Blog search results for Tag: nanotechnology

Careers

SCI’s America International group has awarded the 2021 Perkin Medal to Dr Jane Frommer. The 114th Perkin Medal was presented to Jane at the Bellevue Hotel in Philadelphia, Pennsylvania, in recognition of her outstanding contribution to chemistry.

SCIblog - 30 September 2021 - Jane Frommer awarded Perkin Medal - image of Jane Frommer

Dr Jane Frommer

Dr Frommer is renowned for her key contributions in electronically conducting polymers and scanning probe instrumentation. Her pioneering work with scanning probes paved the way for their use in chemistry, materials science and, eventually, in nanotechnology. According to SCI America, her nanoscopic analytic methods are vital to nanostructural research and are used across many industries.

Dr Frommer began her career in 1980 at Allied Corporate Laboratories (now Honeywell), where she created the solution state of electronically conducting organic polymers. In 1986, she joined IBM where, along with other instrumentalists, she demonstrated the ability to image and manipulate single molecules using scanning tunnelling microscopy. During her multi-year assignment at the University of Basel Physics Institute in the early 1990s, Dr Frommer’s team expanded the capability of scanning probes in measuring the functional properties of organic thin films with atomic force microscopy.

Since 2018, she has worked as a science advisor for Google. In this capacity, she has sought to increase the amount of open source data available in the physical and life sciences. She also helps Silicon Valley start-ups navigate the chemical and material challenges of nanotechnology and has mentored countless students and young scientists in high school, college, and in her laboratory in recent decades.

SCI Awards - Medals - Image for the Perkin Medal - social graphic

Previous recipients of the Perkin medal include Barbara Haviland Minor, of the Chemours Company, and Ann E Weber, of Kallyope Inc.

Dr Frommer has written more than 100 referred publications and is the co-inventor of more than 50 issued patents. With her extraordinary body of work spanning more than 40 years, she is a worthy recipient of the prestigious Perkin Medal.

The Perkin Medal is widely acknowledged as the highest honour in American industrial chemistry. It was established to commemorate the 50th anniversary of William Henry Perkin’s discovery of mauveine at the age of just 18. Perkin’s creation of mauveine, the world’s first synthetic aniline dye, revolutionised chemistry and opened up new frontiers in textiles, clothing, and other industries. Perkin was a founding member of SCI and this Medal was first presented to him in New York in 1906.

For more information on the Perkin Medal and the nomination process, visit: soci.org/awards/medals/perkin-medal

Materials

From monitoring our heart rate and generating renewable energy to keeping astronauts safe in space, a number of novel applications for carbon nanotubes have emerged in recent months. 

Academic and industrial interest around carbon nanotubes (CNTs) continues to  increase, owing to their exceptional strength, stiffness and electronic properties.  

Over the years, this interest has mainly focused on creating products that are both stronger and lighter, for example, in the sporting goods sector, but recently many ‘quirkier’ applications are beginning to appear.

 tennis player

Carbon nanotubes are already used in sporting goods such as tennis racquets. Image: Steven Pisano/Flickr

At Embry-Riddle Aeronautical University in Prescott, Arizona, for example, researchers are currently working with NASA on new types of nano sensors to keep astronauts safer in space. 

The Embry-Riddle team – along with colleagues at LUNA Innovations, a fibre-optics sensing company based in  Virginia, US – have focused on developing and refining smart material sensors that can be used to detect stress or damage in critical structures using a particular class of CNT called ‘buckypaper’.

The next step in nanotechnology | George Tulevski. Video: TED

With buckypaper, layers of nanotubes can be loosely bonded to form a paper-like thin sheet, effectively creating a layer of thousands of tiny sensors. These sensor sheets could improve the safety of future space travel via NASA’s  inflatable space habitats’ – pressurised structures capable of supporting life in  outer space – by detecting potentially damaging micrometeroroids and orbital debris (MMOD). 

CNTs coated on a large flexible membrane on an inflatable habitat, for instance, could accurately monitor strain and pinpoint impact from nearby MMODs.

 

Materials

Energy storage is absolutely crucial in today’s world. More than just the batteries in our remote controls, more even than our mobile phones and laptops; advancements in energy storage could solve the issues with renewable power,  preserving energy generated at times of low demand.

Advances in lithium-ion batteries have dominated the headlines in this area of late, but a variety of developments across the field of electrode materials could become game changers.

1. In the beginning, there were metals

 The Daniell cell

The Daniell cell, an early battery from 1836 using a zinc electrode. Image: Daderot

Early batteries used metallic electrodes, such as zinc, iron, platinum, and lead. The Daniell cell, invented by British chemist John Frederic Daniell and the historical basis for the volt measurement, used a zinc electrode just like the early batteries produced by scientists such as Alessandro Volta and William Cruickshank. 

Alterations elsewhere in the Daniell cell substantially improved its performance compared with existing battery technology and it became the industry standard.


2. From acid to alkaline

 Waldemar Jungner

Waldemar Jungner: the Swedish scientist who developed the first Nickel-Cadmium battery. Image: Svenska dagbladets årsbok 1924

Another major development in electrode materials came with the first alkaline battery, developed by Waldemar Jungner using nickel (Ni) and cadmium (Cd). Jungner had experimented with iron instead of cadmium but found it considerably less successful. 

The Ni–Cd battery had far greater energy density than the other rechargeable batteries at the time, although it was also considerably more expensive.


3. Smaller, lighter, better, faster

 Organic materials for microbattery

Organic materials for microbattery electrodes are tested on coin cells. Image: Mikko Raskinen

Want your electronic devices to be even smaller and lighter? Researchers from Aalto University, Finland, are working on improving the efficiency of microbatteries by fabricating electrochemically active organic lithium electrode thin films. 

The team use lithium terephthalate, a recently found anode material for a lithium-ion battery, and prepare it with a combined atomic/molecular layer deposition technique.


4. There’s more to life than lithium

 Salar de Uyuni

50-70% of the world’s known lithium reserves are in Salar de Uyuni, Bolivia. Image: Anouchka Unel

Lithium-ion batteries have dominated the rechargeable market since their emergence in the 1990′s. However, the rarity of material means that, increasingly, research and development is focused elsewhere. 

Researchers at Stanford University, USA, believe they have created a sodium ion battery with the same storage capacity as lithium but at 80% less cost. The battery uses sodium salt for the cathode and phosphorous for the anode. 

5. Back to the start

Advances are also being made in the electrode materials used in artificial photosynthesis. Video: TEDx Talks

Hematite and other cheap, plentiful metals are being used to create photocatalytic electrode materials by a team of scientists from Tianjin University, China. The approach, that combines nanotechnology with chemical doping, can produce a photocurrent more than five times higher than current approaches to artificial photosynthesis. 

You can read an interview with the recipient of SCI’s 2017 Castner Medal, who delivered the lecture Developments in Electrodes and Electrochemical Cell Designhere.