Blog search results for Tag: polymer

Health & Wellbeing

A 3D printed hydrogel structure can absorb metal pollutants in water significantly faster than solid alternatives.

a running water tap

Clean and fresh water is essential for human life, and water is a necessity to agricultural and other industries. However, global population growth and pollution from industrial waste has put a strain in local fresh water resources.

 hydrogel showing polymer chains

A hydrogel is made up of polymer chains that are hydrophilic (attracted to water) and are known for being highly absorbent.

Current clean-up costs can be extremely expensive, leaving poorer and more remote populations at risk to exposure of metal pollutants such as lead, mercury, cadmium and copper, which can lead to severe effects on the neurological, reproductive and immune systems.

Now, a group of scientists at the University of Texas at Dallas, US, have developed a 3D printable hydrogel that is capable of 95% metal removal within 30 minutes.

brushing teeth gif

Originally posted by biscuitsarenice

Clean water is also needed for one’s hygiene, including brushing your teeth and bathing.

The hydrogel is made from a cheap, abundant biopolymer chitosan and diacrylated pluronic, which forms cDAP. The cDAP mixture is then loaded into the printer as a liquid and allowed to cool to <4⁰C, before rising again to room temperature to form a gel that can be used to produce various 3D printed shapes.

The Dallas team also tested the reusability of their hydrogel and found that it had a recovery rate of 98% after five cycles of use, proving it to be a potentially reliable resource to communities with limited fresh water supply.

.

Life without clean water. Video: charitywater

‘This novel and cost-effective approach to remove health and environmental hazards could be useful for fabricating cheap and safe water filtration devices on site in polluted areas without the need for industrial scale manufacturing tools,’ the paper reads.


Health & Wellbeing

A 3D printed hydrogel structure can absorb metal pollutants in water significantly faster than solid alternatives.

a running water tap

Clean and fresh water is essential for human life, and water is a necessity to agricultural and other industries. However, global population growth and pollution from industrial waste has put a strain in local fresh water resources.

 hydrogel showing polymer chains

A hydrogel is made up of polymer chains that are hydrophilic (attracted to water) and are known for being highly absorbent.

Current clean-up costs can be extremely expensive, leaving poorer and more remote populations at risk to exposure of metal pollutants such as lead, mercury, cadmium and copper, which can lead to severe effects on the neurological, reproductive and immune systems.

Now, a group of scientists at the University of Texas at Dallas, US, have developed a 3D printable hydrogel that is capable of 95% metal removal within 30 minutes.

brushing teeth gif

Originally posted by biscuitsarenice

Clean water is also needed for one’s hygiene, including brushing your teeth and bathing.

The hydrogel is made from a cheap, abundant biopolymer chitosan and diacrylated pluronic, which forms cDAP. The cDAP mixture is then loaded into the printer as a liquid and allowed to cool to <4⁰C, before rising again to room temperature to form a gel that can be used to produce various 3D printed shapes.

The Dallas team also tested the reusability of their hydrogel and found that it had a recovery rate of 98% after five cycles of use, proving it to be a potentially reliable resource to communities with limited fresh water supply.

.

Life without clean water. Video: charitywater

‘This novel and cost-effective approach to remove health and environmental hazards could be useful for fabricating cheap and safe water filtration devices on site in polluted areas without the need for industrial scale manufacturing tools,’ the paper reads.


Materials

Our SCI journal, Polymer International is celebrating it’s 50th publication year in 2019. Volume 1, Issue 1 of Polymer International was first published in January 1969 under the original name British Polymer Journal. The journal, published by Wiley, continues to publish high quality peer reviewed demonstrating innovation in the polymer field.

Today, we look at the five highest-cited Polymer International papers and their significance.

Biodegradable Plastic

Article: A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies – Wendy Amass, Allan Amass and Brian Tighe. 47:2 (1998)

In the last few years, much of environmentalists’ focus has been on our plastic waste issue, particularly the issue of plastic build up in the oceans, and searching for alternatives. This review, published in 1998, was ahead of its time, describing biodegradable polymers and how they could help to solve our growing plastics problem. Research in this area continues to this day.

Here’s how much plastic trash Is littering the Earth. Video: National Geographic


The life of RAFT

Article: Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT) – Graeme Moad, John Chiefari, (Bill) Y K Chong, Julia Krstina, Roshan T A Mayadunne, Almar Postma, Ezio Rizzardo and San H Thang. 49:9 (2000)

This research article by Moad et al., published in 2000, looks to answer questions about free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). RAFT polymerization is a type of polymerization that can be used to design polymers with complex architectures including comb-like, star, brush polymers and cross-linked networks. These complex polymers have application in smart materials and biological applications.


Sugar Biomaterials

Article: Main properties and current applications of some polysaccharides as biomaterials – Marguerite Rinaudo. 57:3 (2008)

 sugar polymers

Biomaterials made from sugar polymers have huge potential in the field of regenerative medicine

The review by Marguerite Rinaudo looks at polysaccharides – polymers made from sugars – and evaluates their potential in biomedical and pharmaceutical applications. They concluded that alginates, along with a few other named examples, were promising. Alginate-based biomaterials have since been used in the field of regenerative medicine, including would healing, bone regeneration and drug delivery, and have a potential application in tissue regeneration.


Supramolecular Chemistry

Article: Supramolecular polymer chemistry—scope and perspectives – Jean-Marie Lehn. 51:10 (2002)

This 2002 paper reviews advances in supramolecular polymers – uniquely complex structured polymers. They have a wide range of complex applications. Molecular self-assembly – the ability of these polymers to assemble into the correct structure without input – can be used to develop new materials. Supramolecular chemistry has also been applied in the fields of catalysis, drug delivery and data storage. Jean-Marie Lehn won the 1987 Nobel Prize in Chemistry for his work in supramolecular chemistry.


Flexible Screens

Article: Organic lightemitting diode (OLED) technology: materials, devices and display technologies – Bernard Geffroy, Philippe le Roy and Christophe Prat. 55:6 (2006)

 OLED

Organic light-emitting diode (OLED) technology could be used to make flexible screens and displays

This review looks at organic light-emitting diode (OLED) technology, which can be made from a variety of materials. When structured in a specific way, these materials can result in a device that combined in a specific red, green, blue colour combination, like standard LED builds, can form screens or displays. Because of the different structure of the material, these displays may have different properties to a standard LED display including flexibility.


Sustainability & Environment

‘Biodegradable plastics have become more cost-competitive with petroleum-based plastics and the demand is growing significantly, particularly in Western Europe, where environmental regulations are the strictest,’ says Marifaith Hackett, director of specialty chemicals research at analysts IHS Markit. The current market value of biodegradable plastics is set to exceed $1.1bn in 2018, but could reach $1.7bn by 2023, according to IHS Markit’s new report.

In 2018, the report finds that global demand for these polymers is 360,000t, but forecasts an average annual growth rate of 9% for the five years to 2023 – equivalent to a volume increase of more than 50%. Western Europe holds the largest share (55%) of the global market, followed by Asia, and Australia and New Zealand (25%), then North America (19%).

 

Here’s how much plastic trash Is littering the Earth. Video: National Geographic

In another report released in May 2018, the US Plastics Industry Association (PLASTICS) was similarly optimistic, finding that the bioplastics sector (biodegradables made from biological substances) is at ‘a growth cycle stage’. It predicts the US sector will outpace the US economy as a whole by attracting new investments and entrants, while also bringing new products and manufacturing technologies to make bioplastics ‘more competitive and dynamic’.

As bioplastics product applications continue to expand, the dynamics of industry growth will continue to shift, the report notes. Presently, packaging is the largest market segment at 37%, followed by bottles at 32%. Changes in consumer behaviour are expected to be a significant driver.

 bucket in water

Many countries, including China and the UK, have introduced plastic waste bans to tackle the problemImage: Pixabay

Changes in US tax policy, particularly the full expensing of capital expenditure, should support R&D in bioplastics,’ says Perc Pineda, chief economist at PLASTICS. ‘The overall low cost of energy in the US complements nicely with R&D activities and manufacturing, which generates a stable supply of innovative bioplastic products.’ He points, for example, to efforts by companies and collaborations to develop and launch, at commercial scale, a 100% bio-based polyethylene terephthalate (PET) bottle as a case in point. Most PET bottles currently contain around 30% bio-based material.