Blog search results for Tag: food

Agrifood

Thinking of popping to your nearest specialist store for some sesame oil, turmeric, or soy? Some things haven't changed in 3,700 years, it turns out...

At least, that's what a growing new field of research, palaeoproteomics, suggests. Human mouths are full of bacteria, which continually petrify and form dental calculus — which can entrap and preserve tiny food particles. These remnants can be accessed and analysed thousands of years later, providing remarkable insight into the dietary habits of our ancestors.

Philip Stockhammer, an archaeologist at the Ludwig Maximilian University of Munich (LMU), has worked with Christina Warinner, a molecular archaeologist at Harvard University and the Max Planck Institute for the Science of Human History, and a team of researchers to apply this new method to the eastern Mediterranean, including the Bronze Age site of Megiddo and the Early Iron Age site of Tel Erani.

“Our high-resolution study of ancient proteins and plant residues from human dental calculus is the first of its kind to study the cuisines of the ancient Near East,” said Warinner, explaining its significance. “Our research demonstrates the great potential of these methods to detect foods that otherwise leave few archaeological traces. Dental calculus is such a valuable source of information about the lives of ancient peoples.”

SCIblog - 1 March 2021 - A trip to the Bronze Age dentist - image of woman's smile with perfect teeth

High-resolution analyses of ancient dental calculus have given us a whole new perspective on the diets of Bronze Age people.

The research team took samples from a range of individuals and analysed which food proteins and plant residues were preserved in their teeth. “This enables us to find traces of what a person ate,” said Stockhammer. “Anyone who does not practice good dental hygiene will still be telling us archaeologists what they have been eating thousands of years from now!”

Of course, it's not quite as simple as looking at the teeth of those who didn't thoroughly clean them nearly four millennia ago and hoping the proteins survived. “Interestingly, we find that allergy-associated proteins appear to be the most stable in human calculus”, remarked Ashley Scott, LMU biochemist and lead author. That might be because of the known thermostability of many allergens. For instance, the researchers were able to detect wheat via wheat gluten proteins, which they independently confirmed with a different method using a type of plant microfossil known as phytoliths.

This substance has previously been used to identify millet and date palm in the same area during the Bronze and Iron Ages but phytoliths are not plentiful or even present in many foods, which is why this research is so exciting — palaeoproteomics means foods that have left few other traces, such as sesame, can now be identified.

SCIblog - 1 March 2021 - A trip to the Bronze Age dentist - image of a pile of bananas

Research suggests that the humble banana was eaten throughout the Mediterranean far earlier than first thought.

The method has allowed the team to identify that people at these sites ate, among other things, sesame, turmeric, soy, and bananas far earlier than anyone had realised. “Exotic spices, fruits and oils from Asia had thus reached the Mediterranean several centuries, in some cases even millennia, earlier than had been previously thought,” explained Stockhammer.

The finds mean that we have direct evidence for a flourishing long-distance trade in fruits, spices, and oils, from East and South Asia to the Levant via Mesopotamia or Egypt as early as the second millennium BCE.

More than that, the analyses "provide crucial information on the spread of the banana around the world. No archaeological or written evidence had previously suggested such an early spread into the Mediterranean region,” according to Stockhammer (although the sudden appearance of bananas in West Africa a few centuries later has previously led archaeologists to believe that such a trade might have existed, this is the first evidence).

The team acknowledged that other explanations are possible, including that the individuals concerned had travelled to East or South Asia at some point but there is evidence for other trade in food and spices in the Eastern Mediterranean — for instance, we know Pharaoh Ramses II was buried with peppercorns from India in 1213 BCE.

But it certainly seems like some foods might have been popular in the Mediterranean for much longer than we realised, which might be an interesting thought to accompany you next time you add some spices or bananas to your shopping basket.

Agrifood

More people are looking at their nutritional intake, not only to improve wellbeing but also reduce their environmental impact. With this, comes a move to include foods that are not traditionally cultivated or consumed in Europe.

Assessing whether this growing volume of so called ‘novel foods’ are safe for human consumption is the task of the European Food Safety Authority. The EFSA points out, ‘The notion of novel food is not new. Throughout history new types of food and food ingredients have found their way to Europe from all corners of the globe. Bananas, tomatoes, tropical fruit, maize, rice, a wide range of spices – all originally came to Europe as novel foods. Among the most recent arrivals are chia seeds, algae-based foods, baobab fruit and physalis.’

Under EU regulations any food not consumed ‘significantly’ prior to May 1997 is considered to be a ‘novel food’. The category covers new foods, food from new sources, new substances used in food as well as new ways and technologies for producing food. Examples include oils rich in omega-3 fatty acids from krill as a new source of food, phytosterols as a new substance, or nanotechnology as a new way of producing food.

Providing a final assessment on safety and efficacy of a novel food is a time consuming process. At the start of 2021 the EFSA gave its first completed assessment of a proposed insect-derived food product. The panel on Nutrition, Novel Foods and Food Allergens concluded that the novel food dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption.

SCIblog 28 January 2021 - Novel Foods - image of mealworms

Dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption, according to the EFSA.

Commenting in a press statement, as the opinion on insect novel food was released, Ermolaos Ververis, a chemist and food scientist at EFSA who coordinated the assessment said that evaluating the safety of insects for human consumption has its challenges. ‘Insects are complex organisms which makes characterising the composition of insect-derived products a challenge. Understanding their microbiology is paramount, considering also that the entire insect is consumed,’

Ververis added, ‘Formulations from insects may be high in protein, although the true protein levels can be overestimated when the substance chitin, a major component of insects’ exoskeleton, is present. Critically, many food allergies are linked to proteins so we assess whether the consumption of insects could trigger any allergic reactions. These can be caused by an individual’s sensitivity to insect proteins, cross-reactivity with other allergens or residual allergens from insect feed, e.g. gluten.’

SCIblog 28 January 2021 - Novel Foods - image of a German supermarket selection

EFSA research could lead to increased choice for consumers | Editorial credit: Raf Quintero / Shutterstock.com

The EFSA has an extensive list of novel foods to assess. These include dried crickets (Gryllodes sigillatus), olive leaf extract, and vitamin D2 mushroom powder. With the increasing desire to find alternatives to the many foods that we consume on a regular basis, particularly meat, it is likely that the EFSA will be busy for some time to come.

Agrifood

More people are looking at their nutritional intake, not only to improve wellbeing but also reduce their environmental impact. With this, comes a move to include foods that are not traditionally cultivated or consumed in Europe.

Assessing whether this growing volume of so called ‘novel foods’ are safe for human consumption is the task of the European Food Safety Authority. The EFSA points out, ‘The notion of novel food is not new. Throughout history new types of food and food ingredients have found their way to Europe from all corners of the globe. Bananas, tomatoes, tropical fruit, maize, rice, a wide range of spices – all originally came to Europe as novel foods. Among the most recent arrivals are chia seeds, algae-based foods, baobab fruit and physalis.’

Under EU regulations any food not consumed ‘significantly’ prior to May 1997 is considered to be a ‘novel food’. The category covers new foods, food from new sources, new substances used in food as well as new ways and technologies for producing food. Examples include oils rich in omega-3 fatty acids from krill as a new source of food, phytosterols as a new substance, or nanotechnology as a new way of producing food.

Providing a final assessment on safety and efficacy of a novel food is a time consuming process. At the start of 2021 the EFSA gave its first completed assessment of a proposed insect-derived food product. The panel on Nutrition, Novel Foods and Food Allergens concluded that the novel food dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption.

SCIblog 28 January 2021 - Novel Foods - image of mealworms

Dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption, according to the EFSA.

Commenting in a press statement, as the opinion on insect novel food was released, Ermolaos Ververis, a chemist and food scientist at EFSA who coordinated the assessment said that evaluating the safety of insects for human consumption has its challenges. ‘Insects are complex organisms which makes characterising the composition of insect-derived products a challenge. Understanding their microbiology is paramount, considering also that the entire insect is consumed,’

Ververis added, ‘Formulations from insects may be high in protein, although the true protein levels can be overestimated when the substance chitin, a major component of insects’ exoskeleton, is present. Critically, many food allergies are linked to proteins so we assess whether the consumption of insects could trigger any allergic reactions. These can be caused by an individual’s sensitivity to insect proteins, cross-reactivity with other allergens or residual allergens from insect feed, e.g. gluten.’

SCIblog 28 January 2021 - Novel Foods - image of a German supermarket selection

EFSA research could lead to increased choice for consumers | Editorial credit: Raf Quintero / Shutterstock.com

The EFSA has an extensive list of novel foods to assess. These include dried crickets (Gryllodes sigillatus), olive leaf extract, and vitamin D2 mushroom powder. With the increasing desire to find alternatives to the many foods that we consume on a regular basis, particularly meat, it is likely that the EFSA will be busy for some time to come.

Agrifood

The conference ‘Feeding the future: can we protect crops sustainably?’ was a tremendous success from the point of view of the technical content. The outcomes have been summarised in a series of articles here. How did such an event come about and what can we learn about putting on an event like this in a world of Covid?

This event was born from two parents. The first was a vision and the second was collaboration.

The vision began in the SCI Agrisciences committee. We had organised a series of events in the previous few years, all linking to the general theme of challenges to overcome in food sustainability. Our events had dealt with the use of data, the challenge of climate change and the future of livestock production. Our intention was to build on this legacy using the International Year of Plant Health as inspiration and provide a comprehensive event, at the SCI headquarters in London, covering every element of crop protection and what it will look like in the future. We wanted to make a networking hub, a place to share ideas and make connections, where new lines of research and development would be sparked into life. Well, then came Covid…

 international year of plant health 2020

 

2020 is the International Year of Plant Health.

From the start, we knew in the Agrisciences group that this was going to be too much for us alone. Our first collaboration was within the SCI, the Horticulture Group and the Food Group. Outside of the SCI, we wanted collaborators who are research-active, with wide capabilities and people who really care about the future of crop protection. Having discussed a few options, we approached the Institute of Agriculture and Food Research and Innovation, IAFRI and later Crop Health and Protection, CHAP.

By February 2020, we had our full team of organisers and about half of our agenda all arranged. By March we didn’t know what to do, delay or virtualise? The debate went back and forth for several weeks as we all got to grips with the true meaning of lockdown. When we chose to virtualise, suddenly we had to relearn all we knew about organising events. Both CHAP and SCI started running other events and building up their experience. With this experience came sound advice on what makes a good event: Don’t let it drag; Keep everything snappy; Make sure that your speakers are the very best; Firm and direct chairing. We created a whole new agenda, based around these ideas.

 A picture of people networking 

How do you replicate those chance meetings facilitated by face-to-face events?

That still left one problem: how do you reproduce those extra bits that you get in a real conference? Those times in the coffee queue when you happen across your future collaborator? Maybe your future business partner is looking at the same poster as you are? It is a bit like luck, but facilitated.

We resolved this conundrum with four informal parallel sessions. So we still had student posters but in the form of micro-presentations. We engineered discussions between students and senior members of our industry. We tried to recreate a commercial exhibition where you watched as top companies showed off their latest inventions. For those who would love to go on a field trip, we offered virtual guided tours of some of the research facilities operated by CHAP.

Can virtual conferences take the place of real ones? They are clearly not the same, as nothing beats looking directly into someone’s eyes. But on the plus side, they are cheaper to put on and present a lower barrier for delegates to get involved. I am looking forward to a post-Covid world when we can all meet again, but in the meantime we can put on engaging and exciting events that deliver a lot of learning and opportunity in a virtual space.

Feeding the Future was organised by:

James Garratt, SCI Agrisciences

John Points, SCI Food

Liliya Serazetdinoza, SCI Agrisciences

Robin Blake, SCI Agrisciences

Bruce Knight, SCI Agrisciences

Sebastian Eves-van den Acker, SCI Horticulture

Neil Boonham, IAFRI Newcastle University

Katherine Wotherspoon, IAFRI FERA

Darren Hassall, CHAP

Technical and administrative support was provided by:

JacquI Maguire, SCI

Shadé Bull, SCI

Theo Echarte, SCI

Sandy Sevenne, CHAP

Claire Boston-Smithson, IAFRI FERA

Guest chairs and moderators were:

Rob Edwards, Newcastle University

Ruth Bastow, CHAP

Richard Glass, CHAP



Agrifood

Recently, our Agri-Food Early Career Committee ran the third #agrifoodbecause Twitter competition. Today we are looking back over the best photos of the 2020 competition, including our winner and runner-up. Entrants were asked to take photos and explain why they loved their work, using the hashtag #agrifoodbecause on Twitter.

Our 2020 winner, Jordan Cuff, Cardiff University, won first prize for his fantastic shot of a ladybird. He received a free SCI student membership and an Amazon voucher.

 ladybug on a flower

#agrifoodbecause insect pests ravage agriculture through disease and damage. Naturally-occurring predators offer sustainable biocontrol, but their dynamics must be better understood for optimal crop protection. @SCIupdate @SCI_AgriFood #conservationbiocontrol🐞🌾🕷️🍽️ pic.twitter.com/ss4WjdB8ky

For the first-time ever we also awarded a runner-up prize to Lauren Hibbert, University of Southampton, for her beautiful root photography. She also received a free SCI student membership and Amazon voucher.

 root phenotyping

#agrifoodbecause developing more environmentally friendly crops will help ensure the sustainability of future farming.
Photo illustrating the dawn 🌅 of root phenotyping… or some very hairy (phosphate hungry) watercress roots! @SCI_AgriFood pic.twitter.com/29u533Xyow

There were also many other fantastic entries!

 parasitic wasps

#AgrifoodBecause My research looks at the potential biocontrol of parasitic wasps on #CSFB, major pest of #OSR! Combining field and lab work to work towards #IPM strategies 👩🏻‍🔬👩🏻‍🌾 pic.twitter.com/YqJnBM4CVf

 damaging fungi

#AgrifoodBecause we need to work out which tools fungi use to damage our crops. Sometimes crops are tricky to work with so models have to do pic.twitter.com/mrdk2tRgC6

 protect the crops

#agrifoodbecause we need to protect the crops to feed the world while repairing and protecting a highly damaged ecosystem. There is no delete option! #foodsecurity #noplanetb #organic #earth #wildlife #insectpests #beneficialinsects pic.twitter.com/JXfycRc0tx

Once again, it was an incredibly successful online event, with fascinating topics covered.

To find out more about the Twitter competition, follow our SCI Agri-Food Early Careers Committee Twitter @SCI_AgriFood and look out for #agrifoodbecause.


image
image
image
image

Health & Wellbeing

Generally, food intake measurement relies on an individual’s ability to recall what and how much they ate, which has inherent limitations. This can be overcome using biomarkers, such as urine, which contains high amounts of data, and looks to be a promising new indicator of nutritional status.

In one study, a group of researchers from Imperial College London, Northwestern University, University of Illinois, and Murdoch University analysed metabolites in the urine to measure the health of an individual’s diet.

Funded by the U.S. National Institutes of Health and Health Data Research UK, the group of scientists analysed levels of 46 different metabolites in the urine of 1,848 people in the U.S, publishing their findings in the journal Nature Food.

The team illustrated the effectiveness of using metabolites in urine as an alternative approach to obtaining information on dietary patterns. Analysing the urinary metabolic profile of the individuals, they found that the 46 metabolites in urine accurately predicted healthy / unhealthy patterns, making the link between 46 metabolites in urine, as well as the types of foods and nutrients in the diet.

 urine test sample

Urine test sample 

The team believes that this technology could inspire healthy changes as health professionals could be better equipped to provide dietary advice tailored to their individual biological make-up. As Dr Isabel Garcia-Perez, author of the research also from Imperial’s Department of Metabolism, Digestion and Reproduction explained: ‘Our technology can provide crucial insights into how foods are processed by individuals in different ways.’

To build on this research, the same Imperial team, in collaboration with Newcastle University, Aberystwyth University, and Murdoch University, developed a five-minute test to measure the health of a person’s diet.

This five-minute test can reveal differences in urinary metabolites, generating a dietary metabotype score for each individual. As part of this research, 19 people were recruited to follow four different diets ranging from very healthy to unhealthy. The experiments indicated that the healthier their diet, the higher the DMS score, associating higher DMS score with lower blood sugar and a higher amount of energy excreted in the urine.

 Healthy heart

Heart in hands

Professor John Mathers, co-author of research and Director of the Human Nutrition Research Centre at Newcastle University said: ‘We show here how different people metabolise the same foods in highly individual ways. This has implications for understanding the development of nutrition-related diseases and for more personalised dietary advice to improve public health.’


Agrifood

A growing population is placing greater pressure on limited resources including land, oceans, water and energy. If agricultural production continues in its present form, water degradation, biodiversity loss and climate change will continue. As a result, people are adopting an increased interest in the environmental impact of food choice, choosing alternatives like insects.

This round-up explores examples of the various insect-based alternative foods.

Insect Snacks

According to data from Grand View Research, a US-based market research company, the global healthy snacks market is expected to reach $32.88 billion by 2025. Companies across Europe are developing healthy snack products based on insects, tapping into our desire for a variety of foods and tastes.

 insect

 Insect

Eat Grub, established in 2013 and based in London UK, developed an insect snack made from house crickets, which are farmed in Europe. They are a sustainable, nutritious and tasty source of food, rich in protein. Research has indicated that insects are good for gut health due to their high chitin content. Chitinous fibre has been linked to increased levels of a metabolic enzyme associated with gut health.

Insect Beer

A start-up Belgian beer company, Belgium Beetles Beer, described their drink as a real Belgium blond beer enriched with insect vitamins and proteins.

Upon ‘accidentally’ developing this product, they realised that the dry beetle powder offered a rich, light sweet, slightly bitter flavour.

 insect beer

Beer

Insect Burger

A growing number of companies are now focusing their efforts on producing a product that looks and tastes like a traditional meat-based burger.

Bugfoundation’s burgers are based on buffalo worms, which are the larvae of the Alphitobius Diaperinus beetle. The company’s founders said that they decided to use buffalo worms because of their ‘slightly nutty flavour.’

The idea stemmed from a trip to Asia, where co-founder, Max Charmer came across fried crickets. His experience inspired him to bring these flavours to the west, hoping to please western tastes and comply with evolving European regulations.

 insect burger

 Burger

Concerns regarding the livestock system have prompted novel inventions in the food space; insects, considered a source of protein, could outperform conventional meats to reduce environmental impacts.

So, will consumers soon be able to introduce insects to their everyday diets? Only time will tell.

 fried insects

Fried insects


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on iron and its importance for human health.

 iron

Iron’s biological role

Iron is an important component of hemoglobin, a protein in the red blood cells which transports oxygen throughout the body. If there is a low level of iron in your body, your body will be unable to carry healthy oxygen-carrying red blood cells and a lack of these red blood cells can result in iron deficiency anemia.

During the 17th century, iron had early medicinal uses by Egyptians, Greeks, Hindus and Romanians, and around 1932, it became established that iron was essential for haemoglobin synthesis.

 red blood cells

Red blood cells 

Figures

The World Health Organisation (WHO) released figures suggesting that iron deficiency is incredibly common in humans and therefore happens to be a primary cause of anaemia. 

According to their statistics, around 1.62 bn cases of anaemia are caused by iron deficiency and according to WHO’s 2008 reports, anaemia can be caused by excessive blood loss, poor iron absorption, and low dietary intake of iron.

Bioavailability

Iron bioavailability in food is low among populations consuming plant-based diets. Iron requirement is very important, and when low levels of iron deficiency are prominent among populations in developing countries, subsequent behavioural and health consequences follow. 

tired gif

Originally posted by lilpieceofmyworld

These include reduced fertility rates, fatigue, decreased productivity and impaired school performance among children.

Pregnancy

During pregnancy, iron utilisation is increased as it is essential nourishment for the developing fetus. In 1997, a study proved that pregnant women needed the increase in iron, as 51% of pregnant women suffered from anaemia, which is twice as many non-pregnant women.

 iron graphifc

As iron is a redox-active transitional metal, it can form free radicals and in excessive amounts. This is dangerous as it can cause oxidative stress which could lead to tissue damage. Epidemiological studies provide evidence to show that excessive iron can be a potent risk factor associated with chronic conditions like cardiovascular and developing metabolic abnormalities.

Food sources:

Dietary iron is found in two basic forms. It is found from animal sources (as haem iron) or in the form of plant sources (as non-haem iron). The most bioavailable form of iron is from animal sources, and iron from plant sources are predominantly found in cereals, vegetables, pulses, beans, nuts and fruit. 

However, this form of iron is affected by various factors, as the phytate and calcium can bind iron in the intestine, unfortunately reducing absorption. Vitamin C which is present in fruit and vegetables can aid the absorption of non-haem iron when it is eaten with meat.

 salad bowl

‘The global burden of iron deficiency anaemia hasn’t changed in the past 20 years, particularly in children and women of reproductive age,’ says researcher, Dora Pereira. Although iron is an important nutrient to keeping healthy, it is imperative that iron levels are not too high.


Sustainability & Environment

Banana is the largest herbaceous plant in the world and the UK’s favourite fruit. Every year 100 bn bananas are eaten around the world. The banana industry itself was worth US$44bn in 2011, however taking the fruits from the field to the grocery store relies on a delicately coordinated transportation and ripening system.

monkeys eating

The banana colour scheme distinguishes seven stages from ‘All green’ to ‘All yellow with brown flecks’. The green, unripe banana peel contains leucocyanidin, a flavonoid that induces cell proliferation, accelerating the healing of skin wounds. But once it is yellowish and ready to eat, the chlorophyll breaks down, leaving the recognisable yellow colour of carotenoids.

 unripe and ripe bananas

Unripe (green) and ready-to-eat (yellow) bananas.

The fruits are cut from the plant whilst green and on average, 10-30 % of the bananas do not meet quality standards at harvest. Then they are packaged and kept in cold temperatures to reduce enzymatic processes, such as respiration and ethylene production.

However, below 14°C bananas experience ‘chilling injury’ which changes fruit ripening physiology and can lead to the brown speckles on the skin. Above 24°C, bananas also stop developing fully yellow colour as they retain high levels of chlorophyll.

Once the green bananas arrive at the ripening facility, the fruits are kept in ripening rooms where the temperature and humidity are kept constant while the amount of oxygen, carbon dioxide and ethene are controlled.

 palm tree

The gas itself triggers the ripening process, leads to cell walls breakdown and the conversion of starches to sugars. Certain fruits around bananas can ripen quicker because of their ethene production.

By day five, bananas should be in stage 2½ (’Green with trace of yellow’ to ‘More green than yellow’) according to the colour scale and are shipped to the shops. From stage 5 (’All yellow with green tip’), the fruits are ready to be eaten and have a three-day shelf-life.

 fruit market

A fruit market. Image: Gidon Pico

The very short shelf-life of the fruit makes it a very wasteful system. By day five, the sugar content and pH value are ideal for yeasts and moulds. Bananas not only start turning brown and mouldy, but they also go through a 1.5-4 mm ‘weight loss’ as the water is lost from the peel.

While scientists have been trying out different chemical and natural lipid ‘dips’ for bananas to extend their shelf-life, such methods remain one of the greatest challenges to the industry.

In fruit salads, to stop the banana slices go brown, the cut fruits are sprayed with a mixture of citric acid and amino acid to keep them yellow and firm without affecting the taste.

 bananas and potassium

Bananas are a good source of potassium and vitamins.

The high starch concentration – over 70% of dry weight – banana processing into flour and starch is now also getting the attention of the industry. There are a great many pharmaceutical properties of bananas as well, such as high dopamine levels in the peel and high amounts of beta-carotene, a precursor of vitamin A.

Whilst the ‘seven shades of yellow’ underpin the marketability of bananas, these plants are also now threatened by the fungal Panama disease. This vascular wilt disease led to the collapse of the banana industry in the 1950’s which was overcome by a new variety of bananas.

 bananas growing

However, the uncontrollable disease has evolved to infect Cavendish bananas and has been rapidly spreading from Australia, China to India, the Middle East and Africa.

The future of the banana industry relies on strict quarantine procedures to limit further spread of the disease to Latin America, integrated crop management and continuous development of banana ‘dips’ for extending shelf-life.



Sustainability & Environment

Banana is the largest herbaceous plant in the world and the UK’s favourite fruit. Every year 100 bn bananas are eaten around the world. The banana industry itself was worth US$44bn in 2011, however taking the fruits from the field to the grocery store relies on a delicately coordinated transportation and ripening system.

monkeys eating

The banana colour scheme distinguishes seven stages from ‘All green’ to ‘All yellow with brown flecks’. The green, unripe banana peel contains leucocyanidin, a flavonoid that induces cell proliferation, accelerating the healing of skin wounds. But once it is yellowish and ready to eat, the chlorophyll breaks down, leaving the recognisable yellow colour of carotenoids.

 unripe and ripe bananas

Unripe (green) and ready-to-eat (yellow) bananas.

The fruits are cut from the plant whilst green and on average, 10-30 % of the bananas do not meet quality standards at harvest. Then they are packaged and kept in cold temperatures to reduce enzymatic processes, such as respiration and ethylene production.

However, below 14°C bananas experience ‘chilling injury’ which changes fruit ripening physiology and can lead to the brown speckles on the skin. Above 24°C, bananas also stop developing fully yellow colour as they retain high levels of chlorophyll.

Once the green bananas arrive at the ripening facility, the fruits are kept in ripening rooms where the temperature and humidity are kept constant while the amount of oxygen, carbon dioxide and ethene are controlled.

 palm tree

The gas itself triggers the ripening process, leads to cell walls breakdown and the conversion of starches to sugars. Certain fruits around bananas can ripen quicker because of their ethene production.

By day five, bananas should be in stage 2½ (’Green with trace of yellow’ to ‘More green than yellow’) according to the colour scale and are shipped to the shops. From stage 5 (’All yellow with green tip’), the fruits are ready to be eaten and have a three-day shelf-life.

 fruit market

A fruit market. Image: Gidon Pico

The very short shelf-life of the fruit makes it a very wasteful system. By day five, the sugar content and pH value are ideal for yeasts and moulds. Bananas not only start turning brown and mouldy, but they also go through a 1.5-4 mm ‘weight loss’ as the water is lost from the peel.

While scientists have been trying out different chemical and natural lipid ‘dips’ for bananas to extend their shelf-life, such methods remain one of the greatest challenges to the industry.

In fruit salads, to stop the banana slices go brown, the cut fruits are sprayed with a mixture of citric acid and amino acid to keep them yellow and firm without affecting the taste.

 bananas and potassium

Bananas are a good source of potassium and vitamins.

The high starch concentration – over 70% of dry weight – banana processing into flour and starch is now also getting the attention of the industry. There are a great many pharmaceutical properties of bananas as well, such as high dopamine levels in the peel and high amounts of beta-carotene, a precursor of vitamin A.

Whilst the ‘seven shades of yellow’ underpin the marketability of bananas, these plants are also now threatened by the fungal Panama disease. This vascular wilt disease led to the collapse of the banana industry in the 1950’s which was overcome by a new variety of bananas.

 bananas growing

However, the uncontrollable disease has evolved to infect Cavendish bananas and has been rapidly spreading from Australia, China to India, the Middle East and Africa.

The future of the banana industry relies on strict quarantine procedures to limit further spread of the disease to Latin America, integrated crop management and continuous development of banana ‘dips’ for extending shelf-life.



Health & Wellbeing

Food safety refers to handling, preparing and storing food in a way that best reduces the risk of people becoming sick, and it’s a topic that’s high on everyone’s agenda. Here we explore three recent scientific advances in the area of food safety.  

Antibiotic detection in dairy products

pouring milk gif

Originally posted by butteryplanet

Antibiotics are the largest group of medicines and, due to their use in treating animals, they have been making their way into the food chain and into food products. Consuming food that contain antibiotics could result in poor health outcomes, such as allergic reactions and other events. Antibiotics that accumulate in cattle milk can transfer into dairy products and so it’s urgent that we detect and address the issue.

A new test has been developed that showed, in a recent study, that it can detect antibiotics in food products. The precision of the test means that it can test for a wide range of antibiotics and the testing process is very simple and easy to conduct. It could also detect antibiotics at all stages of the food production process, which is great news in the fight to reduce antibiotics in the food chain.

Reducing contamination of smoked fish

 smoked fish

Smoked fish is very popular in developing countries, as it is a good source of protein. The preparation of it involves hot‐smoking on traditional kilns using wood fuel. This practice is associated with high levels of a substance known as polycyclic aromatic hydrocarbons (PAHs) in the food, which has an impact on health. 

An improved kiln has been introduced by the Food and Agriculture Organization of the United Nations to address the levels of PAHs in smoked fish. A recent study showed that the improved kiln not only works just as well at smoking the fish, but does so with safer levels of PAHs. This means that people can continue to consume this valuable protein source without the potentially cancer-causing chemicals. 

The safest way to prepare fruit and veg?

swirling gif

Originally posted by konczakowski

Pesticides have been reported to find their way into our fruit and vegetables, albeit at minimal amounts. A recent study looked at food preparation techniques to compare what methods were the most effective in removing pesticides, with interesting results.

The simplest and most effective way was shown to be peeling the skin of fruit or trimming the outer layers of vegetables before cooking. Whilst this is the most effective, most of the vitamins may be stored close to the skin surface and so these are lost in this process.

Washing and soaking were sometimes effective and sometimes not. Washing causes less loss of nutrients and is less time consuming than peeling and it reduces the pesticide residue by a reasonable amount but it wasn’t always shown to be effective. How effective it could depended on the type of skin of the food. 

Blanching was another method that was explored. Blanching vegetables in boiling water for one minute loses less nutrients than cooking, whilst removing pesticides very efficiently.  

The results certainly give us food for thought in our meal preparation! 


Careers

The David Miller Travel Bursary Award aims to give early career plant scientists or horticulturists the opportunity of overseas travel in connection with their horticultural careers. 

Juan Carlos De la Concepcion was awarded one of the 2018 David Miller Travel Bursaries to attend the International Congress of Plant Pathology (ICPP) 2018: Plant Health in A Global Economy, which was held in Boston, US. Here, he details his experience attending the international conference and the opportunities it provided.

 Juan Carlos De la Concepcion

I’m currently completing the third-year of my rotation PhD in Plant and Microbial Science at the John Innes Centre in Norwich, UK. My work addresses how plant pathogens cause devastating diseases that affect food security worldwide, and how plants can recognise them and organise an immune response to keep themselves healthy. 

Because of the tremendous damage that plant diseases cause in agricultural and horticulturally relevant species, this topic has become central to achieving the UN Zero Hunger challenge.

Originally posted by thingsfromthedirt

Thanks to the David Miller Award, I was able to participate in the International Congress of Plant Pathology (ICPP) 2018: Plant Health in A Global Economy held in Boston, US. This event is the major international conference in the plant pathology field and only occurs once every five years. 

This year, the conference gathered together over 2,700 attendees, representing the broad international community of plant pathologist across the globe. In this conference, the leading experts in the different aspects of the field presented the latest advances and innovations. 

 rice plant

Juan’s current research looks at the rice plant’s immune response to pathogens.

These experts are setting a vision and future directions for tackling some of the most damaging plant diseases in the agriculture and horticulture industries, ensuring enough food productivity in a global economy.

Agrifood

A big congratulations to our Agri-Food Early Careers Committee #agrifoodbecause Twitter competition winner, Hannah Blyth. Hannah is a PhD student at Rothamsted Research. Her winning entry, a fungal plate, really wowed us!

 fungal plate

Hannah will receive a a years free membership to SCI and a £50 Amazon voucher!

shaun the sheep gif

Originally posted by usedpimpa

 

Sustainability & Environment

Plant breeders are increasingly using techniques to produce new varieties they say are indistinguishable from those developed through traditional breeding methods. New genome editing technologies can introduce new traits more quickly and precisely.

However, in July, 2018, the European Court of Justice decreed they alter the genetic material of an organism in a way that does not occur naturally, so they should fall under the GMO Directive. This went against the opinion of the Advocate General.

In October 2018, leading scientists representing 85 European research institutions endorsed a position paper warning that the ruling could lead to a de facto ban of innovative crop breeding. 

crops gif

Originally posted by sunbursts-and-marblehalls

The paper argues for an urgent review of European legislation, and, in the short term, for crops with small DNA adaptations obtained through genome editing to fall under the regulations for classically bred varieties.

‘As European leaders in the field of plant sciences […] we are hindered by an outdated regulatory framework that is not in line with recent scientific evidence,’ says one of the signatories, Dirk Inzé, Scientific Director at Life Sciences Institute VIB in Belgium.

 

Science & Innovation

After eight months of operation in Antarctica, the EDEN ISS greenhouse has produced a ‘record harvest’ of fresh lettuce, cucumbers, tomatoes, and other herbs and vegetables to support the 10-member overwintering crew stationed at the German Neumayer Station III, the team reported in September 2018. Despite outdoor temperatures of -20°C and low levels of sunlight, the greenhouse yielded 75kg of lettuce, 51kg of cucumbers, 29kg of tomatoes, 12kg of kohlrabi, 5kg of radishes and 9kg of herbs – on a cultivation area of ca13m2.

The goal of the EDEN ISS is to demonstrate technologies that could be used by future astronauts to grow their own food on long distance missions to Mars and other more distant planets, explained NASA controlled environment technician Connor Kiselchuk, speaking at the Bayer Future of Farming Dialogue event in Monheim in September 2018. ‘Food determines how far from the Earth we can go and how long we can stay,’ he said.

How does the EDEN ISS greenhouse in Antarctica work? Video: German Aerospace Center, DLR

Even if astronauts took a year and a half’s supply of food with them on a mission to Mars, for example, he pointed out that the food would be ‘very deficient in B vitamins’ by the time they came to eat it.

Sustainability & Environment

The European Court of Justice (ECJ) ruled in July 2018 that onerous EU regulations for GMOs should also be applied to gene edited crops. The ECJ noted that older technologies to generate mutants, such as chemicals or radiation, were exempt from the 2001 GMO directive, but all other mutated crops should be regarded as GMOs. Since gene editing does not involve foreign DNA, most plant scientists had expected it to escape GMO regulations.

‘We didn’t expect the ruling to be so black and white and prescriptive,’ says Johnathan Napier, a crop scientist at Rothamsted Research. ‘If you introduce a mutant plant using chemical mutagenesis, you will likely introduce thousands if not millions of mutations. That is not a GMO. But if you introduce one mutation by gene editing, then that is a GMO.’

What is genetic modification? Video: The Royal Society

The ECJ ruling will have strong reverberations in academe and industry. The European Seed Association described the ruling as a watershed moment. ‘It is now likely that much of the potential benefits of these innovative methods will be lost for Europe – with significant economic and environmental consequences,’ said secretary general Garlich von Essen.

In 2012, BASF moved its plant research operations to North Carolina, US, because of European regulations. ‘If I was a company developing gene editing technologies, I’d think of moving out of Europe,’ says Napier.

 crop field 3

‘The EU is shooting itself in the foot. Its ag economy has been declining since 2005 and it has moved from net self-sufficiency to requiring imports of major staples,’ says Maurice Moloney, CEO of the Global Institute for Food Security in Saskatchewan, Canada. ‘Paradoxically, it still imports massive quantities of GM soya beans and other crops to feed livestock.’

 

Sustainability & Environment

The IHNV virus has spread worldwide and is fatal to salmon and rainbow trout – costing millions in sales of lost farmed fish. The current vaccination approach requires needle injection of fish, one by one. Now, however, Seattle-based Lumen Bioscience has come up with a new technology to make recombinant vaccines in a type of blue-green algae called Spirulina that costs pennies to produce and can be fed to fish in their feed.

To be effective, oral vaccines have not only to survive the gut environment intact but must also target the appropriate gut-associated immune cells. The approach developed by Lumen overcomes many of the problems with complex and expensive encapsulation strategies attempted in the past, according to CEO Brian Finrow.

fish gif

Originally posted by zandraart

‘[It] focuses on a new oral-vaccine platform [using] engineered Spirulina to express high amounts of target antigen in a form that is both provocative to the immune system – ie generates a desirable immune response that protects against future infection – and can be ingested orally without purification, in an organism that has been used as a safe food source for both humans and fish for decades.’

To produce the new oral vaccine, the Lumen researchers first developed a strain of Spirulina that manufactures recombinant proteins in its cell walls that the salmon immune system recognises as IHNV viruses. They then rapidly grew the strain in a large-scale indoor production system – requiring only light, water, salt and trace nutrients – and harvested and dried all the raw Spirulina biomass. This dried powder can then be fed to the fish.


Agrifood

The world’s largest agriculture companies have joined forces to invest in new and innovative technologies that will hopefully eradicate malaria by 2040. The ‘Zero by 40’ campaign was launched at the annual Commonwealth Heads of Government meeting held in London last week.

The programme has the support of the Bill & Melinda Gates Foundation and the Innovative Vector Control Consortium, based in Liverpool, UK, as well as companies BASF, Bayer, and Syngenta – among others.

 Mosquitos 2

Mosquitos are known vectors of the malaria virus. Image: James Gathany/Centre for Disease Control

Malaria affects over 200 million people each year – most cases are found in Africa but the disease is still prevalent in South East Asia and in the Mediterranean. Although the number of cases has been slowly falling year-on-year, this progress is threatened by insecticide resistance.

It is estimated that four out of five malaria cases have been prevented through long-lasting insecticide-treated bed nets (LLINs) and indoor residual spraying (IRS) techniques. The campaign is a continued sign of commitment from the agriculture industry, with companies already having produced innovative solutions to tackle the global issue.

Both Syngenta and Bayer have introduced new IRS products – either in the final stages of development or already employed across Africa. BASF has developed a new generation mosquito net with an insecticide derived from crop use to deter resistant mosquitos.

 Insecticides used in agriculture

Insecticides used in agriculture are used as control mechanisms for the mosquito population.

‘Our industry collaboration, supported by our funders including the Bill & Melinda Gates Foundation and the UK’s Department of International Development, is starting to bear fruit and is saving lives today,’ said Nick Hamon, CEO of IVCC.

‘But we still have a long way to go to achieve our ambition of ending the disease burden of malaria by 2040,’ Hamon said. ‘This new initiative will not only secure the current supply of solutions, but will pave the way for desperately needed new forms of chemistry and new vector control tools to reduce the disease burden of malaria which still affects millions of people.’


Agrifood

Currently one of the least digitised industries in the world, the agricultural sector is fast becoming a hub of innovation in robotics. One report suggests the agricultural robotics industry will be worth £8.5bn by 2027.

Feeding the increasing global population – set to hit 8bn by 2023 –  is a major concern in the sector, with farmers already stretched to capacity with current technology.

With this said, the European Commission – via Horizon 2020 – has launched a programme and fund to drive research and innovation in the area. Developments in precision agriculture, which uses data and technology for a more controlled approach to farming management, has been particularly encouraging.

But similar to other labour-intensive industries, such as manufacturing, robots could be used to relieve workers in difficult conditions, and there are many projects close to commercialisation.

vegetables gif

Originally posted by edible3d

Picking peppers

One such project is SWEEPER – a greenhouse harvesting tool that can detect when sweet peppers are ready to harvest through sensors. SWEEPER runs between the vines on a rail and uses GPS tracking to navigate through its environment.

Although focusing on sweet peppers for this research, the group say that the technology could be applied to other fruits and crops.

The EU-funded consortium in charge of the development of the SWEEPER robot is made up of six academic and industry partners from four countries: Belgium, Sweden, Israel and the Netherlands, where the research is based.

Greenhouses pose harsh working conditions during harvesting season, including excessive heat, humidity, and long hours.

 

The SWEEPER robot in action. Video: WUR Glastuinbouw

‘The reduction in the labour force has put major pressure on the competitiveness of the European greenhouse sector,’ said Jos Balendonck, project coordinator from Wageningen University & Research, the Netherlands.

‘We hope to develop the technology that will prevent greenhouse food production from migrating out of Europe due to the 40 % expected rise in labour costs over the coming decade.’

Currently testing the second version of the robot, the research group already envision adding improvements – from sensors that can detect vitamin content, sweetness levels and the sweet pepper’s expected shelf life to the ability to alert farmers when crop disease could hit their crops in advance.

A world first

Meanwhile, engineers at Harper Adams University in Shropshire, UK, and agriculture firm Precision Decisions have become the first group to harvest a crop completely autonomously.

The Hands Free Hectare project – funded by Innovate UK – modified existing farming machinery to incorporate open-source data that would allow the control systems to be located externally.

At the start of the season, an autonomous tractor sows the crops into the soil using GPS positioning, and sprays them periodically with pesticides throughout their growth. A separate rover takes soil samples to analyse nutrient content and to check pH levels are maintained.

When the crops begin to sprout from the ground a drone is used to monitor growth by taking images. Finally, a combine harvester controlled from outside of the field harvests the crops.

Kit Franklin, an Agricultural Engineering lecturer at the university, said: ‘As a team, we believe there is now no technological barrier to automated field agriculture. This project gives us the opportunity to prove this and change current public perception.’

 Hands Free Hectare

Image: Hands Free Hectare

Despite innovation in the area, farmers have been slow to embrace the new technology, partially due to the lack of high quality data available that would allow more flexibility in the sector. Others, including the wider public, worry that development will lead to job losses in the industry.

However, scientists say the jobs will still be there but farmers and agricultural workers will use their skills to control the autonomous systems from behind the scenes instead.

‘Automation will facilitate a sustainable system where multiple smaller, lighter machines will enter the field, minimising the level of compaction,’ said Franklin.

‘These small autonomous machines will in turn facilitate high resolution precision farming, where different areas of the field, and possibly even individual plants can be treated separately, optimising and potentially reducing inputs being used in field agriculture.’

Health & Wellbeing

Combatting malnutrition in all its forms – overweight and obesity as well as undernutrition and micronutrient deficiencies – is a global problem.

The European Academies Science Advisory Council (EASAC) recently published a report calling for urgent action on food and nutrition security: this action will need to include consideration of the options for changing European diets to mitigate climate change, conferring co-benefits for health.

 EUs population is overweight

The European Commission estimates 51.6% of the EU’s population is overweight. Image: Tony Alter/Flickr

EASAC brings together EU member states’ national science academies with the aim of offering evidence-based advice to European policy makers. EASAC provides a means for the collective voice of European science to be heard and its recent report is part of a global project led by the InterAcademy Partnership (IAP).

The analysis and recommendations for Europe are accompanied by parallel activities focusing on Africa, Asia and the Americas. The IAP report will be published later in 2018.

 EASAC

EASAC recommendations will incorporate global challenges and needs, not just those in Europe. Image: Pixabay

In the EASAC report we emphasise that research and innovation are central to finding solutions. We recommend being more ambitious in identifying and using scientific opportunities: How can the current evidence base shape understanding of both supply- and demand-side challenges? And how should the research agenda be defined, including basic research, to fill knowledge gaps?

Climate change will have negative impacts on food systems, necessitating the introduction of climate-smart agriculture such as the adoption of plant breeding innovations to cope with drought.

Climate-Smart Agriculture in Action. Video: Farming First 

Agriculture and current diets also contribute significantly to climate change. Mitigating this contribution depends on land-sparing and agronomic management practices together with efforts to influence consumer behaviours associated with excessive greenhouse gas emissions from agriculture, including the over-consumption of calories and meat.

Among the core findings in our report is that food consumption will need to change to improve consumer health. It is important to explore individual responsiveness to nutrition and the links to health, and to consider the particular needs of vulnerable groups.

 High meat production

High meat production has been linked to increasing carbon emissions. Image: Pixabay

As part of the changes to food consumption patterns, a decrease in the consumption of animal protein could be important for both health and the environment but, globally, more research is needed to clarify these relationships and to measure sustainability related to consumption of healthy diets. We also call for policy makers to introduce incentives for affordable nutrition.

Agriculture has significant impacts on the environment. We call for the revamp of the Common Agricultural Policy to focus on innovation rather than subsidies, in order to play a key role in European competitiveness and the bioeconomy.

wheat gif

Originally posted by sunbursts-and-marblehalls

Alternatives to traditional forms of animal protein include food from the oceans, laboratory-grown meat and insects. Research is needed to understand and inform consumer attitudes to innovative food and diets.

Also, research objectives for the next generation of biofuels should include examining the potential of cellulosic raw materials. Further ahead, energy research must continue to explore how to engineer systems with improved photosynthesis.

 Biofuels

Biofuels are derived from common crops, including wheat, corn and sugar. Image: Public Domain Pictures

Europe should not stall on opportunities for innovation coming within range. Breakthroughs in genome editing and other genetic research are crucial to the future of agriculture. European policy makers must capitalise on these scientific advances.

For improved plant and animal breeding, it is important to protect and characterise wild gene pools and to continue sequencing and functional assessment to unveil the potential of genetic resources. Precision agriculture offers many opportunities to improve productivity with reduced environmental impact. Large data sets are vital to support innovation and prepare for risk and uncertainty.

 

Open-source automated precision farming | Rory Aronson | TEDxUCLA. Video: TEDx Talks

Underpinning all our recommendations is the recognition that research and innovation must be better integrated, across disciplines and the public and private sectors, in order to better understand the interfaces between health, nutrition, food and other ecosystem services.

EASAC emphasises that efforts to increase food systems’ efficiency should not focus on increasing agricultural productivity by ignoring environmental costs.

Health & Wellbeing

A new type of wheat, chock full of healthy fibre, has been launched by an international team of plant geneticists. The first crop of this super wheat was recently harvested on farms in Idaho, Oregon, and Washington state in the US, ready for testing by various food companies.

Food products are expected to hit the US market in 2019. They will be marketed for their high content of ‘resistant starch’, known to improve digestive health, be protective against the genetic damage that precedes bowel cancer, and help protect against Type 2 diabetes. 

How do carbohydrates impact your health? Video: TED-Ed

‘The wheat plant and the grain look like any other wheat. The main difference is the grain composition: the GM Arista wheat contains more than ten times the level of resistant starch and three to four times the level of total dietary fibre, so it is much better for your health, compared with regular wheat,’ says Ahmed Regina, plant scientist at Australian science agency CSIRO.  

Starch is made up of two types of polymers of glucose – amylopectin and amylose. Amylopectin, the main starch type in cereals, is easily digested because it has a highly branched chemical structure, whereas amylose has a mainly linear structure and is more resistant. 

 Bread2

Bread and potatoes are foods also high in starch. Image: Pixabay

Breeders drastically reduced easily digested amylopectin starch by downregulating the activity of two enzymes, so increasing the amount of amylose in the grain from 20 to 30% to an impressive 85%.  

The non-GM breeding approach works because the building blocks for both amylopectin and amylose starch synthesis are the same. With the enzymes involved in making amylopectin not working, more blocks are then available for amylose synthesis.  

cloud gif

Originally posted by flyngdream

‘Resistant starch is starch that is not digested and reaches the large intestines where it can be fermented by bacteria. Usually amylose is what is resistant to digestion,’ comments Mike Keenan, food and nutrition scientist at Louisiana State University, US. ‘Most people consume far too little fibre, so consuming products higher in resistant starch would be beneficial.’

He notes that fermentation of starch in the gut causes the production of short-chain fatty acids such as butyrate that ‘have effects throughout the body, even the mental health of humans’.  

 GM wheat

The GM wheat will hit US supermarkets in 2019. Image: Pxhere

The super-fibre wheat stems from a collaboration begun in 2006 between French firm Limagrain Céréales Ingrédients, Australian science agency CSIRO, and the Grains Research and Development Corporation, an Australian government agency.

This resulted in a spin out company, Arista Cereal Technologies. After the US, Arista reports that the next markets will be in Australia and Japan.

Sustainability & Environment

The Haber process currently helps feed more than half the world, producing 150m tonnes of ammonia a year. This is forecast to rise further, in line with the food demand of a growing world population.

And yet, it has serious drawbacks. In its traditional form, the process requires high temperatures – around 500°C – to make the extremely stable molecule nitrogen reactive.

fire gif

Originally posted by foreverfallll

The Haber process takes place at extremely high temperatures, similar to that of an average fire.

It also needs high pressure to shift the equilibrium towards the desired product. The process is sensitive to oxygen, meaning that nitrogen and hydrogen must be introduced as purified elements, rather than as air and water.

These requirements together make the process extremely energy-hungry; estimated to consume between 1% and 2% of global primary energy production. In 2010, the ammonia industry emitted 245m tonnes of CO2 globally, corresponding to half the UK’s emissions. 

 Carl Bosch

The Haber process was developed by Carl Bosch (left) and Fritz Haber (right) in the early 20th century. Image: Wikimedia Commons

In nature, the process relies on the highly complex enzyme nitrogenase, operating at an ambient pressure and temperature. But using the entire biological system would not be economical for large-scale industrial synthesis, and thus the search for an inorganic system that matches the performance of the biological has become an important challenge.  

In recent years, novel electrochemical approaches and new catalysts have yielded promising results suggesting that, at least for small-scale synthesis, other ways may have a future.

The chemical reaction that feeds the world. Video: TED-Ed  

‘The last [few] years brought some spectacular results on ammonia synthesis research,’ comments Hans Fredriksson from Syngaschem at Eindhoven, Netherlands.

‘On the catalyst side, there is the discovery of ‘super promoters’, helping N2 dissociation, allowing lower process temperatures, while optimised catalyst formulations yield significant improvements in activity. 

‘Perhaps even more exciting are new approaches in processing, for example by electrochemistry, or simply running the reaction in an electric field, or bringing plasmas into play,’ he said.

electricity gif

Originally posted by mondo80s90spictorama

In 2013, Shanwen Tao, then at the University of Strathclyde, Glasgow, UK, and colleagues demonstrated for the first time the production of ammonia from air and water, at ambient temperature and pressure, using a proton-conducting Nafion membrane in an electrochemical approach. 

Nafion, a Teflon-like material that conducts cations but neither electrons nor anions, is also used in fuel cells. 

‘Electrochemical synthesis of ammonia is an important new approach for efficient synthesis of ammonia using green renewable electricity as the energy source. This could be a key technology for a possible ‘ammonia economy’,’ where ammonia replaces or complements hydrogen as an energy carrier, says Tao.

 renewable energy

Researchers hope new approaches will be supported by renewable energy, reducing CO2 emissions. Image: Pexels

Separate efforts using different routes are being developed in Japan, with a particular focus on ruthenium as an efficient catalyst. One approach is to apply super promoters to provide electrons that destabilise nitrogen by weakening the triple bond and making the molecule more reactive for ammonia synthesis.

This was first reported in 2012 by Hideo Hosono’s group at the Tokyo Institute of Technology, who used ruthenium catalysts in combination with ‘electrides’ – a new class of ionic materials where electrons serve as the anions.

The method operates at atmospheric pressure and temperatures between 250 and 400°C, and hydrogen poisoning of ruthenium catalysts is no longer a problem.

 Ruthenium

Ruthenium is a type of metal in the platinum group. Image: Metalle-w/      Wikimedia Commons

‘This catalyst exhibits the highest activity and excellent long-term stability,’ says Hosono, who sees the future of his methods in distributed, small-scale applications of ammonia synthesis.

Hans Niemantsverdriet, director of SynCat@Beijing, China, acknowledges the rapid progress being made, but also strikes a note of caution.

‘In spite of interesting discoveries, I find it hard to imagine that these improvements will be able to replace the current large-scale and fully optimised technology,’ he says. ‘In the fertiliser area, novel technology will at best become a niche market for very special situations. Also, the CO2 footprint is hardly diminished.’

 fertiliser3

Ammonia is a core component of fertiliser, feeding nitrogen to plants for photosynthesis. Image: Maurice van Bruggen/Wikimedia Commons

In the long term, Niemantsverdriet has hope for the ammonia economy as championed by Tao and others, providing carbon-free hydrogen from renewable energies. 

‘I strongly believe that there will be scope for large industrial parks where this technology can be cleverly integrated with gasification of coal in China, and perhaps biomass elsewhere,’ he says. ‘If dimensioned properly, this has the potential to reduce the carbon footprint in the future.’

 

Agrifood

Russian researchers have developed new fertilisers based on nanopowders of transition metals. In field trials on agricultural crops, harvests increased by more than a quarter, compared with conventional fertilisers.

Iron, cobalt and copper affect a plant’s level of resistance to pests and diseases. These microelements are typically introduced into the soil as soluble salts, but rain and irrigation can wash them away, requiring further applications. They also have potential to disrupt local ecosystems as they pass into the groundwater.

 irrigation system

An irrigation system in Idaho, US. Image: Jeroen Komen@Wikimedia Commons

The team, led by the National University of Science and Technology (NUST) in Moscow, has developed a group of fertilisers that are applied as a powder to plant seeds, without losses to the soil or water systems. In this way, ‘the future plant is provided with a supply of necessary microelements at the stage of seeding,’ reports Alexander Gusev, head of the project at NUST’s Department of Functional Nanosystems. 

‘[It’s] a one-seed treatment by a product containing the essential microelements in nanoform. These particles of transition metals – iron, copper, cobalt – have a powerful stimulating effect on plant growth in the initial growth phase.’

Gusev reports improved field germination and increased yields of 20-25%.

image

Originally posted by magical-girl-stims

The main difficulty was to produce a powder from the nanoparticles, which tended to quickly stick together as aggregates, says Gusev – a problem they solved by using organic stabilisers and then subjecting the colloidal solutions to ultrasonic processing.

Gusev now wants to discvover how the new fertiliser acts in different soils, and in relation to different plant cultures. Its environmental safety also needs to be evaluated before widespread use, he adds.

But Steve McGrath, head of sustainable agricultural sciences at Rothamsted Research, is sceptical. Plants are adapted to take up ionic forms of these microelements, not nanoparticles, he says. ‘Also, seeds do not take up much micronutrients. Roots do that, and depending on the crop and specific nutrient, most uptake is near to the growing ends of the root, and throughout the growing season, when the seed and nearby roots are long gone.’

 fertiliser2

Critics are skeptical of the efficacy of the new kind of fertiliser. Image: Pexels

If there is an effect on crop yield, he thinks it is more likely to be due to the early antifungal and antibacterial effects of nanoparticles. ‘They have a large and highly reactive surface area and if they are next to membranes of pathogens when they react they generate free radicals that disrupt those membranes. So, in a soil that is particularly disease-infected, there may be some protection at the early seedling stage.’

Materials

Platinum is one of the most valuable metals in the world. Precious and pretty, it’s probably best known for jewelry – and that is almost certainly its oldest use. But its value has become far greater than its decorative ability; today, platinum powers the world. From agriculture to the oil markets, energy to healthcare, we use platinum far more than we realise.


1. Keep the car running

 fuel

Platinum is needed to make fuel for transport. Image: Pixabay

Platinum catalysts are crucial in the process that converts naphtha into petrol, diesel, and jet-engine fuel, which are all vital to the global economy. The emissions from those petroleum fuels, however, can be toxic, and platinum is also crucial in the worldwide push to reduce them through automotive catalytic converters. In fact, 2% of global platinum use in 2016 was in converting petroleum and 41% went into reducing emissions – a circle of platinum use that’s more impressive than a ring.


2. Feed the world

 fertilisers

Nitric acid is a by-product of platinum which is used in fertilisers. Image: Pixabay

Another vital global sector that makes use of platinum catalysts is agriculture. Without synthetic fertilisers, we would not be able to produce nearly as much food as we need. Nitric acid is essential for producing those fertilisers and platinum is essential for producing nitric acid. Since 90% of the gauzes required for nitric acid are platinum, we may need to use more of it as we try to meet the global food challenge.


3. Good for your health

 A pacemaker

A pacemaker. Image: Steven Fruitsmaak@Wikimedia Commons 

Platinum is extremely hard wearing, non-corrosive, and highly biocompatible, making it an excellent material to protect medical implants from acid corrosion in the human body. It is commonly used in pacemakers and stents. It is also used in chemotherapy, where platinum-based chemotherapeutic agents are used to treat up to 50% of cancer patients.


4. The fuel is clean

london gif

Originally posted by jig-r

In addition to powering the cars of the present and reducing their environmental impact, platinum might well be crucial to the future of transport in the form of fuel cells. Platinum catalysts convert hydrogen and oxygen into clean energy, with water the only by-product.


5. Rags to riches

 The Spaniards

The Spaniards invaded the Inca Empire, South America, in 1532. Painted by Juan B Lepiani. Image: MALI@Wikimedia Commons

Amazingly, despite all this, platinum was once considered worthless - at least in Europe. In fact, it was considered a nuisance by the Spanish when they first discovered it in South America - as a corruption in the alluvial deposits they were earnestly mining and they would quite literally throw it away. It wasn’t until the 1780s that the Spanish realised it might have some value.

Because platinum is essential to so many aspects of our economy, there are concerns about supply meeting demand – particularly as nearly 80% is currently mined in South Africa, which has seen its mining industry repeatedly crippled by strikes in recent years. 

 Two Rivers platinum mine

Two Rivers platinum mine, South Africa. Image: Wikimedia Commons

Some believe the solution to the issue of supply is space mining, arguing the metal could be found in asteroids.

Others, such as researchers at MIT, are working to create synthetic platinum, using more commonly found materials. Neither approach is guaranteed to work but, given our increasing dependence on this precious metal, we could be more reliant on their success than we realise.

 

Sustainability & Environment

English wine is on the rise. In 50 years, production has increased by more than three orders of magnitude, from a negligible 1,500 bottles/year to a respectable 5.3 million.  

Meanwhile, on the other side of the English Channel, grapes are harvested around two weeks before the traditional dates. In the Champagne region, harvest kicked off on 26 August 2017, while the average date for previous years was 10 September. In Burgoyne, home of Beaujolais wines, harvest began on 23 August, also two weeks ahead of schedule. Harvest workers in that area are also doing night shifts to reduce heat stress for the sensitive grapes.

 French vineyards

French vineyards are struggling with the changes to traditional harvests. Image: Max Pixel

Both phenomena – the success of English wine and the earlier harvests in France – are linked to climate change. In a few decades, the favourable wine-growing conditions historically enjoyed by the Champagne region may have migrated to England.

As the life cycle of the grapevine – and therefore quality and quantity of the wine obtained – is extremely sensitive to temperature and weather extremes, wine growers have already been noticing the effects of climate change for years. Researchers have detailed how conditions have changed, how they are likely to change further, and what vineyards can do to adapt.


High-value product

All agricultural products are likely to be affected by climate change at some point, but wine occupies a special position due to its high value. Therefore, wine growers have always watched the weather and its effects on their vineyards very closely, and recorded their observations.

cheese and wine gif

Originally posted by butteryplanet

Climate scientist Benjamin Cook from Columbia University at New York and ecologist Elizabeth Wolkovich from Harvard University, have analysed harvest data spanning more than 400 years, from 1600 to 2007, from European regions, together with the weather data.

While many studies have covered the last few decades, this one reaches back to the time before the Industrial Revolution.

Higher temperatures in spring and summer generally speed the whole process and lead to earlier harvests, like the one in 2017, while cool and rainy summers can delay the phrenology and thus the harvest time. Traditionally, the observation was that a warm summer and a period of drought just before grape picking is the best recipe for an early harvest.

 Grape picking

Grape picking is easiest after a warm summer. Image: Pixabay

‘Our research, and other work, has clearly and unequivocally demonstrated that climate change is already affecting viticulture worldwide,’ explains Cook, adding that: ‘There are lots of opportunities for adaptation in various locations, such as planting different varieties, but the most important thing is for people to starting planning for the next several decades, when conditions are likely to get even warmer still.’


Adapt or move?

So, what could be changed? Short of pulling up Pinot Noir vines in Champagne and replanting them in Dorset, there are some steps wine-makers can take to ensure a good harvest.

The Chemistry of Wine. Video: Reactions

For instance, growers could add a few days to the ripening cycle by delaying the spring pruning, or by allowing the vines to grow higher above the ground, where the air is slightly cooler than just above the soil. While these changes are benign, other measures, such as reducing the leaf area, may have complex consequences that could interfere with the quality of the wine.

In selecting the plant material, growers could reverse the trends of the 20th Century, when it made sense to select rapidly ripening varieties. Simply by adapting the choice of variety from among the range of varieties already used in a given region to the changing climate, growers can to some extent mitigate the anticipated effects.

cheers gif

Originally posted by wildsouls-thirstyhearts

Alternatively, wine production could migrate closer to the poles. Wines now coming from California may be produced in Washington State, and the premium fizz we now call Champagne may one day be known as Devon or Kent.

 

Sustainability & Environment

On average, 10% of all crop production is lost annually to drought and extreme heat, with the situation getting worse year on year. Heat stress happens over short-time periods, but drought happens over longer timescales and is linked to drier soils. Maize and wheat are especially hard hit, with yields falling by up to 50% if drought hits.

On the High Plains, the largest US wheat-growing region, drought is a possibility every season. ‘Drought stress can be a key concern, especially in dry lands, but even in irrigated areas we can’t expect the same levels of water in future and farmers face restrictions,’ says Chris Souder at Monsanto.  

So, this is not simply a developing world problem. Pedram Rowhani, University of Sussex, UK, found cereals in more technically developed agricultural systems of North America, Europe, and Australia suffered most from droughts. Yield losses due to drought were 19.9% in the US compared to almost no effect in Latin America.

desert gif

Originally posted by jupiter2

Crop breeders in the past paid a great deal of attention to yield, but not enough to resilience to extreme events such as drought, Rowhani says, but this is changing. Growers increasingly want built-in drought resilience and plant scientists are looking for novel solutions. New, unconventional approaches based on novel insights from basic science might be necessary.


Plant strategies

Hundreds of genes and proteins are involved in the complex trait of drought resistance. Plants avoid drought stress by shortening their life cycle with accelerated flowering, or cut down water loss by closing leaf pores called stomata. One approach by breeders is to target specific traits by crossing individual plants that perform best under drought conditions.

 Stomata

Stomata are found of the underside of leaves and are used for gas exchange. Image: Pixabay

‘About 97% of plant water loss occurs through the stomata. If you want to regulate the amount of water a plant uses, regulate the stomata,’ says Julie Gray, University of Sheffield, UK. Gray has been genetically tweaking wheat, barley, and rice plants so they have fewer of these pores.

She believes rising CO2 levels in the atmosphere means that they do not suffer from less carbon dioxide from opening their stomata. ‘CO2 levels have gone up 40% over the last 200 years. It’s quite possible they are producing more stomata than they need,’ says Gray.

 Power plant in Tihange

Power plant in Tihange, Belgium. CO2emissions continue to increase. Image: Hullie@Wikimedia Commons   

Gray reports that plants grown at 450ppm CO2 with reduced stomatal density, but increased stomatal size, had larger biomass and increased growth tolerance when water was limited. ‘Plants can operate with perhaps half as many stomata before you see significant effects on photosynthesis, so you can definitely reduce water loss this way,’ says Gray.


Root of the issue

At the other end of the plant plumbing system are roots. Susannah Tringe, Joint Genome Institute, UK, is seeking microbes that can gift stress-tolerance to their plant hosts. ‘The microbes associated with plants are likely to be just as important for plant growth and health as the microbiome of humans,’ says Tringe.

Though a lot of work has focused on finding the ‘magic microbe,’ Tringe believes whole communities will be necessary in real field conditions, whereas a single strain could be out-muscled by competitors. 

Regular bouts of drought are leading to famine in developing countries. Video: Food and Agriculture Organization of the United Nations 

Sugar and drought

‘Drought is probably the most widespread abiotic stress that limits food production worldwide. There is always need to improve drought tolerance,’ says Matthew Paul, Rothamsted Research Institute, UK.

‘Sucrose is produced in photosynthesis,’ Paul explains. ‘During drought conditions, plants will withhold sucrose from the grain, as a survival mechanism’. This can terminate reproductive structures and abort seed formation, even if drought is short-lived, greatly compromising yield.

 A plant scientist studying rice plants

A plant scientist studying rice plants. Image: IRRI Photos@Flickr

Rothamsted researchers have looked at modifying plants so sugar keeps flowing. ‘If you can get more sugar going to where you want it […] then this could improve yields and yield resilience,’ enthuses Paul. Field studies show that GM maize improved yields from 31 to 123% under severe drought, when compared with non-transgenic maize plants.