Blog search results for Tag: renewables

Energy

Bit by bit, the green hydrogen revolution is coming to our shores. The news that a planning application has been filed for the UK’s largest electrolyser in Glasgow could be a boon for hydrogen evangelists, the local communities, and the political class.

The 20MW electrolyser will form part of the green hydrogen facility on the outskirts of Glasgow near Whitelee, the UK’s largest wind farm. The proposed project would produce up to 8 tonnes of green hydrogen each day – the equivalent of 550 return bus trips from Glasgow to Edinburgh.

If approved, the scheme would be delivered by ScottishPower, BOC, and ITM Power as part of the Green Hydrogen for Scotland Partnership. BOC would operate the facility using solar and wind power produced by Scottish Power and ITM Power would provide the all-important 20 MW electrolyser. Renewable energy would power the electrolyser, which would split the water into hydrogen and oxygen gas. The hydrogen produced by this process could then be used in various applications including transport.

Fundamentally, the people who will benefit most are the people of Glasgow, with the project aiming to provide carbon-free transport and clean air for people across the city area, while satisfying some industrial hydrogen demand. And we can all rest easy now that we know politicians will be pleased about it too, for the project coincides nicely with the United Nations 26th Climate Change Conference, which will be held in Glasgow later this year.

SCIblog - 15 April 2021 - Glasgow’s green hydrogen evolution - image of whitelee windfarm eaglesham moor scotland

The new facility will be based beside a plentiful renewable energy source, Whiteless wind farm in Eaglesham Moor. | Editorial credit: Maritxu / Shutterstock.com

If all goes swimmingly, the facility will supply hydrogen for the commercial market by 2023. “Whitelee keeps breaking barriers, first the UK’s largest onshore wind farm, and soon to be home to the UK’s largest electrolyser,” says Barry Carruthers, ScottishPower’s Hydrogen Director. “The site has played a vital role in helping the UK to decarbonise and we look forward to delivering another vital form of zero carbon energy generation at the site to help Glasgow and Scotland achieve their net zero goals.”

Tumbling renewable prices

This exciting news follows on the back of some bold green hydrogen claims made in a recent Bloomberg New Energy Foundation (NEF) report: the 1H 2021 Hydrogen Levelised Cost Update. According to Martin Tengler, BloombergNEF’s Lead Hydrogen Analyst, the report authors believe the cost of renewable hydrogen could fall 85% by 2050, 17% lower than they had previously predicted. This, he says, is due to falling renewables prices.

SCIblog - 15 April 2021 - Glasgow’s green hydrogen evolution - image of solar panels aerial view

It is becoming cheaper all the time to produce solar and wind power, which is good news for those producing green hydrogen.

Tengler also says that renewable hydrogen should be cheaper than blue hydrogen (when natural gas is split into hydrogen and CO2 via processes such as steam methane reforming) in many countries by 2030. Furthermore, Bloomberg NEF predicts that green hydrogen will be cheaper to process than natural gas in many countries by 2050.

With the prices of solar and wind power constantly tumbling, it would be no surprise to see the authors of these reports revising their projections even further in the coming years. In the mean-time, we welcome the green shoots peeking through outside Glasgow.

Sustainability & Environment

When you live in a cold country, you think of hot days as a blessing. Air conditioning units are for those in far-away places – humid countries where the baked earth smell rises to meet you when you step off the plane.

But cooling comes at a cost. According to the UN Environment Programme, it accounts for 7% of global greenhouse gas emissions. Some of us are visual learners; so, the sheer cost of cooling really hit me when I stared up at an apartment building in Hong Kong with hundreds of air conditioning units perched above the windows like birds.

And it isn’t just the Hong Kongers feeling the heat. The cooling industry as a whole is under pressure to cut its greenhouse gas emissions. The International Energy Agency expects emissions from cooling to double by 2030 due to heat waves, population growth, urbanisation, and the growing middle class. By 2050, it forecasts that space cooling will consume as much electricity as China and India do today.

SCIblog 1 April 2021 - The Cool Coalition feels the heat - image of Air conditioning units cling to a building

Air conditioning units cling to a building

All of this was captured by the Cooling Suppliers: Who's Winning the Race to Net Zero report released by the Race to Zero campaign, the Kigali Cooling Efficiency Program (K-CEP), Carbon Trust and other partners in the UN Environment Programme-hosted Cool Coalition.

This report's authors found that only five of the 54 cooling companies they assessed have committed to net-zero targets. The document outlines three areas that must be addressed on the Cooling Climate Pathway: super-efficient appliances, ultra-low global warming refrigerants, and the widespread adoption of passive cooling measures such as clever home design and urban planning.

So, while builders adjust window sizes, introduce trees for shading, and choose materials (such as terracotta cooling systems) thoughtfully to temper the sun’s gaze, others are availing of different methods.

For example, the COP26 (the 2021 UN Climate Change Conference) Champions Team has just released its Net Zero Cooling Action Plan that includes a Cool Calculator tool to help companies and governments run simple calculations to see where they could decarbonise their cooling systems. Similarly, the UK's Environmental Investigation Agency (EIA) has launched a net-zero cooling product guide that showcases energy-efficient products run on natural refrigerants.

SCIblog 1 April 2021 - The Cool Coalition feels the heat - image of building green walls

Green walls are one of many passive cooling approaches used to reduce our reliance on mechanical systems.

However, it’s clear that the softly-softly approach won’t suffice. The EIA has called on governments to do more to encourage organisations to adopt sustainable cooling, to make concrete policy commitments, and speed-up the phase-out of climate-warming refrigerants such as hydrofluorocarbons.

“The development and expansion of net-zero cooling is a critical part of our Race to Zero emissions,” said Nigel Topping, UK High Level Champion for COP26. “In addition to technological breakthroughs and ambitious legislation, we also need sustainable consumer purchasing to help deliver wholesale systems change.”

We all love the technological panacea – innovations that will cure all the climate ills we have inflicted on the world. But the solution will also involve stodgy government regulations and changing consumer habits, and a reliance on the continued fall in renewable power generation.

For those in traditionally cooler climes, it’s no longer someone else’s problem. It was a balmy 22°C in London this week and we’re not even in April yet. So, it’s certainly time to turn up the heat on the cooling industry.

Energy

A completely clean, renewable energy system that can be produced locally and that can easily power heat, energy storage and transportation, and travel — that's the future that promoters of a hydrogen economy envisage.

If it sounds a bit like rocket science, that's because it is. Hydrogen is what's used to fuel rockets — that’s how powerful it is. In fact, it’s three times more powerful as a fuel than gas or other fossil-based sources. And, after use, it’s frequently converted to drinking water for astronauts.

US President Joe Biden has highlighted the potential of hydrogen in his ambitious plans for economic and climate recovery and a number of recent reports have been encouraging about hydrogen’s breakthrough moment, including McKinsey and Company (Road Map to a US Hydrogen Economy, 2020) and the International Energy Agency.

SCIblog - 11 March 2021 - Hydrogen Economy - image of a Hydrogen fuel cell

Hydrogen fuel cells provide a tantalising glimpse into our low-carbon future

The McKinsey report claims that, by 2030, the hydrogen sector could generate 700,000 jobs and $140bn in revenue, growing to 3.4 million jobs and $750bn by 2050. It also believes it could account for a 16% reduction in CO2 emissions, a 36% reduction in NOx emissions, and supply 14% of US energy demand.

So how does it work?

Simply put, hydrogen fuel cells combine hydrogen and oxygen atoms to produce electricity. The hydrogen reacts with oxygen across an electrochemical cell and produces electricity, water, and heat.

This is what gets supporters so excited. In theory, hydrogen is a limitless, incredibly powerful fuel source with no direct emissions of pollutants or greenhouse gases.

So what's the problem?

Right now, there are actually a few problems. The process relies on electrolysis and steam reforming, which are extremely expensive. The IEA estimates that to produce all of today’s dedicated hydrogen output from electricity would require 3,600TWh, more than the total annual electricity generation of the European Union.

Moreover, almost 95% of hydrogen currently is produced using fossil fuels such as methane, natural gas, or coal (this is called "grey hydrogen"). Its production is responsible for annual CO2 emissions equivalent to those of Indonesia and the United Kingdom combined. In addition, its low density makes it difficult to store and transport — it must be under high pressure at all times. It’s also well-known for being highly flammable — its use as a fuel has come a long way since the Hindenburg Disaster but the association still makes many people nervous.

SCIblog - 11 March 2021 - Hydrogen Economy - image of a Hydrogen fuel station in Hamburg

A Hydrogen refuelling station Hafencity in Hamburg, Germany. Infrastructure issues must be addressed if we are to see more hydrogen-fuelled vehicles on our roads. | Image credit: fritschk / Shutterstock.com

So there are quite a few problems. What’s the good news?

In the last few years, we've seen how rapidly investment, innovation, and infrastructure policy can completely transform individual renewable energy industries. For example, the IEA analysis believes the declining costs of renewables and the scaling up of hydrogen production could reduce the cost of producing hydrogen from renewable electricity 30% by 2030.

Some of the issues around expense could be resolved by mass manufacture of fuel cells, refuelling equipment, and electrolysers (which produce hydrogen from electricity and water), made more likely by the increased interest and urgency. Those same driving forces could improve infrastructural issues such as refuelling stations for private and commercial vehicles, although this is likely to require coordination between various stakeholders, including national and local governments, industry, and investors.

The significant gains in renewable energy mean that “green” hydrogen, where renewable electricity powers the electrolysis process, is within sight.

The IEA report makes clear that international co-operation is “vital” to progress quickly and successfully with hydrogen energy. R&D requires support, as do first movers in mitigating risks. Standards need to be harmonised, good practice shared, and existing international infrastructure built on (especially existing gas infrastructure).

If hydrogen can be as efficient and powerful a contributor to a green global energy mix as its proponents believe, then it's better to invest sooner rather than later. If that investment can help power a post-Covid economic recovery, even better.

Energy

Where once a country might have wanted to strike gold, now hitting upon a hydrocarbon find feels like a prize. But finding a hydrocarbon is only the beginning of the process and might not be worth it — as Lebanon is discovering.

First, a little background: for some time, Lebanon has been experiencing an energy crisis. Without resources of their own, the industry (which is government-owned) is reliant on foreign imports, which are expensive. Electricity in early 2020 was responsible for almost 50% of Lebanon's national debt. Major blackouts were common.

This contributed to a spiralling financial crisis, prompting public protests and riots as the middle class disappeared and even wealthier citizens struggled. Before Covid-19 and the devastating August 2020 blast in Beirut, Lebanon was in crisis.

The idea that the country might be able to switch from foreign oil to local gas was understandably appealing, especially when a major find was literally right there on the Lebanese shore. In 2019, a consortium of Israeli and US firms discovered more than 8tcm of natural gas in several offshore fields in the Eastern Mediterranean, much of it in Lebanese waters.

SCIblog 22 February 2021 - Hydrocarbon resources - image of pigeon rocks raouche beirut lebanon

A hydrocarbon find off the Beirut coast has failed to live up to its early promise.

But a find is only the beginning. With trust in Lebanese politicians low (the country ranks highly in most government corruption indexes) and a system that has repeatedly struggled to deliver a stable government, there are additional difficulties, not least a delay in the licensing rounds and a lack of trust — both internally, from citizens, and externally, from potential bidders. Meanwhile, Lebanon's neighbours race ahead to exploit their own finds, which ratchets up tensions.

Amid all that, a drilling exploration managed to go ahead last summer. But the joint venture between Total, ENI, and Novatek, which operated a well 30km offshore Beirut and drilled to approximately 1,500 metres, did not bring back the hoped-for results. The results confirmed the presence of a hydrocarbon system generally but did not encounter any reservoirs of the Tamar formation, which was the target.

Offshore exploration is a long process, with a lot of challenges and uncertainties and Ricardo Darré, Managing Director of Total E&P Liban, said afterwards, "Despite the negative result, this well has provided valuable data and learnings that will be integrated into our evaluation of the area". But the faith national politicians have long put in the hydrocarbon find, selling it as an answer to all Lebanon's problems, seems to have only worsened the domestic situation since.

And domestic politics is just the start of the problems…

SCIblog 22 February 2021 - Hydrocarbon resources - image of oil pipeline desert qatar middle east

Unlike other countries in the Middle East, Lebanon has no pipeline infrastructure of its own.

Israel, Egypt, and Jordan already have pipelines, which go to Italy. Turkey is working with Libya on a pipeline. Lebanon has no pipeline infrastructure of its own yet, although Russia has storage facilities and pipelines in the country and an eye on possible competition in the gas market.

None of that is an issue if the supply is intended for domestic use but that might not be profitable enough for investors and the Lebanese government would struggle to underwrite production on its own. Cyprus has encountered similar issues exploiting its share of the find.

Lebanon has also set an ambitious goal of having 30% of domestic energy mix sourced from renewable energy by 2030. The hoped-for gas was intended to support the renewable energy mix but, with the clock ticking, it might be that priorities shift to focusing on renewables. The Covid-19 pandemic will significantly impact the budgets of drilling companies and the push for renewable energy, both from governments and investors, seems to be growing as a way to boost economic recovery.

It may be that, after all the excitement around the hydrocarbon find, Lebanon starts to look elsewhere for its energy provision.

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about iodine and some of the exciting reactions it can do!


Iodine & Aluminium

 iodine and aluminum gif

Reaction between iodine and aluminum. These two components were mixed together, followed by a few drops of hot water. Source: FaceOfChemistry

Reactions between iodine and group 2 metals generally produce a metal iodide. The reaction that occurs is:

2Al(s) + 3I2(s) → Al2I6(s)

Freshly prepared aluminium iodide reacts vigorously with water, particularly if its hot, releasing fumes of hydrogen iodide. The purple colour is given by residual iodine vapours.


Iodine & Zinc

 Zinc and iodine gif

Zinc and iodine react similarly to aluminium and iodine. Source: koen2all

Zinc is another metal, and when it reacts with iodine it too forms a salt – zinc iodide. The reaction is as follows:

Zn + I2→ ZnI2

The reaction is highly exothermic, so we see sublimation of some of the iodide and purple vapours, as with the aluminium reaction. Zinc iodide has uses in industrial radiography and electron microscopy. 


Iodine & Sodium

 Iodine reacting with molten sodium gif

Iodine reacting with molten sodium gives an explosive reaction that resembles fireworks. Source: Bunsen Burns

As with the other two metals, sodium reacts violently with iodine, producing clouds of purple sublimated iodine vapour and sodium iodide. The reaction proceeds as follows:

Na + I2→ 2NaI

Sodium iodide is used as a food supplement and reactant in organic chemistry.


Iodine Clock reaction

 iodine clock reaction gif

The iodine clock reaction – a classic chemical clock used to study kinetics. Source: koen2all

The reaction starts by adding a solution of potassium iodide, sodium thiosuphate and starch to a mixture of hydrogen peroxide and sulphuric acid. A set of two reactions then occur.

First, in a slow reaction, iodine is produced:

H2O2 + 2I + 2H+ → I2 + 2H2O

This is followed by a second fast reaction, where iodine is converted to iodide by the thiosulphate ion:

2S2O32− + I2 → S4O62− + 2I

The reaction changes colour to a dark blue or black.


Elephants toothpaste

 elephants toothpaste reaction gif

The elephant’s toothpaste reaction is a favourite for chemistry outreach events. Source: koen2all

In this fun reaction, hydrogen peroxide is decomposed into hydrogen and oxygen, and catalysed by potassium iodide. When this reaction is mixed with washing-up liquid, the oxygen and hydrogen gas that is produced creates bubbles and the ‘elephant’s toothpaste’ effect.

There are lot’s of fun reactions to be done with iodine and the other halogens (fluorine, bromine, chlorine). 

Iodine’s sublimation to a bright purple vapour makes it’s reactions visually pleasing, and great fun for outreach events and science classes.

 

Sustainability & Environment

Transparent solar cells that can convert invisible light wavelengths into renewable energy could supply 40% of the US’ energy demand, a Michigan State University (MSU) engineering team have reported.

In contrast to the robust, opaque solar panels that take up a large amount of space – whether on rooftops or on designated solar farms – the transparent solar cells can be placed on existing surfaces, such as windows, buildings, phones, and any other object with a clear surface.

 Traditional solar panels

Traditional solar panels require large amounts of space. 

‘Highly transparent solar cells represent the wave of the future for new solar cell applications,’ says Richard Lunt, Associate Professor of Chemical Engineering and Materials Science at MSU.

‘We analysed their potential and show that by harvesting only invisible light, these devices can provide a similar electricity generation potential as rooftop solar while providing additional functionality to enhance the efficiency of buildings, automobiles, and mobile electronics.’

 the sun

Solar, or photovoltaic, cells convert the sun’s energy into electricity. Image: Pixabay

Currently, the cells are running at 5% efficiency, says the team, compared to traditional solar panels that have recorded efficiencies between 15-18%. Lunt believes that with further research, the capability of the transparent cells could increase three-fold.

‘That is what we are working towards,’ says Lunt. ‘Traditional solar applications have been actively researched for over five decades, yet we have only been working on these highly transparent solar cells for about five years.’

 apple iphone

The cells can be added to any existing transparent surface, including mobile phones. Image: Max Pixel

While solar panels may be more efficient at converting energy than the group’s transparent cells, Lunt says that the latter can be easily applied to more surfaces and therefore a larger surface area, increasing the overall amount of energy produced by the cells.

‘Ultimately,’ he says, ‘this technology offers a promising route to inexpensive, widespread solar adoption on small and large surfaces that were previously inaccessible.’

Transparent solar cells. Video: Michigan State University

Together, and with further work on its efficiency, the authors of the paper believe that their see-through cells and traditional solar panels could fulfil the US’ energy needs.

‘The complimentary deployment of both technologies could get us close to 100% of our demand if we also improve energy storage,’ Lunt says.


Energy

Renewables outstripped coal power for the first time in electricity generation in Europe in 2017, according to a new report. The European Power Sector in 2017 – by think-tanks Sandbag and Agora Energiewende – predicts renewables could provide half of Europe’s electricity by 2030.

Wind, solar and biomass generation collectively rose by 12% in 2017 – to 679 Terawatt hours  – generating 21% of Europe’s electricity and contributing to 30% of the energy mix. ‘This is incredible progress considering just five years ago coal generation was more than twice that of wind, solar and biomass,’ the report says.

image

Hydroelectric power is the most popular renewable energy source worldwide. Image: PxHere

However, growth is variable. The UK and Germany alone contributed to 56% of the expansion in the past three years. There is also a ‘bias’ for wind, with a 19% increase in 2017, due to good wind conditions and huge investments, the report says. 

‘This is good news now the biomass boom is over, but bad news in that solar was responsible for just 14% of the renewables growth in 2014 to 2017.’

New analysis by trade group WindEurope backs up the findings on wind power, showing that countries across Europe installed more offshore capacity than ever before: 3.14GW. This corresponds to 560 new offshore wind turbines across 17 wind farms. Fourteen projects were fully completed and connected to the grid, including the first floating offshore wind farm. Europe now has a total installed offshore wind capacity of 15.78GW.

The EU’s 2030 goals for climate and energy. Video: European Commission 

Germany remains top of the European league, with the largest total installed wind-power capacity; worth 42% of the EU’s new capacity in 2017, followed by Spain, the UK, and France. Denmark boasts the largest share of wind in its power mix at 44% of electricity demand.

Policy

In July 2017, the UK government announced plans to end the sale of all new petrol and diesel cars and vans by 2040, but there’s a long way for the electric vehicle market to go before that target can be reached – low-emission vehicle sales still account for just 0.5% of total car sales.

Last week, the European Commission announced a new Innovation Deal that could go some way to overcoming barriers to electric vehicle development and acceptance by consumers.

Entitled ‘From e-mobility to recycling: the vitreous loop of the electric vehicle’, it is designed to help innovators address regulatory obstacles to the recycling and re-use of propulsion batteries in second-life applications, such as energy storage.

The deal comprises a multi-disciplinary working group of partners across industry and government in France and the Netherlands. In France, Renault, Bouygues and the Ministries for the Ecological and Inclusive Transition and Economy and Finance; in the Netherlands, renewable energy technology company LomboXnet, the Provice of Utrecht, and the Ministries of Infrastructure and Water Management, Economic Affairs, and Climate Policy.

twitterpost

Carlos Moedas, EU Commissioner for Research, Science and Innovation, said, ‘The electric vehicle revolution is a testimony to how innovation generates growth and fundamentally changes society for the better. In order for Europe to stay in the lead of this innovation race, we need to work together with innovators and authorities to make sure our laws do not hamper innovation. This Innovation Deal will clarify the regulatory landscape in this area, and boost demand for electric vehicles.’

Robin Berg, founder of LomboXnet is one such innovator set on fundamentally changing society for the better. In Utrecht, the Netherlands, his company has set up a smart solar charging network that allows excess solar power harvested via rooftop photovoltaic panels to be stored in electric vehicle batteries – the energy can then be transferred between car and home as demand requires.

‘Enhancing the economic value of car batteries through vehicle-to-grid applications, second-life battery projects and smart solar charging of cars, creates huge business opportunities,’ Berg said.

‘The Smart Solar Charging consortium in Utrecht Region led by LomboXnet together with Renault seeks to increase these opportunities to spur the transition to a renewable energy system and a zero-emission mobility future. Europe is leading in these developments; this Innovation Deal offers a chance to further strengthen Europe’s leadership.’

Pure electric vehicle sales were down in the first two months of 2018 compared with the previous year – although sales of plug-in hybrid cars, which combine a conventional petrol or diesel engine with an electric motor that can be charged at an outlet or on the move, were up by 40% over the same period.

Energy

Renewable energy has long been known as a greener alternative to fossil fuels, but that doesn’t mean that the former has no negative environmental impacts. Hydropower, for instance, has been known to reduce biodiversity in the land used for its systems.

Now, a team of Norwegian-based researchers have developed a methodology that quantifies the environmental effects of hydropower electricity production.

UllaFrre

Ulla-Førre – Norway’s largest hydropower station.

Martin Dorber, PhD candidate in Industrial Ecology at the Norwegian University of Science and Technology (NTNU), is part of the team that developed the analytic tool. ‘Some hydropower reservoirs may look natural at first. However, they are human-influenced and if land has been flooded for their creation, this may impact terrestrial ecosystems,’ he said,

The Life Cycle Assessment, or LCA, can be used by industry and policymakers to identify the trade-offs associated with current and future hydropower projects. Norway is one of the top hydropower producers in the world, with 95% of its domestic electricity production coming from hydropower.

 Hoover Dam station

Generations inside the Hoover Dam station. Image: Richard Martin/Flickr

Many hydropower facilities include a dam –  many purpose-built for hydropower generation – which stores fresh water from lakes or rivers in a reservoir.

Reducing biodiversity in the areas where hydropower development is being considered is one of the main disadvantages of the renewable source. Reduced freshwater habitats and water quality, and land flooding are among the damaging effects – all of which are difficult to assess, says the team.

‘Land use and land use change is a key issue, as it is one of the biggest drivers of biodiversity loss, because it leads to loss and degradation of habitat for many species,’ said Dorber.

 Hydropower development

Hydropower development can be damaging to freshwater habitats. Image: Pexels

Using reservoir surface area data from the Norwegian Water Resources and Water Resources Directorate and satellite images from the NASA-USGS Global Land Survey, the team were able to create a life cycle inventory that showed the amount of land needed to produce a kilowatt-hour of electricity.

‘By dividing the inundated land area with the annual electricity production of each hydropower reservoir, we calculated site-specific net land occupation values for the life cycle inventory,’ said Dorber.

‘While it’s beyond the scope of this work, our approach is a crucial step towards quantifying impacts of hydropower electricity production on biodiversity for life cycle analysis.’

While this study is exclusive to hydropower reservoirs in Norway, the team believe this analysis could be adopted by other nations looking to extend their hydropower development and assess the potential consequences.

Pumped-storage hydropower. Video: Statkraft

‘We have shown that remote sensing data can be used to quantify the land use change caused by hydropower reservoirs,’ said Dorber. ‘At the same time our results show that the land use change differs between hydropower reservoirs.’

‘More reservoir-specific land use change assessment is a key component that is needed to quantify the potential environmental impacts.’

Sustainability & Environment

Researchers at the University of Waterloo, Canada, have developed an innovative method for capturing renewable natural gas from cow and pig manure for use as a fuel for heating homes, powering industry, and even as a replacement for diesel fuel in trucks.

It is based on a process called methanation. Biogas from manure is mixed with hydrogen, then run through a catalytic converter, producing methane from carbon dioxide in the biogas through a chemical reaction.

 A biogas plant

A biogas plant. Image: Pixabay

The researchers claim that power could be taken from the grid at times of low demand or generated on-site via wind or solar power to produce the hydrogen. 

The renewable natural gas produced would yield a large percentage of the manure’s energy potential and efficiently store electricity, while emitting a fraction of the gases produced when the manure is used as a fertiliser.

‘The potential is huge,’ said David Simakov, Professor of Chemical Engineering at Waterloo. 'There are multiple ways we can benefit from this single approach.’

See a Farm Convert Pig Poop Into Electricity. Video: National Geographic

Using a computer model of a 2,000-head dairy farm in Ontario, which already collects manure and converts it into biogas in anaerobic digesters before burning it in generators, the researchers tested the concept. 

They estimated that a $5-million investment in a methanation system would have a five-year payback period, taking government subsidies for renewable natural gas into account.

'This is how we can make the transition from fossil-based energy to renewable energy using existing infrastructure, which is a tremendous advantage,’ Simakov said.

Sustainability & Environment

The Haber process currently helps feed more than half the world, producing 150m tonnes of ammonia a year. This is forecast to rise further, in line with the food demand of a growing world population.

And yet, it has serious drawbacks. In its traditional form, the process requires high temperatures – around 500°C – to make the extremely stable molecule nitrogen reactive.

fire gif

Originally posted by foreverfallll

The Haber process takes place at extremely high temperatures, similar to that of an average fire.

It also needs high pressure to shift the equilibrium towards the desired product. The process is sensitive to oxygen, meaning that nitrogen and hydrogen must be introduced as purified elements, rather than as air and water.

These requirements together make the process extremely energy-hungry; estimated to consume between 1% and 2% of global primary energy production. In 2010, the ammonia industry emitted 245m tonnes of CO2 globally, corresponding to half the UK’s emissions. 

 Carl Bosch

The Haber process was developed by Carl Bosch (left) and Fritz Haber (right) in the early 20th century. Image: Wikimedia Commons

In nature, the process relies on the highly complex enzyme nitrogenase, operating at an ambient pressure and temperature. But using the entire biological system would not be economical for large-scale industrial synthesis, and thus the search for an inorganic system that matches the performance of the biological has become an important challenge.  

In recent years, novel electrochemical approaches and new catalysts have yielded promising results suggesting that, at least for small-scale synthesis, other ways may have a future.

The chemical reaction that feeds the world. Video: TED-Ed  

‘The last [few] years brought some spectacular results on ammonia synthesis research,’ comments Hans Fredriksson from Syngaschem at Eindhoven, Netherlands.

‘On the catalyst side, there is the discovery of ‘super promoters’, helping N2 dissociation, allowing lower process temperatures, while optimised catalyst formulations yield significant improvements in activity. 

‘Perhaps even more exciting are new approaches in processing, for example by electrochemistry, or simply running the reaction in an electric field, or bringing plasmas into play,’ he said.

electricity gif

Originally posted by mondo80s90spictorama

In 2013, Shanwen Tao, then at the University of Strathclyde, Glasgow, UK, and colleagues demonstrated for the first time the production of ammonia from air and water, at ambient temperature and pressure, using a proton-conducting Nafion membrane in an electrochemical approach. 

Nafion, a Teflon-like material that conducts cations but neither electrons nor anions, is also used in fuel cells. 

‘Electrochemical synthesis of ammonia is an important new approach for efficient synthesis of ammonia using green renewable electricity as the energy source. This could be a key technology for a possible ‘ammonia economy’,’ where ammonia replaces or complements hydrogen as an energy carrier, says Tao.

 renewable energy

Researchers hope new approaches will be supported by renewable energy, reducing CO2 emissions. Image: Pexels

Separate efforts using different routes are being developed in Japan, with a particular focus on ruthenium as an efficient catalyst. One approach is to apply super promoters to provide electrons that destabilise nitrogen by weakening the triple bond and making the molecule more reactive for ammonia synthesis.

This was first reported in 2012 by Hideo Hosono’s group at the Tokyo Institute of Technology, who used ruthenium catalysts in combination with ‘electrides’ – a new class of ionic materials where electrons serve as the anions.

The method operates at atmospheric pressure and temperatures between 250 and 400°C, and hydrogen poisoning of ruthenium catalysts is no longer a problem.

 Ruthenium

Ruthenium is a type of metal in the platinum group. Image: Metalle-w/      Wikimedia Commons

‘This catalyst exhibits the highest activity and excellent long-term stability,’ says Hosono, who sees the future of his methods in distributed, small-scale applications of ammonia synthesis.

Hans Niemantsverdriet, director of SynCat@Beijing, China, acknowledges the rapid progress being made, but also strikes a note of caution.

‘In spite of interesting discoveries, I find it hard to imagine that these improvements will be able to replace the current large-scale and fully optimised technology,’ he says. ‘In the fertiliser area, novel technology will at best become a niche market for very special situations. Also, the CO2 footprint is hardly diminished.’

 fertiliser3

Ammonia is a core component of fertiliser, feeding nitrogen to plants for photosynthesis. Image: Maurice van Bruggen/Wikimedia Commons

In the long term, Niemantsverdriet has hope for the ammonia economy as championed by Tao and others, providing carbon-free hydrogen from renewable energies. 

‘I strongly believe that there will be scope for large industrial parks where this technology can be cleverly integrated with gasification of coal in China, and perhaps biomass elsewhere,’ he says. ‘If dimensioned properly, this has the potential to reduce the carbon footprint in the future.’

 

Energy

Determining the efficacy of organic solar cell mixtures is a time-consuming and tired practice, relying on post-manufacturing analysis to find the most effective combination of materials.

Now, an international group of researchers – from North Carolina State University in the US and Hong Kong University of Science and Technology – have developed a new quantitative approach that can identify effective mixtures quickly and before the cell goes through production.

 thinfilm solar cell

Development of a thin-film solar cell. Image: science photo/Shutterstock

By using the solubility limit of a system as a parameter, the group looked to find the processing temperature providing the optimum performance and largest processing window for the system, said Harald Ade, co-corresponding author and Professor of Physics at NC State.

‘Forces between molecules within a solar cell’s layers govern how much they will mix – if they are very interactive they will mix but if they are repulsive they won’t,’ he said. ‘Efficient solar cells are a delicate balance. If the domains mix too much or too little, the charges can’t separate or be harvested effectively.’

tea gif

Originally posted by itadakimasu-letmeeat

‘We know that attraction and repulsion depend on temperature, much like sugar dissolving in coffee – the saturation, or maximum mixing of the sugar with the coffee, improves as the temperature increases. We figured out the saturation level of the ‘sugar in the coffee’ as a function of temperature,’ he said.

Organic solar cells are a type of photovoltaic –  which convert energy from the sun into electrons – that uses organic electronics to generate electricity. This type of cell can be produced cheaply, and is both lightweight and flexible, making it a popular option for use in solar panels.

 Photovoltaic systems

Photovoltaic systems are made up of organic solar cells that convert sunlight into energy. Image: Pxhere

However, difficulties in the production process, including an effective process to determine efficiency of potential material combinations, is stalling its development.

‘In the past, people mainly studied this parameter in systems at room temperature using crude approximations,’ said Long Ye, first author and postdoctoral researcher at NC State. ‘They couldn’t measure it with precision and at temperatures corresponding to processing conditions, which are much hotter.’

Faces of Chemistry: Organic solar cells at BASF. Video: Royal Society of Chemistry

‘The ability to measure and model this parameter will also offer valuable lessons about processing and not just material pairs.’

But the process still needs refinement, said Ade. ‘Our ultimate goal is to form a framework and experimental basis on which chemical structural variation might be evaluated by simulations on the computer before laborious synthesis is attempted,’ he said.

Energy

Installing new energy infrastructure on the Isles of Scilly, UK, is a tricky proposition, given the islands’ location 28 miles off the Cornish coast, and a population of just 2,500 to share the high costs. 

But an exciting new project is about to transform the islands’ energy provision, reducing energy costs and supporting clean growth, through the use of a smart energy grid.

By 2025, the Smart Islands programme aims to provide the Isles of Scilly with 40% of its electricity from renewables, cut Scillonians’ electricity bills by 40%, and revolutionise transport, with 40% of cars to be electric or low-carbon. The key to this will be an integrated smart energy system, operated by a local community energy services company and monitored through an Internet of Things platform.

 Local Growth Fund

In the UK Government’s Industrial Strategy, published in November 2017, it was announced that the Local Growth Fund would provide £2.95m funding to the project, via the Cornwall and Isles of Scilly Local Enterprise Partnership.

The project will be led by Hitachi Europe Ltd in a public-private partnership, along with UK-based smart energy technology company Moixa, and smart energy software company PassivSystems.

 

Colin Calder, CEO of PassivSystems, explained, ‘Our scalable cloud-based energy management platform will be integrated with a range of domestic and commercial renewable technologies, allowing islanders to reduce their reliance on imported fossil fuels, increase energy independence and lower their carbon footprint.

‘These technologies have the potential to significantly increase savings from solar PV systems.’

Aiming to increase the renewable capacity installed on the island by 450kW and reduce greenhouse gas emissions by 897 tonnes CO2 equivalent per annum, 100 homes on the islands (a tenth of the total) will be fitted with rooftop solar photovoltaic systems, and two 50kW solar gardens will also be built.

100 homes will also get energy management systems, and 10 of them will pilot a variety of additional smart energy technologies such as smart batteries and air source heat pumps.

 

Chris Wright, Moixa Chief Technology Officer, said: ‘Ordinary people will play a key role in our future energy system. Home batteries and electric vehicles controlled by smart software will help create a reliable, cost-effective, low-carbon energy system that will deliver savings to homeowners and the community.

‘Our systems will support the reduction of fuel poverty on the Scilly Isles and support their path to full energy independence. They will be scalable and flexible so they can be replicated easily to allow communities all over the world to cut carbon and benefit from the smart power revolution.’

The burgeoning smart energy industry is attracting serious investment – only this week, the Department for Business, Energy and Industrial Strategy (BEIS) announced it will invest up to £8.8 million in new ideas for products and services that use smart meter data to reduce energy demand in small, non-domestic buildings; while Manchester-based smart energy start-up Upside Energy this week announced it had secured £5.5m in its first round of venture capital financing to commercialise and deploy its cloud-based smart grid platform.

Smart energy covers a range of technologies intended to allow both companies and households to increase their energy efficiency. Smart meters are currently being offered by energy suppliers, with the aim of allowing energy companies to automatically manage consumer energy use to reduce bills, for example, running your washing machine when energy demand (and therefore cost) is low. 

Battery technology also plays a major role in smart energy, allowing users to store renewable power and potentially even sell back into the grid as demand requires. In the Industrial Strategy, the government announced a new £80m National Battery Manufacturing Development Facility (NBMD) in Coventry, which will bring together academics and businesses to work on new forms and designs of batteries, as well as their chemistry and components. 

 Isles of Scilly

The Isles of Scilly’s small population and remote access issues make it an interesting candidate for a smart energy project. Image: NASA, International Space Station Science

The funding for this and a further £40m investment into 27 individual battery research projects have been allocated from the £246m Faraday Challenge, which was announced in July.

The Smart Islands project promises a real-world demonstration of how a community can harness the power of the Internet of Things to maintain an efficient, inexpensive, and clean energy system. 

Energy

Compared with other renewable energy resources – take solar or wind power as examples – tidal energy is still in the first stages of commercial development. But as the world moves towards a greener economy, tidal power is becoming more in demand in the competitive renewables market.

Currently, the very few tidal power plants in the world are based in Canada, China, France, Russia, South Korea, and the UK, although more are in development. Experts predict that tidal power has the potential to generate 700TWh annually, which is almost a third of the UK’s total energy consumption.


How does it work?

Tidal energy is produced by the natural movement of ocean waves during the rise and fall of tides throughout the day. Generally, generating tidal energy is easier in regions with a higher tidal range – the difference between high tide, when the water level has risen, and low tide, when levels have fallen. These levels are influenced by the moon’s gravitational pull.

 The moons gravitational pull

The moon’s gravitational pull is responsible for the rise and fall of tides. Image: Public Domain Pictures

We are able to produce energy from this process using tidal power generators. These generators work similarly to wind turbines by drawing energy from the currents of water, and are either completely or partially submerged in water.

One advantage of tidal power generators is that water is denser than air, meaning that an individual tidal turbine can generate more power than a wind turbine, even at low currents. Tides are also predictable, with researchers arguing that it is tidal power is potentially a more reliable renewable energy source.

What is tidal power and how does it work? Video: Student Energy

There are three types of tidal energy systems: barrages, tidal streams, and tidal lagoons. Tidal barrages are structured similar to dams and generate power from river or bay tides. They are the oldest form of tidal power generation, dating back to the 1960s.

However, there is a common concern that generators and barrages can damage the environment, despite producing green energy. By creating facilities to generate energy, tidal power centres can affect the surrounding areas, leading to problems with land use and natural habitats.

 Fleet tidal lagoon in Dorset

Fleet tidal lagoon in Dorset, UK. Image: Geograph

Since then, technologies in tidal streams and lagoons have appeared, which work in the same fashion as barrages but have the advantage of being able to be built into the natural coastline – reducing the environmental impact often caused by the construction of barrages and generators.

However, there are no current large-scale projects with these two systems, and output is expected to be low, presenting a challenge to compete with more cost-effective renewable technologies.

Sustainability & Environment

 Clean Water Act

The US’ environment agency and Clean Water Act is in trouble. Image: Public Domain Pictures

Budget proposals will slash the US Environmental Protection Agency’s funding by almost a third, and its workforce by 20%, quite apart from a major refocusing of its agenda. The new EPA administrator Scott Pruitt – whose time as attorney general in Oklahoma was notable for its opposition to environmental measures and the filing of multiple lawsuits against EPA – has certainly hit the ground running.

In contrast to Trump, Pruitt is actually getting stuff done, often going over the heads of his own staff. Planned regulations such as the chemical accident safety rule and a rule covering methane leaks from oil and gas wells have been delayed. Others have been reversed, including a ban on the neurotoxic pesticide chlorpyrifos, flying in the face of scientific advice from his own agency.

 Clean Water Act

Trump faced harsh criticism from several nations after pulling out of the Paris Agreement. Image: Gage Skidmore@Flickr

Other moves come in response to executive orders from the president. Trump’s earlier criticism of Obama’s use of executive orders hasn’t stopped him from throwing them around like confetti – in his first 100 days, he signed almost as many as Obama averaged in a year.

For example, at the end of February, he signed one requiring a review of the Waters of the United States (WOTUS) rule, which defines what constitutes navigable waters. This might sound obscure, but it led to the EPA announcing at the end of June that it will rescind the 2015 Clean Water Rule.

‘WOTUS provided clarity on what bodies of water are subject to protections under the Clean Water Act,’ said Massachusetts congressman Mike Capuano. Essentially, the 2015 definition extended its scope to bring small waterways such as wetlands and streams under federal environmental rules, and not just big rivers and lakes.

‘The federal government won’t have the authority to regulate pollution in certain waterways because they don’t qualify under the EPA’s new definition,’ Capuano continued. ‘This will surely impact drinking water in many communities all across the country, since 117m Americans currently get their drinking water from small streams.’

EPA even published a press release that featured multiple quotes from Republican governors, senators and representatives across the country supporting the move. Quotes from those like Capuano – who believe it is a step backwards in water safety – were notable by their absence.

 Seven US scientific societies wrote to Trump condemning his actions

Seven US scientific societies wrote to Trump condemning his actions. Image: Max Pixel

So is mention of any scientific rationale. A letter from US scientists, drafted by conservation group American Rivers, states that the Clean Water Rule was developed using the best available, peer-reviewed science to clarify which bodies of water are, and are not, protected under the act. Importantly, it says that tributaries, intermittent streams and waters adjacent to them such as wetlands, are protected because of their physical, chemical and biological connections to navigable waterways. ‘We are disappointed that the current Administration has proposed dismantling the Rule with minimal consultation and without scientific justification,’ it says.

Much has been made of Trump’s withdrawal from the Paris Climate Agreement, but that’s not the only signal that the air in the US is set to get dirtier. An executive order on energy independence signed by Trump at the end of March 2017 led to an instant response from EPA that it would review the Clean Power Plan. The order asked the various agencies to submit plans to revise or rescind regulatory barriers that impede progress towards energy independence, as well as wiping out several of Obama’s executive orders and policies in the field of climate change.

 climate change

Experts are worried that US air and water will become dirtier. The country is already the second biggest contributor to climate change in the world. Image: Pixabay

Top of the list for a potential resurgence: dirty energy. EPA has been directed to review, revise and rescind regulations that ‘may place unnecessary, costly burdens on coal-fired electric utilities, coal miners, and oil and gas producers’.

‘Our EPA puts America first,’ claimed Pruitt. ‘President Trump has a clear vision to create jobs, and his vision is completely compatible with a clean and healthy environment. By taking these actions today, the EPA is returning the agency to its core mission of protecting public health, while also being pro-energy independence.’

Many others beg to differ, including New Jersey senator Cory Booker. ‘It’s simply shameful that President Trump continues to put the interests of corporate polluters ahead of the health and safety of New Jersey families,’ he said. ‘The Administration’s repeated denial of clear science and proposed gutting of the EPA jeopardises the welfare of all Americans. 

‘Under no circumstance should we allow the fundamental right of each and every American to live in a safe and healthy environment be undermined by such destructive and irresponsible policies.’