Blog search results for Tag: security

Sustainability & Environment

The European Court of Justice (ECJ) ruled in July 2018 that onerous EU regulations for GMOs should also be applied to gene edited crops. The ECJ noted that older technologies to generate mutants, such as chemicals or radiation, were exempt from the 2001 GMO directive, but all other mutated crops should be regarded as GMOs. Since gene editing does not involve foreign DNA, most plant scientists had expected it to escape GMO regulations.

‘We didn’t expect the ruling to be so black and white and prescriptive,’ says Johnathan Napier, a crop scientist at Rothamsted Research. ‘If you introduce a mutant plant using chemical mutagenesis, you will likely introduce thousands if not millions of mutations. That is not a GMO. But if you introduce one mutation by gene editing, then that is a GMO.’

What is genetic modification? Video: The Royal Society

The ECJ ruling will have strong reverberations in academe and industry. The European Seed Association described the ruling as a watershed moment. ‘It is now likely that much of the potential benefits of these innovative methods will be lost for Europe – with significant economic and environmental consequences,’ said secretary general Garlich von Essen.

In 2012, BASF moved its plant research operations to North Carolina, US, because of European regulations. ‘If I was a company developing gene editing technologies, I’d think of moving out of Europe,’ says Napier.

 crop field 3

‘The EU is shooting itself in the foot. Its ag economy has been declining since 2005 and it has moved from net self-sufficiency to requiring imports of major staples,’ says Maurice Moloney, CEO of the Global Institute for Food Security in Saskatchewan, Canada. ‘Paradoxically, it still imports massive quantities of GM soya beans and other crops to feed livestock.’

 

Sustainability & Environment

The IHNV virus has spread worldwide and is fatal to salmon and rainbow trout – costing millions in sales of lost farmed fish. The current vaccination approach requires needle injection of fish, one by one. Now, however, Seattle-based Lumen Bioscience has come up with a new technology to make recombinant vaccines in a type of blue-green algae called Spirulina that costs pennies to produce and can be fed to fish in their feed.

To be effective, oral vaccines have not only to survive the gut environment intact but must also target the appropriate gut-associated immune cells. The approach developed by Lumen overcomes many of the problems with complex and expensive encapsulation strategies attempted in the past, according to CEO Brian Finrow.

fish gif

Originally posted by zandraart

‘[It] focuses on a new oral-vaccine platform [using] engineered Spirulina to express high amounts of target antigen in a form that is both provocative to the immune system – ie generates a desirable immune response that protects against future infection – and can be ingested orally without purification, in an organism that has been used as a safe food source for both humans and fish for decades.’

To produce the new oral vaccine, the Lumen researchers first developed a strain of Spirulina that manufactures recombinant proteins in its cell walls that the salmon immune system recognises as IHNV viruses. They then rapidly grew the strain in a large-scale indoor production system – requiring only light, water, salt and trace nutrients – and harvested and dried all the raw Spirulina biomass. This dried powder can then be fed to the fish.