. Lithium fluoride and other similar salts have a low vapour pressure, meaning they can carry more heat than the same amount of water.

 


Energy

A huge challenge faced in the pursuit of a mission to Mars is space radiation, which is known to cause several damaging diseases – from Alzheimer’s disease to cancer.

And soon, these problems will not just be exclusive to astronauts. Speculation over whether space tourism is viable is becoming a reality, with Virgin Galactic and SpaceX flights already planned for the near future. The former reportedly sold tickets for US$250,000.

But could questions over the health risks posed hinder these plans?

rocket gif

Originally posted by blazepress


What is space radiation?

In space, particle radiation includes all the elements on the periodic table, each travelling at the speed of light, leading to a high impact and violent collisions with the nuclei of human tissues.

The type of radiation you would endure in space is also is different to that you would experience terrestrially. On Earth, radiation from the sun and space is absorbed by the atmosphere, but there is no similar protection for astronauts in orbit. In fact, the most common form of radiation here is electrochemical – think of the X-rays used in hospitals.

 The sun

The sun is just one source of radiation astronauts face in space. Image: Pixabay

On the space station – situated within the Earth’s magnetic field ­– astronauts experience ten times the radiation that naturally occurs on Earth. The station’s position in the protective atmosphere means that astronauts are in far less danger compared with those travelling to the Moon, or even Mars.

Currently, NASA’s Human Research Program is looking at the consequences of an astronaut’s exposure to space radiation, as data on the effects is limited by the few subjects over a short timeline of travel.

Radiation poses one of the biggest problems for space exploration. Video: NASA

However, lining the spacecraft with heavy materials to reduce the amount of radiation reaching the body isn’t as easy as a solution as it is seems.

‘NASA doesn’t want to use heavy materials like lead for shielding spacecraft because the incoming space radiation will suffer many nuclear collisions with the shielding, leading to the production of additional secondary radiation,’ says Tony Slaba, a research physicist at NASA. ‘The combination of the incoming space radiation and secondary radiation can make the exposure worse for astronauts.’


Finding solutions

As heavy materials cannot hamper the effects of radiation, researchers have turned to a more light-weight solution: plastics. One element – hydrogen – is well recognised for its ability to block radiation, and is present in polyethylene, the most common type of plastic.

 the Dark Rift

A thick dust cloud called the Dark Rift blocks the view of the Milky Way. Image: NASA

Engineers have developed plastic-filled tiles, that can be made using astronauts rubbish, to create an extra layer of radiation protection. Water, which is already an essential for space flight, can be stored alongside these tiles to create a ‘radiation storm shelter’ in the spacecraft.

But research is still required. Plastic is not a strong material and cannot be used as a building component of spacecrafts.