Each year SCI’s Scotland group runs a competition where students are invited to write a short article describing how their PhD research relates to SCI’s strapline: where science meets business.

Jack Washington (right), a Pure and Applied Chemistry PhD student at the University of Strathclyde, was the overall winner of this year’s competition. His article ‘Clavulanic acid - The fight against antibiotic resistance’ is reproduced here:

Clavulanic acid - The fight against antibiotic resistance

 The molecular structure of clavulanic acid

The molecular structure of clavulanic acid. Image: Wikimedia Commons

If you were to say that cancer is the biggest threat to public health you would be wrong.

One of the most pre-eminent risks to human existence is antibiotic resistance. Antibiotics are medicines used to fight bacterial infections. However, bacteria are fighting back at an alarming rate. Without effective antibiotics, we could live in a world where infections borne from a simple wound could be deadly. Routine surgeries would no longer be possible. Whilst this bacterial apocalypse seems drastic, it’s a very real possibility, and one we could face in the near future.

 Alexander Fleming

Alexander Fleming. Image: Wikimedia Commons

Antibiotics are part of a multibillion-pound industry and are essential for life as we know it today. In 1928, the scientist Alexander Fleming, from Ayrshire in Scotland, serendipitously discovered penicillin. This chance discovery revolutionised the treatment of bacterial infections and spurred a wealth of antibiotic research. 88 years later, in the nearby town of Irvine, I started my PhD project in this field.

Penicillin is a β-lactam antibiotic, which made up of molecules containing a chemical entity known as a β-lactam. This β-lactam is a covalent warhead – a harpoon that grips its bacterial victim and doesn’t let go. This harpoon interrupts bacterial cell wall formation, causing the bacteria to rupture and die. 

Maryn McKenna: What do we do when antibiotics don’t work any more? Video: TED

However, bacteria can retaliate by producing aggressive enzymes that destroy this warhead. Another member of the β-lactam family, clavulanic acid, can thwart these enzymes. Clavulanic acid has weak antibiotic activity on its own so is used in a double act with another antibiotic, amoxicillin, to fight antibiotic-resistant bacteria as a team.