Blog search results for Tag: wind

Energy

Energy is critical to life. However, we must work to find solution to source sustainable energy which compliments the UK’s emission targets. This article discusses six interesting facts concerning the UK’s diversified energy supply system and the ways it is shifting towards decarbonised alternatives.

Finite Resources

1. In 2015, UK government announced plans to close unabated coal-fired power plants by 2025.

 A coalfired power plant

A coal-fired power plant 

In recent years, energy generation from coal has dropped significantly. In March 2018, Eggborough power station, North Yorkshire, closed, leaving only seven coal power plants operational in the UK. In May this year, Britain set a record by going one week without coal power. This was the first time since 1882!

2. Over 40% of the UK’s electricity supply comes from gas.

 A natural oil and gas production in sea

A natural oil and gas production in sea

While it may be a fossil fuel, natural gas releases less carbon dioxide emissions compared to that of coal and oil upon combustion. However, without mechanisms in place to capture and store said carbon dioxide it is still a carbon intensive energy source.

3. Nuclear power accounts for approximately 8% of UK energy supply.

hazard gif

Originally posted by konczakowski

Nuclear power generation is considered a low-carbon process. In 2025, Hinkley Point C nuclear power-plant is scheduled to open in Somerset. With an electricity generation capacity of 3.2GW, it is considerably bigger than a typical power-plant.

Renewable Resources

In 2018, the total installed capacity of UK renewables increased by 9.7% from the previous year. Out of this, wind power, solar power and plant biomass accounted for 89%.

4. The Irish Sea is home to the world’s largest wind farm, Walney Extension.

 The Walney offshore wind farm

The Walney offshore wind farm.

In addition to this, the UK has the third highest total installed wind capacity across Europe. The World Energy Council define an ‘ideal’ wind farm as one which experiences wind speed of over 6.9 metres per second at a height of 80m above ground. As can be seen in the image below, at 100m, the UK is well suited for wind production.

5. Solar power accounted for 29.5% of total renewable electricity capacity in 2018.

 solar panels

This was an increase of 12% from the previous year (2017) and the highest amount to date! Such growth in solar power can be attributed to considerable technology cost reductions and greater average sunlight hours, which increased by up to 0.6 hours per day in 2018. 

Currently, the intermittent availability of both solar and wind energy means that fossil fuel reserves are required to balance supply and demand as they can run continuously and are easier to control.

6. In 2018, total UK electricity generation from bioenergy accounted for approximately 32% of all renewable generation.

 A biofuel plant in Germany

A biofuel plant in Germany.

This was the largest share of renewable generation per source and increased by 12% from the previous year. As a result of Lynemouth power station, Northumberland, and another unit at Drax, Yorkshire, being converted from fossil fuels to biomass, there was a large increase in plant biomass capacity from 2017.


Energy

Renewables outstripped coal power for the first time in electricity generation in Europe in 2017, according to a new report. The European Power Sector in 2017 – by think-tanks Sandbag and Agora Energiewende – predicts renewables could provide half of Europe’s electricity by 2030.

Wind, solar and biomass generation collectively rose by 12% in 2017 – to 679 Terawatt hours  – generating 21% of Europe’s electricity and contributing to 30% of the energy mix. ‘This is incredible progress considering just five years ago coal generation was more than twice that of wind, solar and biomass,’ the report says.

image

Hydroelectric power is the most popular renewable energy source worldwide. Image: PxHere

However, growth is variable. The UK and Germany alone contributed to 56% of the expansion in the past three years. There is also a ‘bias’ for wind, with a 19% increase in 2017, due to good wind conditions and huge investments, the report says. 

‘This is good news now the biomass boom is over, but bad news in that solar was responsible for just 14% of the renewables growth in 2014 to 2017.’

New analysis by trade group WindEurope backs up the findings on wind power, showing that countries across Europe installed more offshore capacity than ever before: 3.14GW. This corresponds to 560 new offshore wind turbines across 17 wind farms. Fourteen projects were fully completed and connected to the grid, including the first floating offshore wind farm. Europe now has a total installed offshore wind capacity of 15.78GW.

The EU’s 2030 goals for climate and energy. Video: European Commission 

Germany remains top of the European league, with the largest total installed wind-power capacity; worth 42% of the EU’s new capacity in 2017, followed by Spain, the UK, and France. Denmark boasts the largest share of wind in its power mix at 44% of electricity demand.

Energy

Compared with other renewable energy resources – take solar or wind power as examples – tidal energy is still in the first stages of commercial development. But as the world moves towards a greener economy, tidal power is becoming more in demand in the competitive renewables market.

Currently, the very few tidal power plants in the world are based in Canada, China, France, Russia, South Korea, and the UK, although more are in development. Experts predict that tidal power has the potential to generate 700TWh annually, which is almost a third of the UK’s total energy consumption.


How does it work?

Tidal energy is produced by the natural movement of ocean waves during the rise and fall of tides throughout the day. Generally, generating tidal energy is easier in regions with a higher tidal range – the difference between high tide, when the water level has risen, and low tide, when levels have fallen. These levels are influenced by the moon’s gravitational pull.

 The moons gravitational pull

The moon’s gravitational pull is responsible for the rise and fall of tides. Image: Public Domain Pictures

We are able to produce energy from this process using tidal power generators. These generators work similarly to wind turbines by drawing energy from the currents of water, and are either completely or partially submerged in water.

One advantage of tidal power generators is that water is denser than air, meaning that an individual tidal turbine can generate more power than a wind turbine, even at low currents. Tides are also predictable, with researchers arguing that it is tidal power is potentially a more reliable renewable energy source.

What is tidal power and how does it work? Video: Student Energy

There are three types of tidal energy systems: barrages, tidal streams, and tidal lagoons. Tidal barrages are structured similar to dams and generate power from river or bay tides. They are the oldest form of tidal power generation, dating back to the 1960s.

However, there is a common concern that generators and barrages can damage the environment, despite producing green energy. By creating facilities to generate energy, tidal power centres can affect the surrounding areas, leading to problems with land use and natural habitats.

 Fleet tidal lagoon in Dorset

Fleet tidal lagoon in Dorset, UK. Image: Geograph

Since then, technologies in tidal streams and lagoons have appeared, which work in the same fashion as barrages but have the advantage of being able to be built into the natural coastline – reducing the environmental impact often caused by the construction of barrages and generators.

However, there are no current large-scale projects with these two systems, and output is expected to be low, presenting a challenge to compete with more cost-effective renewable technologies.

Sustainability & Environment

Latin America is setting the pace in clean energy, led by Brazil and Mexico. Renewables account for more than half of electricity generation in Latin America and the Caribbean – compared with a world average of about 22% – according to the International Energy Agency. 

Brazil is one of the world’s leading producers of hydropower, while Mexico is a leader in geothermal power. Smaller countries in the region are also taking a lead. In Costa Rica, about 99% of the country’s electricity comes from renewable sources, while in Uruguay the proportion is close to 95%.

 The Itaipu hydroelectric dam

The Itaipu hydroelectric dam, on the border of Brazil and Paraguay, generated 89.5TWh of energy in 2015. Image: Deni Williams

At the same time, countries such as Chile, Brazil, Mexico and Argentina have adjusted their regulations to encourage alternative energy without having to offer subsidies. Some have held auctions for generation contracts purely for renewables.   

Latin America’s renewable energy production is dominated by an abundance of hydropower, but there is strong growth potential for other sources of renewable energy. Wind and solar power are expected to account for about 37% of the region’s electricity generation by 2040, compared with current levels of about 4%, according to a report from Bloomberg New Energy Finance (BNEF). 

Total electricity generation in Latin America is forecast to grow by 66% by 2040, and renewable energy is expected to account for the vast majority of the new capacity. While Brazil has significant solar water heating, solar PV is virtually non-existent. But consumer-driven rooftop PV is expected to account for 20% of Brazil’s electricity generation by 2040, it says. This compares with an expected 24% in the leading country, Australia, followed by 15% in Germany and 12% in Japan. Meanwhile, in Mexico, solar is forecast to overtake gas and hydro to dominate Mexico’s capacity mix.

Brazil is the world’s third largest producer of renewable power, after China and the US, and has the world’s second largest hydropower capacity, after China, according to a report issued by the Renewable Energy Policy Network for the 21st Century (REN21). Brazil also ranks fourth in terms of bio-power generation - after the US, China and Germany - and fifth in terms of solar water heating collector capacity. 

Rio do Fogo wind farm

Rio do Fogo wind farm, Brazil. Image: The Danish Wind Industry

Short-term decline

However, the recent economic downturn in Brazil, combined with declining electricity demand, has dampened growth in investments in renewable power in the country in the short-term. Although substantial hydropower capacity was commissioned in Brazil in 2016, the country’s renewable energy auction scheduled for 2016 was cancelled, and many projects awarded contracts in tenders through 2015 were stalled. 

In the wind power sector, a shift is expected away from Brazil to other countries in the region. The unstable politic and economic climate in Brazil coincides with unprecedented auction activity in Mexico, Argentina and Chile, says Make Consulting, part of Wood Mackenzie. It expects more than 47GW of new wind power capacity to be commissioned in Latin America by 2026. But following the cancellation of Brazil’s reserve power auction planned for 2016, wind power installations in Brazil in 2019 are expected to be half the size of 2014 and 2016.