Blog search results for Tag: meat

Agrifood

More people are looking at their nutritional intake, not only to improve wellbeing but also reduce their environmental impact. With this, comes a move to include foods that are not traditionally cultivated or consumed in Europe.

Assessing whether this growing volume of so called ‘novel foods’ are safe for human consumption is the task of the European Food Safety Authority. The EFSA points out, ‘The notion of novel food is not new. Throughout history new types of food and food ingredients have found their way to Europe from all corners of the globe. Bananas, tomatoes, tropical fruit, maize, rice, a wide range of spices – all originally came to Europe as novel foods. Among the most recent arrivals are chia seeds, algae-based foods, baobab fruit and physalis.’

Under EU regulations any food not consumed ‘significantly’ prior to May 1997 is considered to be a ‘novel food’. The category covers new foods, food from new sources, new substances used in food as well as new ways and technologies for producing food. Examples include oils rich in omega-3 fatty acids from krill as a new source of food, phytosterols as a new substance, or nanotechnology as a new way of producing food.

Providing a final assessment on safety and efficacy of a novel food is a time consuming process. At the start of 2021 the EFSA gave its first completed assessment of a proposed insect-derived food product. The panel on Nutrition, Novel Foods and Food Allergens concluded that the novel food dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption.

SCIblog 28 January 2021 - Novel Foods - image of mealworms

Dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption, according to the EFSA.

Commenting in a press statement, as the opinion on insect novel food was released, Ermolaos Ververis, a chemist and food scientist at EFSA who coordinated the assessment said that evaluating the safety of insects for human consumption has its challenges. ‘Insects are complex organisms which makes characterising the composition of insect-derived products a challenge. Understanding their microbiology is paramount, considering also that the entire insect is consumed,’

Ververis added, ‘Formulations from insects may be high in protein, although the true protein levels can be overestimated when the substance chitin, a major component of insects’ exoskeleton, is present. Critically, many food allergies are linked to proteins so we assess whether the consumption of insects could trigger any allergic reactions. These can be caused by an individual’s sensitivity to insect proteins, cross-reactivity with other allergens or residual allergens from insect feed, e.g. gluten.’

SCIblog 28 January 2021 - Novel Foods - image of a German supermarket selection

EFSA research could lead to increased choice for consumers | Editorial credit: Raf Quintero / Shutterstock.com

The EFSA has an extensive list of novel foods to assess. These include dried crickets (Gryllodes sigillatus), olive leaf extract, and vitamin D2 mushroom powder. With the increasing desire to find alternatives to the many foods that we consume on a regular basis, particularly meat, it is likely that the EFSA will be busy for some time to come.

Health & Wellbeing

Combatting malnutrition in all its forms – overweight and obesity as well as undernutrition and micronutrient deficiencies – is a global problem.

The European Academies Science Advisory Council (EASAC) recently published a report calling for urgent action on food and nutrition security: this action will need to include consideration of the options for changing European diets to mitigate climate change, conferring co-benefits for health.

 EUs population is overweight

The European Commission estimates 51.6% of the EU’s population is overweight. Image: Tony Alter/Flickr

EASAC brings together EU member states’ national science academies with the aim of offering evidence-based advice to European policy makers. EASAC provides a means for the collective voice of European science to be heard and its recent report is part of a global project led by the InterAcademy Partnership (IAP).

The analysis and recommendations for Europe are accompanied by parallel activities focusing on Africa, Asia and the Americas. The IAP report will be published later in 2018.

 EASAC

EASAC recommendations will incorporate global challenges and needs, not just those in Europe. Image: Pixabay

In the EASAC report we emphasise that research and innovation are central to finding solutions. We recommend being more ambitious in identifying and using scientific opportunities: How can the current evidence base shape understanding of both supply- and demand-side challenges? And how should the research agenda be defined, including basic research, to fill knowledge gaps?

Climate change will have negative impacts on food systems, necessitating the introduction of climate-smart agriculture such as the adoption of plant breeding innovations to cope with drought.

Climate-Smart Agriculture in Action. Video: Farming First 

Agriculture and current diets also contribute significantly to climate change. Mitigating this contribution depends on land-sparing and agronomic management practices together with efforts to influence consumer behaviours associated with excessive greenhouse gas emissions from agriculture, including the over-consumption of calories and meat.

Among the core findings in our report is that food consumption will need to change to improve consumer health. It is important to explore individual responsiveness to nutrition and the links to health, and to consider the particular needs of vulnerable groups.

 High meat production

High meat production has been linked to increasing carbon emissions. Image: Pixabay

As part of the changes to food consumption patterns, a decrease in the consumption of animal protein could be important for both health and the environment but, globally, more research is needed to clarify these relationships and to measure sustainability related to consumption of healthy diets. We also call for policy makers to introduce incentives for affordable nutrition.

Agriculture has significant impacts on the environment. We call for the revamp of the Common Agricultural Policy to focus on innovation rather than subsidies, in order to play a key role in European competitiveness and the bioeconomy.

wheat gif

Originally posted by sunbursts-and-marblehalls

Alternatives to traditional forms of animal protein include food from the oceans, laboratory-grown meat and insects. Research is needed to understand and inform consumer attitudes to innovative food and diets.

Also, research objectives for the next generation of biofuels should include examining the potential of cellulosic raw materials. Further ahead, energy research must continue to explore how to engineer systems with improved photosynthesis.

 Biofuels

Biofuels are derived from common crops, including wheat, corn and sugar. Image: Public Domain Pictures

Europe should not stall on opportunities for innovation coming within range. Breakthroughs in genome editing and other genetic research are crucial to the future of agriculture. European policy makers must capitalise on these scientific advances.

For improved plant and animal breeding, it is important to protect and characterise wild gene pools and to continue sequencing and functional assessment to unveil the potential of genetic resources. Precision agriculture offers many opportunities to improve productivity with reduced environmental impact. Large data sets are vital to support innovation and prepare for risk and uncertainty.

 

Open-source automated precision farming | Rory Aronson | TEDxUCLA. Video: TEDx Talks

Underpinning all our recommendations is the recognition that research and innovation must be better integrated, across disciplines and the public and private sectors, in order to better understand the interfaces between health, nutrition, food and other ecosystem services.

EASAC emphasises that efforts to increase food systems’ efficiency should not focus on increasing agricultural productivity by ignoring environmental costs.

Sustainability & Environment

Cellular agriculture involves making food from cell cultures in bioreactors. The products are chemically identical to meat and dairy products, and it’s claimed they have the same taste and texture.

The technology is an attractive option because it would reduce the world’s reliance on livestock, which is unsustainable, and would have potential knock-on benefits of lower greenhouse gas emissions, and reduced water, land, and energy usage than traditional farming.

milk gif

Originally posted by butteryplanet

IndieBio helps biotechnology start-ups. Since 2014, it has funded several new US-based businesses in cellular agriculture: Perfect Day, formerly Muufri, makes milk from cell culture; Clara Foods is developing a way to make egg whites from cell culture; and Memphis Meats is focusing on animal-free meat using tissue engineering.

Growth is driven by the clear benefits this technology can offer, says Ron Sigeta, IndieBio’s Chief Scientific Officer. ‘It takes 144 gallons of water to make a gallon of milk or 53 gallons of water to make an egg. Cellular agriculture products don’t require such large water supplies, or large tracts of land, or produce the same level of greenhouse gas emissions.’

 Salmonella

Salmonella bacteria are not present in cell-cultured milk so there is no risk of infection. Image: Wikimedia Commons

Food safety is also a significant issue. ‘Cellular agriculture makes products in an entirely controlled environment so it’s a source of food we can understand with a transparency that is simply not possible now,’ says Sigeta. For example, raw, unpasteurised milk can carry bacteria, such as salmonella, which is not a problem for Perfect Day’s milk as there are no bacteria-carrying animals are involved.


So how does it work?

Cellular agriculture products can be acellular – made of organic molecules like proteins and fats – or cellular – made of living or once-living cells.

Meat industry critics argue that it is not sustainable and lab-grown meat is the future. Video: Eater

Acellular products are made without using microbes like yeast or similar bacteria. Scientists alter the yeast by inserting the gene responsible for making the desired protein. Since all cells read the same genetic code, the yeast, now carrying recombinant DNA, makes the protein molecularly identical to the protein an animal makes.

Other products like meat and leather are produced by a cellular approach. Using tissue engineering techniques muscle, fat or skin cells can be assembled on a scaffold with nutrients. The cells can be grown in large quantities and then combined to make the product.

 cultured beef patty

The first cultured beef patty was made in 2013. Image: Public Domain Pictures

Mark Post at Maastricht University, the Netherlands, made the first cultured beef hamburger in 2013 using established tissue engineering methods to grow cow muscle cells. The process, however, was expensive and time-consuming, but his team has been working on improvements.

‘We are focusing on hamburgers because our process results in small tissues that are large enough for minced meat applications, which accounts for half of the meat market. To make a steak, one would need to impose a larger 3D structure to the cells to grow in.

‘It is very important that such a structure contains a channel system to perfuse the nutrients and oxygen through to the developing tissue and to remove waste as a result of metabolic activity. This technology is being developed, but is not yet ready for large scale production.’

 genetically engineered meat

Surveys have shown that the public are behind genetically engineered meat alternatives. Image: Ben Amstutz@Flickr 


Future outlook

Commercial challenges include finding a cost-effective medium for cell nutrition developing a bioreactor for industrial scale production. Public perception may also be a challenge: Will people buy synthetically engineered food?

A recent crowdfunding campaign shows the global massive support for the idea of clean meat, says Koby Barak, SuperMeat’s chief operating officer and co-founder. However, he believes these will be overcome shortly, and it will not be long before companies see ‘massive funding’ in this field and the creation of clean meat factories worldwide.