For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. Discoveries made by British physicists have changed the way we see the world, and are still used and celebrated today.

One of the world’s most recognisable scientists is mathematician and physicist Isaac Newton (1643-1727), who is credited with the discovery of the law of gravitation.

It is scientific legend that during one afternoon in his garden in 1666, during which Newton was sat under an apple tree, that an apple fell on his head. This led to a moment of inspiration from which he based his theory of gravity.

Gravity is an invisible force that pulls objects towards each other – anything with mass is affected by gravity – and is the reason why we don’t float off into space and why objects fall when you throw or drop them.

 Isaac Newton

An illustration of Isaac Newton in 1962.

The Earth’s gravity comes from its mass, which ultimately determines your weight. As the different plants in our universe are different masses, our weight on Earth is different to what it would be on Saturn or Uranus.

Whilst Newton’s theory has since been superseded by Einstein’s theory of relativity, it remains an important breakthrough in scientific history. The apple tree that supposedly led to his theory can still be found at Newton’s childhood home, Woolsthorpe Manor, in Grantham, UK.

 Newtons apple tree

Newton’s apple tree. Image: Martin Pettitt/Flickr


The Higgs boson

As a Senior Research Fellow at the University of Edinburgh, physicist Peter Higgs hypothesised that when the universe began, all particles had no mass. This changed a second later when they came into contact with a theoretical field – later named the Higgs field – and each particle gained mass.

The more a particle interacts with the field, the more mass it acquires and therefore the heavier it is, he postulated. The Higgs boson is a physical manifestation of the field.

 higgs boson

A computer generated rendering of the Higgs boson.

Back in 2012, the scientific community celebrated an important discovery made by researchers at CERN using the Large Hadron Collider – the world’s most powerful particle accelerator. 

After years of theorised work, they found a particle that behaved the way that the Higgs boson supposedly behaved.

The celebration was warranted, as the discovery of the Higgs boson verified the Standard Model of Particle Physics, which states that the Higgs boson gives everything in the universe its mass. It has been estimated that it cost $13.25bn to find the Higgs boson.  

 Large Hadron Collider

Inside the Large Hadron Collider at CERN in Switzerland. Image: Thomas Cizauskas/Flickr

In 2013, Higgs was presented with the Nobel Prize in Physics, which he shared with Belgian researcher Franҫois Englert, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles’.

Having avoided the limelight and media since his retirement, Higgs found out about his win from an ex-neighbour on his way home as he did not have a mobile phone!

Beyond the Higgs: What’s Next for the LHC? Video: The Royal Institution

The success of British physics isn’t slowing down either. It was in Manchester that two Russian scientists discovered graphene, which has influenced a wave of new research and investment into the use of this versatile material set to be a cornerstone for the fourth Industrial Revolution.