Blog search results for Tag: science

Agrifood

Broad beans are an undemanding and valuable crop for all gardens. Probably originating in the Eastern Mediterranean and grown domestically since about 6,000BC, this plant was brought to Great Britain by the Romans.

Header image: a rich harvest of succulent broad beans for the table

Capable of tolerating most soil types and temperatures they provide successional fresh pickings from June to September. Early crops are grown from over-wintered sowings of cv Aquadulce. They are traditionally sown on All Souls Day on 2 November but milder autumns now cause too rapid germination and extension growth. Sowing is best now delayed until well into December. Juicy young broad bean seedlings offer pigeons a tasty winter snack, consequently protection with cloches or netting is vital insurance.

From late February onwards dwarf cultivars such as The Sutton or the more vigorous longer podded Meteor Vroma are used. Early cropping is promoted by growing the first batches of seedlings under protection in a glasshouse. Germinate the seed in propagating compost and grow the resultant seedlings until they have formed three to four prominent leaflets. Plant out into fertile, well-cultivated soil and protect with string or netting frameworks supported with bamboo canes to discourage bird damage.

SCIblog 8 March 2021 - Geoff Dixon - image of Young broad bean plants supported by string and bamboo canes

Young broad bean plants supported by string and bamboo canes

More supporting layers will be required as the plants grow and mature. Later sowings are made directly into the vegetable garden. As the plants begin flowering remove the apical buds and about two to three leaves. This deters invasions by the black bean aphid (Aphis fabae). Winged aphids detect the lighter green of upper foliage of broad beans and navigate towards them!

Allow the pods ample time for swelling and the development of bean seeds of up to 2cm diameter before picking. Beware, however, of over-mature beans since these are flavourless and lack succulence. Broad beans have multiple benefits in the garden and for our diets. They are legumes and hence the roots enter mutually beneficial relationships with nitrogen fixing bacteria. These bacteria are naturally present in most soils. They capture atmospheric nitrogen, converting it into nitrates which the plant utilises for growth. In return, the bacteria gain sources of carbohydrates from photosynthesis.

SCIblog 8 March 2021 - Geoff Dixon - image of Broad bean root carrying nodules formed around colonies of nitrogen fixing bacteria

Broad bean root carrying nodules formed around colonies of nitrogen fixing bacteria

Broad beans are pollinated by bees and other beneficial insects. They are good sources of pollen and nectar, encouraging biodiversity in the garden. Nutritionally, beans are high in protein, fibre, folate, Vitamin B and minerals such as manganese, phosphorus, magnesium and iron, therefore cultivating healthy living. Finally, they form extensive roots, improving soil structure, drainage and reserves of organic nitrogen. Truly gardeners’ friends!

Professor Geoff Dixon, author of Garden practices and their science (ISBN 978-1-138-20906-0) published by Routledge 2019.

Health & Wellbeing

Chemists have created a new type of artificial cell that can communicate with other parts of the body. A study, published in Science Advances this month, describes a new type of artificial cell that can communicate with living cells.

“This work begins to bridge the divide between more theoretical ‘what is cellular life’ type of work and applicative, useful technologies,” said Sheref Mansy, Chemistry Professor at the University of Alberta and co-author of the study.

The artificial cells are made using an oil-water emulsion, and they can detect changes within their environments and respond by releasing protein signals to influence surrounding cells. This work is the first that can chemically communicate with and influence natural living cells. They started with bacteria, later moving to multicellular organisms.

“In the future, artificial cells like this one could be engineered to synthesizes and deliver specific therapeutic molecules tailored to distinct physiological conditions or illnesses–all while inside the body,” explained Sheref Mansy, professor in the University of Alberta’s Department of Chemistry,

Though the initial study was undertaken using a specific signalling system, the cells have applications in therapeutic use, going beyond traditional smart-drug delivery systems and allowing for an adaptable therapeutic.

Careers

Today we chat to SCI member Luca Steel about her life as a plant pathology PhD student in 2020.

Can you please provide a brief summary of your research?

Zymoseptoria tritici is a fungal pathogen of wheat which can cause yield losses of up to 50%. We’re investigating an effector protein secreted by Z. tritici which acts as a ‘mask’, hiding the pathogen from host immune receptors and avoiding immune response.

What does a day in the life of a plant pathology PhD Student look like?

My days are very varied – from sowing wheat seeds to swabbing pathogenic spores onto their leaves, imaging symptoms, discussing results with my supervisor and lab team, and of course lots of reading. It doesn’t always go to plan - I recently attempted to make some wheat leaf broth, which involved lots of messy blending and ended up turning into a swampy mess in the autoclave!

 plants growing

Wheat in the incubator!

How did your education prepare you for this experience?  

The most valuable preparation was my placement year at GSK and my final year project at university. Being in the lab and having my own project to work on made me confident that I wanted to do a PhD – even if it was a totally different research area (I studied epigenetics/immunoinflammation at GSK!).

What are some of the highlights so far?

My highlight was probably attending the European Conference on Fungal Genetics in Rome earlier this year. It was great to hear about so much exciting work going on – and it was an added bonus that we got to explore Rome. I’ve also loved getting to know my colleagues and being able to do science every day.

What is one of the biggest challenges faced in a PhD?

My biggest challenge so far has probably been working from home during lockdown. Although I am very privileged to have a distraction-free space and good internet connection, it was difficult to adjust to working from my kitchen! It was sad abandoning unfinished experiments, and I missed being in the lab – so I’m glad to be back now.

 working on a laptop

Pandemic Workstations

What advice would you give to someone considering a PhD?

If you’re sure you want to do one, then absolutely go for it and don’t be afraid to sell yourself! If not, I’d recommend spending some time working in a lab before you apply and chatting to any prospective labs. If you don’t get a reply from the PI, existing students/post-docs in the group are often very happy to talk and give honest opinions.

How have things been different for you because of the global pandemic?

I was lucky that the pandemic came early on in my PhD, so I had a lot of flexibility to change what I was working on. I switched from lab work involving lots of bioimaging, towards a more bioinformatic approach. My poor laptop will be glad when I’m back to using my computer at work!



Sustainability & Environment

All organisms are fitted for the habitat in which they live. Some are sufficiently flexible in their requirements that they can withstand small shifts in their environment. Others are so well fitted that they cannot withstand habitat change and will eventually fail. The extent of seasonal changes varies with latitude. Plants in temperate and sub-arctic are fitted for changing weather patterns from hot and dry to cold and wet as the calendar moves from summer into winter. Deciduous plants start growing in spring with varying degrees of rapidity and move through flowering and fruiting in summer and early autumn. Finally, some produce a magnificent display of autumn colour, but all senesce and shut down with the return of winter. Evergreen plants frequently inhabit the higher latitudes and retain their foliage. This is an energy conservation measure as they can respond more quickly when winter ends and growth restarts. 

Plants respond to seasonal change by sensing alterations in daylength, spectral composition and most importantly temperature. It is known as acclimatisation (acclimation in the American literature). Falling temperatures are the most potent triggers in preparation for winter dormancy. Cold and ultimately freezing weather will seriously damage plant growth where acclimatisation has not been completed. Without preparation freezing ruptures cell membranes in leaves and stems disrupting their normal functions. These effects are measurable and used as means of quantifying plant hardiness. Membrane leakiness correlates with increased ionic concentrations when damaged leaves are placed in water and the resultant pC measured. Changes in chlorophyll fluorescent indicated damaged photosynthetic apparatus and measurable. Similarly, in some species bonding in lipid molecules alters and can be traced by mass spectroscopy. Understanding these processes and their ultimate goal which is protective dormancy underpins more accurate understanding of the natural world. It also provides information useful for breeding cold tolerant crops and garden plants.

 cold-damaged-plants

Cold Damaged Plant

The rapidity of climate change is such that the protective mechanisms of plants and other organisms cannot respond with sufficient speed. Autumn in cool temperate regions, for example, is now extending as an increasingly warm period. This means that plants are not receiving the triggers necessary for acclimatisation in preparation for severe cold. Buds are commencing growth earlier in spring and now frequently are badly damaged by short bursts of deep cold. These buds cannot be replaced and as a consequence deciduous trees and shrubs in particular are losing capacities for survival.

 cold damaged buds

Severe Cold


Agrifood

Recently, our Agri-Food Early Career Committee ran the third #agrifoodbecause Twitter competition. Today we are looking back over the best photos of the 2020 competition, including our winner and runner-up. Entrants were asked to take photos and explain why they loved their work, using the hashtag #agrifoodbecause on Twitter.

Our 2020 winner, Jordan Cuff, Cardiff University, won first prize for his fantastic shot of a ladybird. He received a free SCI student membership and an Amazon voucher.

 ladybug on a flower

#agrifoodbecause insect pests ravage agriculture through disease and damage. Naturally-occurring predators offer sustainable biocontrol, but their dynamics must be better understood for optimal crop protection. @SCIupdate @SCI_AgriFood #conservationbiocontrol🐞🌾🕷️🍽️ pic.twitter.com/ss4WjdB8ky

For the first-time ever we also awarded a runner-up prize to Lauren Hibbert, University of Southampton, for her beautiful root photography. She also received a free SCI student membership and Amazon voucher.

 root phenotyping

#agrifoodbecause developing more environmentally friendly crops will help ensure the sustainability of future farming.
Photo illustrating the dawn 🌅 of root phenotyping… or some very hairy (phosphate hungry) watercress roots! @SCI_AgriFood pic.twitter.com/29u533Xyow

There were also many other fantastic entries!

 parasitic wasps

#AgrifoodBecause My research looks at the potential biocontrol of parasitic wasps on #CSFB, major pest of #OSR! Combining field and lab work to work towards #IPM strategies 👩🏻‍🔬👩🏻‍🌾 pic.twitter.com/YqJnBM4CVf

 damaging fungi

#AgrifoodBecause we need to work out which tools fungi use to damage our crops. Sometimes crops are tricky to work with so models have to do pic.twitter.com/mrdk2tRgC6

 protect the crops

#agrifoodbecause we need to protect the crops to feed the world while repairing and protecting a highly damaged ecosystem. There is no delete option! #foodsecurity #noplanetb #organic #earth #wildlife #insectpests #beneficialinsects pic.twitter.com/JXfycRc0tx

Once again, it was an incredibly successful online event, with fascinating topics covered.

To find out more about the Twitter competition, follow our SCI Agri-Food Early Careers Committee Twitter @SCI_AgriFood and look out for #agrifoodbecause.


image
image
image
image

Sustainability & Environment

This tobacco (Nicotiana tabacum) relative was first planted in the SCIence Garden in the summer of 2018. It was grown from seed by Peter Grimbly, SCI Horticulture Group member. Although normally grown as an annual, some of the SCIence Garden plants have proven to be perennial. It is also gently self-seeding across the garden. It is native to the south and southeast of Brazil and the northeast of Argentina but both the species and many cultivars of it are now grown ornamentally across Europe. Flower colour is normally white, but variants with lime green and pink through to darker red flowers are available.

Like many Nicotiana this species has an attractive floral scent in the evening and through the night. The major component of the scent is 1.8-cineole. This constituent has been shown to be a chemical synapomorphy for the particular section of the genus Nicotiana that this species sits within (Raguso et al, Phytochemistry 67 (2006) 1931-1942). A synapomorphy is a shared derived character – one that all descendants and the shared single ancestor will have.

 cineole

1,8-cineole

This ornamentally and olfactorily attractive plant was chosen for the SCIence Garden to represent two other (arguably less attractive) Nicotiana species.

 Nicotiana solanaceae

Nicotiana solanaceae

Firstly, Nicotiana benthamiana, a tobacco species from northern Western Australia. It is widely used as a model organism in research and also for the “pharming” of monoclonal antibodies and other recombinant proteins.

In a very topical example of this technology, the North American biopharmaceutical company Medicago is currently undertaking Phase 1 clinical trials of a Covid-19 vaccine produced using their plant-based transient expression and manufacturing technology.

Secondly, Nicotiana tabacum, the cultivated tobacco which contains nicotine. This alkaloid is a potent insecticide and tobacco was formerly widely used as a pesticide.

This vivid extract from William Dallimore’s memoirs of working at Royal Botanic Gardens, Kew illustrate how tobacco was used in the late Victorian era.

“Real tobacco was used at Kew for fumigating plant houses. It was a very mixed lot that had been confiscated by excise officers, and it was said that it had been treated in some way to make it unfit for ordinary use before being issued to Kew. With the men working in the house ten men were employed on the job. After the first hour the atmosphere became unpleasant and after 1 ½ hours the first casualties occurred, some of the young gardeners had to leave the house. At the conclusion there were only the two labourers the stoker and one young gardener to leave the house, I was still about but very unhappy. Each man employed at the work, with the exception of the foreman, received one shilling extra on his week’s pay.“

After a second such fumigation event it was reported that there was a great reduction in insect pests, particularly of mealy bug and thrips, with a “good deal of mealy bug” falling to the ground dead.

Health and safety protocols have improved since the Victorian era, but the effectiveness of nicotine as an insecticide remains. From the 1980’s through the 1990’s a range of neo-nicotinoid plant protection agents were developed, with structures based on nicotine.  Although extremely effective, these substances have also been shown to be harmful to beneficial insects and honey bees. Concerns over these adverse effects have led to the withdrawal of approval of outdoor use in the EU.

 Imidacloprid

Imidacloprid – the first neo-nicotinoid developed

In early 2020, the European commission decided not to renew the European license for the use of Thiacloprid in plant protection, making it the fourth neo-nicotinoid excluded for use in Europe.

 Thiacloprid

Thiacloprid

Where the next generation of pest control agents will come from is of vital importance to the horticulture and agriculture industries in the UK and beyond and the presence of these plants in the garden serves to highlight this.


Materials

Dinosaurs were some of the largest creatures to ever roam the Earth, but the mystery of how they supported their great weight remains. A new study published in PLOS ONE now indicates that the answer may lie in their unique bone structure, which differs from mammals and birds.

The bone is made up of different layers of different consistency, including the spongy interior, or trabecular. This part of the bone is formed of porous, honeycomb like structures.

A group of inter-disciplinary researchers, including palaeontologists, mechanical engineers, and biomedical engineers, analysed trabecular bone structure in a range of dinosaur samples, ranging from only 23 kg to 8000 kg in body mass. Their study found that the structure of dinosaur bones possessed unique properties allowing them to support large weights.

‘The structure of the trabecular, or spongy bone that forms in the interior of bones we studied is unique within dinosaurs,’ said Tony Fiorillo, palaeontologist and one of the study authors. ‘Unlike in mammals and birds, the trabecular bone does not increase in thickness as the body size of dinosaurs increase, instead it increases in density of the occurrence of spongy bone. Without this weight-saving adaptation, the skeletal structure needed to support the hadrosaurs would be so heavy, the dinosaurs would have had great difficulty moving.’

Their analysis included scanning the distal femur and proximal tibia bones from dinosaur fossils, and modelling how mechanical behaviour may have occurred. The research team also used allometry scaling – a method of understanding how physical characteristics change with physical size. They then compared the architecture of the bones to scans of both living and extinct large animals, such as Asian elephants and mammoths.

a walking cartoon dinosaur gif

Originally posted by manucalavera

Researchers hope that they can apply their findings to design other lightweight structures such as those used in aerospace, construction, or vehicles.

‘Understanding the mechanics of the trabecular architecture of dinosaurs may help us better understand the design of other lightweight and dense structures,’ said Trevor Aguirre, mechanical engineer and lead author of the paper.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237042


Careers

Since the start of 2020 the world has been a different place. During March the UK Government instigated a lock down, with those who could required to work from home, this included scientists. Completing my PhD studying insect olfaction during a global pandemic was not something I expected, but how did I spend my days?

Computational Working

As a scientist I spend a portion, if not the majority of my time in a lab doing experiments. Pausing this work created several challenges, and as a final year student induced a serious amount of panic! To adapt, I focused more on computational experiments and extensive data analysis. Thankfully, I had some small computational projects already, which could be extended and explored further. This also included attending online courses and webinars to develop new skills – I really enjoyed SCI’s webinar series on computational chemistry and found it useful when completing my protein docking experiments!

 A phd student working

Writing, Writing, Writing

As a final year PhD student, there was one task at the beginning of this year that was high on the agenda – writing my thesis. Many past PhD students will tell horror stories about how they were rushing to finish lab work and writing up in a mad dash at the end. Being forced to give up lab work, and having no social activities, meant a lot more focus was put on writing during this time. Personally, I have been privileged to be in a house with other final year PhD students, creating a distraction free zone, and managed to crack down on thesis writing!

 A phd student working

Online Events

Despite in-person events, including many large international conferences, being cancelled, many organisers were quick to move meetings online. This made so many events more accessible. Though I am sad to have missed out on a trip to San Francisco, during lockdown I have attended numerous webinars, online seminars, two international conferences and even given outreach talks to the public and school children.

 People on a remote video call

Getting back to ‘normal’

It is safe to say the world, and the way science works, is never going to be the same. But scientists are slowly migrating back to the lab, adorned with a new item of PPE. On top of our lab coats, goggles and gloves we can add…a mask. Despite the stressful time,  I managed to get my thesis finished handing it in with a lot more computational work included than I had initially planned!

 

Sustainability & Environment

Soil is a very precious asset whether it be in your garden or an allotment. Soil has physical and chemical properties that support its biological life. Like any asset understanding its properties is fundamental for its effective use and conservation. 

Soils will contain, depending on their origin four constituents: sand, clay, silt and organic matter. Mineral soils, those derived by the weathering of rocks contain varying proportions of all four. But their organic matter content will be less than 5 percent. Above that figure and the soil is classed as organic and is derived from the deposition of decaying plants under very wet conditions forming bogs. 

Essentially this anaerobic deposition produces peat which if drained yields highly fertile soils such as the Fenlands of East Anglia. Peat’s disadvantage is oxidation, steadily the organic matter breaks down, releases carbon dioxide and is lost revealing the subsoil which is probably a layer of clay. 

 cracked-clay-soil

Cracked clay soil

Mineral soils with a high sand content are free draining, warm quickly in spring and are ‘light’ land. This latter term originates from the small number of horses required for their cultivation. Consequently, sandy soils encourage early spring growth and the first crops. Their disadvantage is limited water retention and hence crops need regular watering in warm weather.

Clay soils are water retentive to the extent that they will become waterlogged during rainy periods. They are ‘heavy’ soils meaning that large teams of horses were required for their cultivation. These soils produce main season crops, especially those which are deeply rooting such as maize. But in dry weather they crack open rupturing root systems and reducing yields. 

Silt soils contain very fine particles and may have originated in geological time by sedimentation in lakes and river systems. They can be highly fertile and are particularly useful for high quality field vegetable and salad crops. Because of their preponderance of fine particles silt soils ‘cap’ easily in dry weather. The sealed surface is not easily penetrated by germinating seedlings causing erratic and patchy emergence.

 soil finger test

Soil finger test

Soil composition can be determined by two very simple tests. A finger test will identify the relative content of sand, clay and silt. Roll a small sample of moist soil between your thumb and fingers and feel the sharpness of sand particles and the relative slipperiness of clay or the very fine almost imperceptible particles of silt. For a floatation test, place a small soil sample onto the top of a jam jar filled with water. Over 24 to 48 hours the particles will sediment with the heavier sand forming the lower layer with clay and silt deposited on top. Organic matter will float on the surface of the water.

 soil floatation test

Soil floatation test


Health & Wellbeing

According to two studies published in The BMJ, higher consumption of fruit, vegetables and whole grain foods is linked with a lower risk of developing type 2 diabetes.

In the first study, a team of European researchers examined the link between vitamin C, carotenoids and type 2 diabetes.

The findings were based on 9754 participants with type 2 diabetes, compared with a group of  12,622 individuals who were free of diabetes. All of the participants were part of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort totalling 340 234 people.

The results revealed that individuals with the highest intake of fruits and vegetables reduced the  risk of developing diabetes by up to 50%.

 Fresh fruit and vegetables

Fresh fruit and vegetables 

The results also showed that increasing intake of fruit and vegetables by 66g per day was linked with a 25% decreased risk of developing type 2 diabetes.

In the second study, researchers in the United States examined the association between whole grain food intake and type 2 diabetes.

Their research involved 158,259 women and 36,525 men who were diabetes, heart disease and cancer free and who took part in the Nurses’ Health Study, Nurses’ Health Study II, and Health Professionals Follow-Up Study.

 Healthy heart

Healthy heart

Those with the highest intake of whole grains had a 29% lower rate of developing type 2 diabetes compared with those who consumed the least amount. With regards to individual whole grain foods, those with an intake of one or more servings a day of whole grain cold breakfast cereal or dark bread, were associated with a 19% or 21% lower risk of type 2 diabetes, compared with the participants consuming less than one serving a month.

 Fresh bread

Fresh bread

Although both studies took into account several well-known lifestyle risk factors and markers of dietary health, both studies are observational, therefore it should be considered that some of the results may be due to unmeasured factors.  

These new research findings provide more evidence that increasing fruit, vegetable and whole grain foods can lower the risk of developing type 2 diabetes.

DOI: https://www.bmj.com/content/370/bmj.m2194


Sustainability & Environment

Single plant cells have amazing capacities for regenerating into entire plants. This property is known as ‘totipotency’ discovered in the 1920s. Linking this with increasing understanding of growth control by plant hormones resulted in the development of the sterile, in vitro, culture. Tiny groups of cells, explants, are cut from the rapidly growing tips of shoots in controlled environments and washed in sterilising agents. These are cultured sterile jars containing a layer of agar supplemented with nutrients and hormones.

 Green plantlets growing on sterile agar

Green plantlets growing on sterile agar

The process is known as ‘tissue culture’ or micropropagation. As the cells divide and multiply, they are transferred through a series of sterile conditions which encourage root formation.

 Roots growing from newly developing plantlets

Roots growing from newly developing plantlets

Ultimately numerous new whole plants are generated. At that point they are removed from sterile conditions and weaned by planting into clean compost in high humidity environments. High humidity is essential as these transplants lack the protective coating of leaf and stem waxes which prevent desiccation. Ultimately when fully weaned the plants are grown under normal nursery conditions into saleable products.

Why bother with this processes which requires expensive facilities and highly skilled staff? A prime advantage is that micropropagated plants have genotypes very closely similar to those of the original parent, essentially they are clones. As a result vast numbers of progeny can be generated from a few parents preserving their characteristics. That is particularly important as a means of bulking-up newly bred varieties of many ornamental and fruit producing plants which otherwise would be reproduced vegetatively from cuttings or by grafting and budding onto rootstocks. Micropropagation is therefore a means for safeguarding the intellectual property of plant breeding companies.

Explants cut from parent plants before culturing can be heat-treated as a means of removing virus infections. The resultant end-products of rooted plants are therefore disease-free or more accurately disease-tested. These plants are usually more vigorous and produce bigger yields of flowers and fruit. Orchids are one of the crops where the impact of micropropagation is most obvious in florists’ shops and supermarkets. 

Orchids have benefitted greatly from micropropagation

Orchids have benefitted greatly from micropropagation

Large numbers of highly attractive orchids are now readily available. Previously orchids were very expensive and available in sparse numbers.   

The world is not perfect and there are disadvantages with micropropagation. Because the progeny are genetically similar they are uniformly susceptible to pests and pathogens. Crops of clonal plants can be and have been rapidly devasted by existing and new strains of insects and diseases to which they have no resistance.


Sustainability & Environment

Elderflowers are in full bloom this month, both in hedgerows as well as gardens across the country. Whether they are the wild Sambucus nigra or a cultivated variety with green or black leaves they are all beautiful and useful plants.

 black leaved cultivar

The black leaved cultivar growing in the SCIence Garden has pink blooms, whereas the wild species has white flowers. It was purchased as ‘Black Beauty’, but is also sold as ‘Gerda’.

 Black Beauty flower

Sambucus nigra f. porphyrophylla  ‘Black Beauty’ growing in the SCIence Garden 

This cultivar, along with ‘Black Lace’ (Eva) was developed by Ken Tobutt and Jacqui Prevette at the Horticulture Research International research station at East Malling in Kent and released for sale in the horticulture trade in 2000. The leaves stay a dark purple throughout the year and the flowers have a good fragrance.  

The shrub will tolerate hard pruning so is useful for smaller spaces and provides a long season of interest. The plant is also a forager’s delight, both in early summer (for the flowers) and in the autumn (for the berries).

Most commonly one may think of elderflower cordial, or perhaps even elderflower champagne, but an excellent alternative to the rose flavoured traditional “Turkish Delight” can be made -  https://www.rivercottage.net/recipes/elderflower-delight. I can highly recommend it!

The chemistry of the elderflower aroma is complex. Analyses such as that in the reference below* have identified many different terpene and terpenoid components including nerol oxide, hotrienol and nonanal.

 chemistry of the elderflower aroma

 

* Olfactory and Quantitative Analysis of Aroma Compounds in Elder Flower (Sambucus nigra L.) Drink Processed from Five Cultivars. Ulla Jørgensen, Merete Hansen, Lars P. Christensen, Karina Jensen, and Karl Kaack. Journal of Agricultural and Food Chemistry 2000 48 (6), 2376-2383. DOI: 10.1021/jf000005f


Science & Innovation

June 27th 2020 marked the fourth Micro-, Small and Medium-sized Enterprise (MSME) day, established by the International Council for Small Businesses (ICSB).

Along with online events, the ICSB published its annual report highlighting not only the importance of MSMEs as they relate to the United Nations Sustainable Development Goals but also calling for further political and regulatory support for the sector as the global economy looks to make a recovery.

 Concept of a green economy

Concept of a green economy 

Ahmed Osman, President of the ICSB, used the annual report to share his perspectives on the future for MSMEs in the post pandemic world and posed the question ‘What is the new normal for MSMEs?’  

‘There are six key factors every MSME or start-up needs to keep in mind post Covid-19,’ Osman stated, the first of these being financial assessment and security. Encouraging MSMEs to put in place a financial action plan, obtaining information about government relief packages and getting a clear picture of investor expectations, Osman said;  ‘Once this financial risk assessment and support ecosystem are in place, one can execute the plan. This may involve deciding on a potential pay cut, pull back on investments related to infrastructure or expansion, halting new recruitment etc…’

 Digital Business and Technology Concept

Digital Business and Technology Concept 

Having secured the financial footing the next factor was to re-evaluate the business plan in light of the new conditions. Osman stressed the importance of involving all stakeholders to come up with a mutually agreed set of new targets. The third factor to consider, according to Osman, was creating a ‘strong digital ecosystem.’ ‘If there is one thing that Covid-19 has taught businesses. It is the power of digital engagement. Even as an MSME, it helps to be present and active on digital media…Additionally, a digitally enabled internal ecosystem also needs to be in place that can accommodate remote working…without compromising data  security or productivity of employees.’

The fourth factor Osman highlighted was adoption of the fourth revolution for business. ‘…This is also time to leverage the new age technology innovations and adopt the fourth revolution for business. While most SMEs and MSMEs look at this as an ‘out of league’ investment, it is actually very simple and can be incorporated for a higher ROI in the long run. Be it automation, CRM, ERP, IoT, a well planned strategy to scale to technology-enabled, highly productive next generation business can be worked out with a two to three year plan,’ Osman said.

 Bulb future technology

Bulb future technology

Less reliance on physical space was the fifth factor Osman highlighted, anticipating a reversal in the trend that led to increasing the number of people in an office and home working becoming more normal.

The final factor Osman highlighted was the need to have a crisis management strategy in place. ‘It is vital to chalk up an effective crisis management plan that will take into consideration both immediate and long-term impact,’ he said.

Encouraging MSMEs to take stock, Osman asked ‘How did you help in the great pandemic? Quantify what you did for your employees, customers, community and country. Leverage the opportunity to build a better business, have credible solutions to the new major challenge and think globally act locally.’


Health & Wellbeing

The week provides the opportunity for participants to promote overall awareness for the wide ranging aspects of wellbeing, including social, physical, emotional, financial, career and environmental. 

This week, 22-26 June, 2020 is World Wellbeing Week. The observance began in Jersey, the Channel Islands in 2019 and has since been taken up across the world.

 woman meditating

Wellbeing and healthy lifestyle concept

Since the beginning of the global lockdown, people have been encouraged to maintain some sort of physical activity or exercise. While it is known that exercise is beneficial for overall physical and mental health and wellbeing, researchers from the University of Cambridge and University of Edinburgh UK, have released a study in which they say that physical activity prevents 3.9 million early deaths each year.

Publishing their work in The Lancet Global Health the researchers said that there is often too much focus on the negative health consequences of poor levels of physical activity, when we should be celebrating what we gain from physical activity.

 Exercises and warm up before run

Exercises and warm up before run

Researchers from the Medical Research Council Epidemiology Unit at the University of Cambridge looked at previously published data for 168 countries which covered the proportion of the population meeting WHO global recommendation of at least 150 minutes of moderate-intensity throughout the week or 75 minutes of vigorous-intensity activity.

By combining these data, with estimates of the relative risk of dying early for active people compared to inactive people, the researchers were able to estimate the proportion of premature deaths that were prevented because people were physically active.

They found that globally, due to physical activity, the number of premature deaths was an average 15% lower than it would have been, equating to 3.9 million lives saved each year. Despite the considerable variation in physical activity levels between countries, the positive contribution of physical activity was remarkably consistent across the globe, with a broad trend towards a greater proportion of premature deaths averted for low and middle income countries.

 Hands holding red heart

Hands holding red heart representing healthy heart and wellbeing

The researchers argue that the debate on physical activity has often been framed in terms of the number of early deaths due to the lack of exercise, currently estimated at 3.2 million each year. But showing how many deaths are averted it might be possible to frame the debate in a positive way which could have benefits for policy and population messaging.

 Fitness session

Fitness session

Dr Tess Strain from the Medical Research Council Epidemiology Unit at the University of Cambridge  said; ‘We’re used to looking at the downsides of not getting enough activity – whether that’s sports or a gym or just a brisk walk after lunch time. But by focusing on the number of lives saved, we can tell a good news story of what is already being achieved…We hope our finding will encourage governments and local authorities to protect and maintain services in these challenging times.’


Sustainability & Environment

Momentum for a post-pandemic ‘green recovery’ continues, as the UK government and the European Commission set out steps to accelerate their recoveries, while supporting the paths to net zero by 2050. Here we round-up just some of the initiatives announced in recent weeks to achieve these goals.

 Human hands holding earth globe and tree

Human hands holding earth globe and tree

Plans for preservation of biodiversity

Speaking on the 3rd June 2020, at the Organisation for Security and Cooperation in Europe (OSCE) Economic and Environmental Committee Meeting, the UK’s Second Secretary from the UK Delegation, Justin Addison, said; ‘As we recover, we have an opportunity to protect and restore nature, reducing our exposure to deadly viruses and climate impact.’

Highlighting the UK’s global outlook on addressing climate change, Addison added, ‘The UK will soon announce a £64 million package to support Colombia to tackle deforestation and build a cleaner and more resilient economy in areas affected by Covid-19 and conflict.’

smoke rising in rainforest

Originally posted by travelinglighttoday

As well as the UK’s efforts to preserve biodiversity, the European Commission will be looking to protect and restore biodiversity and natural ecosystems. Frans Timmermans, the European Commission’s Executive Vice President added that, ‘It can boost our resilience and prevent the emergence and spread of future virus outbreaks. We have now seen that this relationship between us and the natural environment is key to our health.’ 

 earth held in human hands

Earth held in human hands 

Enabling low-carbon solutions and boosting clean growth

EU:

In early June, a letter was sent to decision-makers across the European Union from more than 100 investors, urging the EU to ensure a green recovery from the covid-19 pandemic is delivered.

Investors are keen to ensure the government builds on The European Green deal to deliver a long term commitment that will accelerate the economy into one that is more green and carbon resilient post coronavirus.

The European Green deal, set out before the pandemic, details some of their targets including, a 50-55% emissions reduction by 2030; a climate law to reach net-zero emissions by 2050; a transition fund worth €100bn and a series of new sector policies to ensure all industries are able to decarbonise.

 A shoot of a plant and planet Earth

A shoot of a plant and planet Earth 

UK:

To boost clean growth, the UK Government has recently launched a £40 million Clean Growth Fund that will ‘supercharge green start-ups’.

This fund will enable UK clean growth start-ups to scale up low-carbon solutions and drive a green economic recovery.

Potential examples of projects the fund could support include areas in power and energy, buildings, transport and waste.

Business Secretary Alok Sharma said: ‘This pioneering new fund will enable innovative low-carbon solutions to be scaled up at speed, helping to drive a green and resilient economic recovery.’


Sustainability & Environment

In a recent paper published in Nature Climate Change, an international group of researchers are urging countries to reconsider their strategy to remove CO2 from the atmosphere. While countries signed up to the Paris Agreement have individual quotas to meet in terms of emissions reduction, they argue this cannot be achieved without global cooperation to ensure enough CO2 is removed in a fair and equitable way.

 harmful factory emissions

Harmful emissions

The team of international researchers from Imperial College London, the University of Girona, ETH Zürich and the University of Cambridge, have stated that countries with greater capacity to remove CO2 should be more proactive in helping those that cannot meet their quotas.

Co-author Dr Niall Mac Dowell, from the Centre for Environmental Policy and the Centre for Process Systems Engineering at Imperial, said, ‘It is imperative that nations have these conversations now, to determine how quotas could be allocated fairly and how countries could meet those quotas via cross-border cooperation.’

The team’s modelling and research has shown that while the removal quotas vary significantly, only a handful of countries will have the capacity to meet them using their own resources.

 reforestation

Reforestation

A few ways to achieve carbon dioxide removal:

(1)    Reforestation

(2)    Carbon Capture and Storage (CCS)  

(3)    CCS coupled to bioenergy – growing crops to burn for fuel. The crops remove CO2 from the atmosphere, and the CCS captures any CO2 from the power station before its release.

However, deploying these removal strategies will vary depending on the capabilities of different countries. The team have therefore suggested a system of trading quotas. For example, due to the favourable geological formations in the UK’s North Sea, the UK has space for CCS, and therefore, they could sell some of its capacity to other countries.

 Global cooperation

Global cooperation 

Co-lead author Dr Carlos Pozo from the University of Girona, concluded; ‘By 2050, the world needs to be carbon neutral - taking out of the atmosphere as much CO2 as it puts in. To this end, a CO2 removal industry needs to be rapidly scaled up, and that begins now, with countries looking at their responsibilities and their capacity to meet any quotas.’

DOI:  https://www.nature.com/articles/s41558-020-0802-4



Sustainability & Environment

Some plants such as lettuce require cool conditions for germination (<10 oC), a condition known as thermo-dormancy. This reflects the evolution of the wild parent species in cooler environments and growth cycles limited by higher summer temperatures. Transforming live but dormant seed into new healthy self-sufficient plants requires care and planning. The conditions in which seed is stored before use greatly affect the vigour and quality of plants post-germination. Seed which is stored too long or in unsuitable environments deteriorates resulting in unthrifty seedlings.

Aged seed

Aged seed

Seed is either sown directly into soil or into compost designed especially as an aid for germination. These composts contain carefully balanced nutrient formulae which provide larger proportions of potassium and phosphorus compounds which promote rooting and shoot growth. The amounts of nitrogen needed at and immediately post-germination are limited. Excess nitrogen immediately post-germination will cause over-rapid growth which is susceptible to pest and pathogen damage.

Minor nutrients will also be included in composts which ensures the establishment of efficient metabolic activities free from deficiency disorders. Composts require pH values at ~ 7.0 for the majority of seedlings unless they are of calicifuge (unsuited for calcareous soils) species where lime requirement is limited and the compost pH will be formulated at 6.0. Additionally, the pC will be carefully tuned ensuring correctly balanced ionic content avoiding root burning disorders. Finally, the compost should be water retentive but offering a rooting environment with at least 50 percent of the pore spaces filled with air. Active root respiration is essential while at the same time water is needed as the carrier for nutrient ions.  

Seedlings encountering beneficial environments delivering suitable temperatures will germinate into healthy and productive plants.

 Healthy seedlings

Healthy seedlings

Some plants such as lettuce require cool conditions for germination (<10 oC), a condition known as thermo-dormancy. This reflects the evolution of the wild parent species in cooler environments and growth cycles limited by higher summer temperatures.

Careful husbandry under protection such as in greenhouses provides plants which can be successfully transplanted into the garden. The soil receiving these should be carefully cultivated, providing an open crumb structure which permits swift and easy rooting into the new environment. It is essential that in the establishment phase plants are free from water stress. Measures which avoid predation from birds such as pigeons may also be required. 

Pigeon feeding

Pigeon feeding      

Netting or the placing of cotton threads above plants helps as a protection measure. Weeds must be removed otherwise competition will reduce crop growth and encourage pests and diseases, particularly slug browsing. Finally, the gardener will be rewarded for his/her work with a fruitful and enjoyable crop!


Health & Wellbeing

Fan of milk and cheese? Here’s some good news - researchers have associated dairy-rich diets to reduced risk of developing diabetes and high blood pressure.

According to a large international study published in BMJ Open Diabetes Research & Care, a research team has found that eating at least two daily servings of dairy is associated with lower risk of diabetes and high blood pressure.

 Dairy products

Dairy products; milk and cheese

To see if this link exists across a range of countries, researchers drew on people taking part in the Prospective Urban Rural Epidemiology (PURE) study, in which involves participants from 21 countries aged 35–70. Information on dietary intake over a period of 12 months was collected using food frequency questionnaires. Dairy products included milk, yoghurt, yoghurt drinks, cheese, and dishes prepared with dairy products. Butter and cream were assessed separately as they are not so commonly eaten.

cheesy chips

Originally posted by brattylikestoeat

The results demonstrated that total and full fat dairy were associated with a lower prevalence of metabolic syndrome, which was not the case for a diet with no daily dairy intake. Two dairy servings a day was associated with a 24% lower risk of metabolic syndrome, rising to a 28% lower risk for a full fat dairy intake.  

It was also noted that consuming at least two servings of full fat dairy per day was linked to an 11%–12% lower risk of high blood pressure and diabetes, whilst three servings of full fat dairy intake per day decreased the risks by 13% -14%.

 Heart and stethoscope

Heart and stethoscope

The researchers stated that ‘If our findings are confirmed in sufficiently large and long term trials, then increasing dairy consumption may represent a feasible and low cost approach to reducing (metabolic syndrome), hypertension, diabetes, and ultimately cardiovascular disease events worldwide.’

 

Sustainability & Environment

Another month starts in the SCIence Garden with no visitors to appreciate the burgeoning growth of fresh new leaves and spring flowers, but that doesn’t mean we should forget about it!

Hopefully in our absence the Laburnum tree in the garden, Laburnum watereri ‘Vossii’ will be flowering beautifully, its long racemes of golden yellow flowers looking stunning in the spring sunshine!

 Laburnum x watereri

Laburnum x watereri ‘Vossii’ in the SCIence Garden

This particular cultivar originated in the late 19th century in the Netherlands, selected from the hybrid species which itself is a cross between Laburnum alpinum and L. anagyroides. This hybrid species was named for the Waterers nursery in Knaphill, Surrey and was formally named in a German publication of 1893 (Handbuch der Laubholzkunde, Berlin 3:673 (1893)

 Laburnum tree

The laburnum tree is found very commonly in gardens in the UK, and is noticeable at this time of year for its long chains of golden yellow flowers. However, the beautiful flowers hide a dark side to this plant. The seeds (and indeed all parts) of the tree are poisonous to humans and many animals. They are poisonous due to the presence of a very toxic alkaloid called cytisine (not to be confused with cytosine, a component of DNA). Cytisine has a similar structure to nicotine (another plant natural product), and has similar pharmacological effects. It has been used as a smoking cessation therapy, as has varenicline, which has a structure based on that of cytisine. These molecules are partial agonists at the nicotinic receptor (compared to nicotine which is a full agonist) and reduce the cravings and “pleasurable” effects associated with nicotine. 

 cytisine structure

Cytisine is found in several other plants in the legume family, including Thermopsis lanceolata, which also looks stunning in early summer and Baptisia species, also growing in the SCIence Garden and flowering later in the year.

 Thermopsis lanceolata

In 2018 there were 9.6 million deaths from cancer and 33% of these were linked to exposure to tobacco smoke.*  Since the link between smoking and lung cancer was established in 1950, the market for smoking cessation therapies has increased enormously. In 2018 it was worth over 18 billion dollars annually worldwide and is projected to increase to 64 billion dollars by 2026.** Staggering! Varenicline, sold under the brand names Champix and Chantix, is one of the most significant smoking cessation therapies apart from nicotine replacement products.

If you see a laburnum tree whilst out on your daily allowed exercise this month, have a thought for its use as a smoking cessation therapy!

* Data from the Cancer Research UK website https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer#heading-Zero accessed May 2020.

** https://www.businesswire.com/news/home/20200319005381/en/Global-Smoking-Cessation-Market—Expected-Reach


Health & Wellbeing

Here is a roundup on some of the most recent research and scientific efforts against the coronavirus.  

Novartis:

Novartis has reached an agreement with the US Food and Drug Administration to proceed with a phase III clinical trial of hydroxychloroquine in hospitalized Covid-19 patients. The large trial will be conducted at more than a dozen sites in the US and tested on approximately 440 patients to evaluate the use for this treatment.  

Additionally, Norvatis plans to make its hydroxychloroquine intellectual property available to support broad access to hydroxychloroquine. Read more here.  

 Causaly

Causaly

Causaly, an innovative technology company that harnesses AI to interpret vast databases of biomedical knowledge, is collaborating with UCL academics to increase research on potential therapeutic agents and the identification of biomarkers.

Several researchers and research groups within UCL have been granted access to Causaly technology, allowing them the access to rapidly analyse and derive insights from biomedical literature.

Read more here.

 Causaly technology

Vaccine Taskforce

As part of the UK’s wider efforts to support the development of a vaccine, a new government-led Vaccine Taskforce will soon be launched to drive forward the manufacturing and research efforts to fight the virus.

The government will review regulations to facilitate fast and safe vaccine trials, as well as operational plans, to ensure a vaccine can be produced at a large scale when it becomes available. Industry and academic institutions will be given the resources and support needed.

Business Secretary Alok Sharma said, ‘UK scientists are working as fast as they can to find a vaccine that fights coronavirus, saving and protecting people’s lives. We stand firmly behind them in their efforts. The Vaccine Taskforce is key to coordinating efforts to rapidly accelerate the development and manufacture of a potential new vaccine.’  Read more here.

 covid19sample

A new biosensor for the COVID-19 virus

Research teams at Empa and ETH Zurich have developed an alternative test method in the form of an optical biosensor. The sensor made up of gold nanostructure, known as gold nonoislands on a glass substrate, combines two different effects to detect covid-19: an optical and a thermal one.

According to the release, ‘Artificially produced DNA receptors that match specific RNA sequences of the SARS-CoV-2 [virus] are grafted onto the nanoislands,’ and researchers will then use the optical phenomena, - localised surface plasmon resonance - to monitor the presence of the virus.

The biosensor is not yet ready to be used to monitor and detect COVID-19, however tests showed the sensor can distinguish between very similar RNA sequences of SARS-CoV-2 virus and its relative, SARS-Cov. Read more here.

For more information and more updates on the coronavirus, please visit our hub here.


Health & Wellbeing

As the COVID-19 outbreak increases pressure on the UK’s NHS services and frontline staff, leading scientists and businesses are taking on new initiatives to tackle the outbreak. As there is currently no treatment or vaccine for this virus, researchers are working at unprecedented speed to accelerate the development of a treatment. Businesses are putting in more effort to help those on the frontline of this global crisis.

Below, we have highlighted some of the actions from the chemical industry in the effort to battle COVID-19.

INEOS has managed to built a hand sanitzer plant in the UK and will soon open the facility in Germany, aiming to produce 1m bottles per month each to address a supply shortage across the UK and Europe.

BASF will soon be producing hand sanitizers at its petrochemicals hub in Germany to address the shortage in the region. 

Ramping up the supply of PPE, AstraZeneca is donating nine million face masks to support healthcare workers around the world. Alongside this, AstraZeneca is accelerating the development of its diagnostic testing capabilities to scale-up screening and is also partnering with governments on existing screening programmes. 

Pharmaceutical company Novartis UK, along with several others, is making available a set of compounds from its library that it considers are suitable for in vitro antiviral testing.

GSK has announced that is donating $10 million to the COVID-19 Solidarity Response Fund. The Fund was created by the World Health Organisation (WHO) to help WHO and its partners to prevent, detect and manage the pandemic

 lab kit

Alongside the efforts and initiatives from industries, to continue to aid those on the frontline of this global crisis, social distancing interventions must remain to flatten the curve.

Research and data modelling has shown that policy strategies, such as social distancing and isolation interventions which aim to suppress the rate of transmission, might reduce death and peak healthcare demand by two-thirds. 

 covid graph

Stopping non-essential contact can flatten the curve. Suppressing the curve means we may still experience the same number of people becoming infected but over a longer period of time and at a slower rate, reducing the stress on our healthcare system.


Sustainability & Environment

Introduction

This latest SCI Energy Group blog introduces the possible avenues of carbon dioxide utilisation, which entails using carbon dioxide to produce economically valuable products through industrial processes. Broadly, utilisation can be categorised into three applications: chemical use, biological use and direct use. For which, examples of each will be highlighted throughout.

Before proceeding to introduce these, we can first consider utilisation in relation to limiting climate change. As has been discussed in previous blogs, the reduction of carbon dioxide emissions is crucial. Therefore, for carbon dioxide utilisation technologies to have a beneficial impact on climate change, several important factors must be considered and addressed.

1) Energy Source: Often these processes are energy intensive. Therefore, this energy must come from renewable resources or technologies.

2) Scale: Utilisation technologies must exhibit large scaling potential to match the limited timeframe for climate action.

3) Permanence: Technologies which provide permanent removal or displacement of CO2 emissions will be most impactful¹.

 CO2 sign

Figure 1: CO2 sign 

Chemical Uses

Carbon dioxide, alongside other reactants, can be chemically converted into useful products. Examples of which include urea, methanol, and plastics and polymers. One of the primary uses of urea includes agricultural fertilisers which are pivotal to crop nutrition. Most commonly, methanol is utilised as a chemical feedstock in industrial processes.

 Fertilizing soil

Figure 2: Fertilizing soil

One of the key challenges faced with this application of utilisation is the low reactivity of CO2 in its standard conditions. Therefore, to successfully convert it into products of economic value, catalysts are required to significantly lower the molecules activation energy and overall energy consumption of the process. With that being said, it is anticipated that, in future, the chemical conversion of CO2 will have an important role in maintaining a secure supply of fuel and chemical feedstocks such as methanol and methane².

Biological Uses

Carbon dioxide is fundamental to plant growth as it provides a source of required organic compounds. For this reason, it can be utilised in greenhouses to promote carbonic fertilisation. By injecting increased levels of COinto the air supplied to greenhouses, the yield of plant growth has been seen to increase. Furthermore, COfrom the flue gas streams of chemical processes has been recognised, in some studies, to be of a quality suitable for direct injection³.

 Glass greenhouse

Figure 3: Glass greenhouse planting vegetable greenhouses

These principles are applicable to encouraging the growth of microorganisms too. One example being microalgae which boasts several advantageous properties. Microalgae has been recognised for its ability to grow in diverse environments as well as its ability to be cultured in numerous types of bioreactors. Furthermore, its production rate is considerably high meaning a greater demand for CO2 is exhibited than that from normal plants. Micro-algal biomass can be utilised across a range of industries to form a multitude of products. These include bio-oils, fuels, fertilisers, food products, plant feeds and high value chemicals. However, at present, the efficiency of CO2 fixation, in this application, can be as low as 20-50%.

 Illustration of microalgae

Figure 4: Illustration of microalgae under the microscope

Direct Uses

It is important to note that, at present, there are many mature processes which utilise CO2 directly. Examples of which are shown in the table below.

 CO2 processes

Summary

Many carbon dioxide utilisation technologies exist, across a broad range of industrial applications. For which, some are well-established, and others are more novel. For such technologies to have a positive impact on climate action, several factors need to be addressed such as their energy source, scaling potential and permanence of removal/ displacement of CO2.

The chemistry of carbon dioxide and its role in decarbonisation is a key topic of interest for SCI Energy Group. In the near future, we will be running a webinar concerned with this. Further details of this will be posted on the SCI website in due course.

Links:

1. http://co2chem.co.uk/wp-content/uploads/2012/06/CCU%20in%20the%20green%20economy%20report.pdf

2. https://www.carbonbrief.org/guest-post-10-ways-to-use-co2-and-how-they-compare

3. https://www.intechopen.com/books/greenhouse-gases 



Sustainability & Environment

The first splashes of yellow are starting to appear across our gardens and parks so it must be nearly daffodil time. There are over 10,000 narcissus cultivars and ‘Carlton’ is the most commonly grown of all. There are 5,300 hectares of this cultivar grown in the UK for cut flowers alone. This cultivar was first registered in 1927 and it is estimated that there are now 350,000 tons of it (or 9450 million bulbs)! Is this the most massive plant taxon on earth? 
 narcissus cultivars

March in the SCIence Garden

Narcissus was the classical Greek name of a beautiful youth who became so entranced with his own reflection that he killed himself and all that was left was a flower – a Narcissus. The word is possibly derived from an ancient Iranian language. But the floral narcissi are not so self-obsessed. As a member of the Amaryllidaceae, a family known for containing biologically active alkaloids, it is no surprise to learn that they contain a potent medicinal agent. 

Narcissus (and in particular this cultivar) are an excellent source of galanthamine, a drug more commonly associated with snowdrops (Galanthus spp.). Galanthamine is currently recommended for the treatment of moderate Alzheimer’s disease by the National Institute of Health and Clinical Excellence (NICE) but is very effective in earlier stages of the disease too. 

 Galanthamine

Galanthamine

Today, part of the commercial supply of this molecule comes from chemical synthesis, itself an amazing chemical achievement due to the structural complexity of the molecule, and partly from the natural product isolated from different sources across the globe. In China, Lycoris radiata is grown as a crop, in Bulgaria, Leucojum aestivum is farmed and in the UK the humble daffodil, Narcissus ‘Carlton’ is the provider.

 Narcissus

Narcissus ‘Carlton’ growing on large scale

Agroceutical Products, was established in 2012 to commercialise the research of Trevor Walker and colleagues who developed a cost effective, reliable and scalable method for producing galanthamine by extraction from Narcissus. They discovered the “Black Mountains Effect” – the increased production of galanthamine in the narcissus when they are grown under stress conditions at 1,200 feet. With support from Innovate UK and other organisations, the process is still being developed. Whilst not a full scale commercial production process just yet, the work is ongoing. As well as providing a supply of the much needed drug, this company may be showing the Welsh farming community how to secure additional income from their land. They continue to look for partners who have suitable land over 1000 ft in elevation. 

The estimated global patient population for Alzheimer’s in 2010 was 30 million. It is expected to reach 120 million by 2050.  The global market for Alzheimer’s disease drugs for 2019 was US$ 2870 million. 


Sustainability & Environment

Transferring plants between countries was a profitable source for novel commercial and garden plants until quite recently.

 Potato crop

Potato crop: Geoff Dixon 

Potatoes and tomatoes are classic examples arriving in Europe from South America during the 16th century. Substantial numbers of new plants fuelled empire expansion founding new industries such as rubber and coffee. One of the earliest functions of European botanic gardens was finding potentially valuable new crops for colonial businesses. At home selecting orchids and other exotics from imported plants brought fame and fortune for head gardeners managing the large 19th century estates such as Chatsworth.  Commercially seed merchants selected by eye and feel new and improved vegetables, fruit and flowers.

The rediscovery of Mendel’s laws of inheritance brought systematic science and formalised breeding new crops and garden plants. Analysing the effects of transferring physical, chemical and biological characters identified gene numbers and their functions. 

 Colour range in Gladioli

Colour range in Gladioli: Geoff Dixon 

As a result, varieties with improved colourfulness, fruitfulness, yield and pest and pathogen tolerance fill seedsmen’s catalogues. Breeding increased food supplies and added colour into the gardens springing up in suburban areas as affluence increased.

Greater plant reliability and uniformity arrived with the discovery of F1 hybrids.

 Hybrid Sunflowers

Hybrid Sunflowers: Geoff Dixon

Selected parental lines each with very desirable characters such as fruit colour are in-breed for several generations. Then they are crossed bringing an explosion of vigour, uniformity and reliability (known as heterosis). Saving seed from the hybrid lines does not however, perpetuate these characters; new generations come only from remaking the original cross. That is a major boon for the breeder as competitors cannot pirate their intellectual property.

Knowledge at the molecular level has unravelled still further gene structure and functioning. Tagging or marking specific genes with known properties shortens the breeding cycle adding reliability and accuracy for the breeder.  Simplifying the volume of genetic material used in crosses by halving the number of chromosomes involved adds further precision and control (known as haploidisation). 

Opportunities for breeding new plants increases many-fold when advantageous genes are transferred between species. Recent developments of gene-editing where tailored enzymes very precisely snip out unwanted characters and insert advantageous ones is now offering huge opportunities as a non-transgenic technology. Breeding science makes possible mitigation of climate change, reducing for example the impact of soil degradation brought about by flooding.

 Flood degraded land

Flood degraded land: Geoff Dixon


Health & Wellbeing

Yesterday was Shrove Tuesday, the traditional feast day before the start of Lent. Also known as Pancake Day, many people will have returned to traditional recipes or experimented with the myriad of options available for this versatile treat. 

But you may not realise pancakes are helping to advance medicine. Here we revisit some interesting research

In a study that was published in Mathematics Today, researchers found that understanding the textures and patterns of pancakes helped improve surgical methods for treating glaucoma. 

The appearance of pancakes depends on how water escapes the batter mix during the cooking process. This is impacted by the batter thickness. Understanding the physics of the process can help in producing the perfect pancake, but also provides insights into how flexible sheets, like those found in human eye, interact with flowing vapour and liquids.

 healthy eye

Illustration of a healthy eye, glaucoma, cataract

The researchers at University College London (UCL), UK, compared recipes for 14 different types of pancake from across the world. For each pancake the team analysed and plotted the aspect ratio, i.e. the pancake diameter to the power of three in relation to the volume of batter. They also calculated the baker’s percentage, the ratio of liquid to flour in the batter.

 Pancake batter

Pancake batter

It was found that thick, almost spherical pancakes had the lowest aspect ratio at three, whereas large thin pancakes had a ratio of 300. The baker’s percentage did not vary as dramatically, ranging from 100 for thick mixtures to 175 for thinner mixtures.

Co-author Professor Sir Peng Khaw, Director of the NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology said; ‘We work on better surgical methods for treating glaucoma, which is a build-up of pressure in eyes caused by fluid. To treat this, surgeons create an escape route for the fluid by carefully cutting the flexible sheets of the sclera.’

‘We are improving this technique by working with engineers and mathematicians. It’s a wonderful example of how the science of everyday activities can help us with medicinal treatments of the future.’

 Classic american pancakes

Classic american pancakes 


Sustainability & Environment

One of the most beloved flowers in China (and elsewhere) this small tree was planted here in the SCIence garden to represent the Chinese UK group. It is in bloom from late winter and the bright pink flowers have a strong perfume. It is growing in the centre at the back of the main area of the garden.

There are 309 accepted species in the genus Prunus listed on the Plants of the World Online database (plantsoftheworldonline.org). The genus is distributed mainly across the Northern temperate zones but there are some tropical species.

 genus Prunus

The genus Prunus is generally defined based on a combination of characteristics which include: a solitary carpel (the structure enclosing the ovules – a combination of the ovary, style and stigma) with a terminal style, a fleshy drupe (fruit), five sepals and five petals and solid branch pith. The drupe contains a single, relatively large, hard coated seed (stone) – familiar to us in cherries, apricots, nectarines, peaches etc

This particular species, Prunus mume, originates from southern China in the area around the Yangtze River. The ‘Beni-chidori’ cultivar has been given an Award of Garden Merit by the Royal Horticultural Society.

 Prunus mume

Over 300 different cultivars of this species have been recorded in China, perhaps not surprisingly for a plant that has been domesticated for thousands of years due to its floral beauty. A recent study on the genetic architecture of floral traits across the cultivars of this species was published in Nature Communications.1

Prunus mume was introduced from China into Japan, Korea, Taiwan and Vietnam and it is now fully integrated into the cuisines of all these countries. In addition to its uses in many foodstuffs and drinks, extracts from the fruit are also widely used in traditional Chinese medicine and in the traditional medicines in Korea and Japan. Anti-bacterial, anti-oxidative, anti-inflammatory and anti-cancer properties have all been ascribed to the extract which has been used to treat tiredness, headaches, constipation and stomach disorders amongst other things. A recent review published in the Journal of Ethnopharmacology2 gathers together information from literature reports on the anti-cancer activity of Prunus mume fruit extract.

One standardised extract in particular (MK615) has shown antitumour activity against most common cancer types.

The anti-cancer activity has not been ascribed to a particular component. Compounds isolated from the extract include ursolic acid, amygdalin, prunasin, chlorogenic acid, mumefural and syringaresinol.

 MK615-extract

Like all the plants in the SCIence garden – there’s a lot more to this one than just its ornamental beauty.

References

1.  Zhang, Q., Zhang, H., Sun, L. et al. The genetic architecture of floral traits in the woody plant Prunus mumeNat Commun 9, 1702 (2018). https://doi.org/10.1038/s41467-018-04093-z

2.  Bailly, C. Anti-cancer properties of Prunus mume extracts. J Ethnopharmacology 246, 2020, 112215. https://doi.org/10.1016/j.jep.2019.112215


Sustainability & Environment

Introduction

In November 2020, the UK is set to host the major UN Climate Change summit; COP26. This will be the most important climate summit since COP21 where the Paris Agreement was agreed. At this summit, countries, for the first time, can upgrade their emission targets through to 20301. In the UK, current legislation commits government to reduce greenhouse gas emissions by at least 100% of 1990 levels by 2050, under the Climate Change Act 2008 (2050 Target Amendment)2.

Hydrogen has been recognised as a low-carbon fuel which could be utilised in large-scale decarbonisation to reach ambitious emission targets. Upon combustion with air, hydrogen releases water and zero carbon dioxide unlike alternative heavy emitting fuels. The potential applications of hydrogen span across an array of heavy emitting sectors. The focus of this blog is to highlight some of these applications, and on-going initiatives, across the following three sectors: Industry, Transport and Domestic.

Please click (here3) to access our previous SCI Energy Group blog centred around UK COemissions.

 climate change activists

Figure 1: climate change activists 

Industry

Did you know that small-scale hydrogen boilers already exist?4

Through equipment modification, it is technically feasible to use clean hydrogen fuel across many industrial sectors such as: food and drink, chemical, paper and glass.

Whilst this conversion may incur significant costs and face technical challenges, it is thought that hydrogen-fuelled equipment such as furnaces, boilers, ovens and kilns may be commercially available from the mid-2020’s4.

 gas hydrogen peroxide boiler line vector icon

Figure 2:  gas hydrogen peroxide boiler line vector icon

Domestic

Did you know that using a gas hob can emit up to or greater than 71 kg of COper year?5

Hydrogen could be supplied fully or as a blend with natural gas to our homes in order to minimise greenhouse gas emissions associated with the combustion of natural gas.

As part of the HyDeploy initiative, Keele University, which has its own private gas network, have been receiving blended hydrogen as part of a trial study with no difference noticed compared to normal gas supply6.

Other initiatives such as Hydrogen 1007 and HyDeployare testing the feasibility of delivering 100% hydrogen to homes and commercial properties.

 gas burners

Figure 3: gas burners

Transport

Did you know that, based on an average driving distance of approximately 11,500 miles per annum, an average vehicle will emit approximately 4.6 tonnes of COper year?9

In the transport sector, hydrogen fuel can be utilised in fuel cells, which convert hydrogen and oxygen into water and electricity.

Hydrogen fuel cell vehicles are already commercially available in the UK. However, currently, form only a small percentage of Ultra Low Emission Vehicle (ULEV) uptake10.

Niche applications of hydrogen within the transport sector are expected to show greater potential for hydrogen such as buses and trains. Hydrogen powered buses are already operational in certain parts of the UK and hydrogen trains are predicted to run on British railways from as early as 202211.

 h2 combustion engine

Figure 4:  h2 combustion engine for emission free ecofriendly transport

Summary

This blog gives only a brief introduction to the many applications of hydrogen and its decarbonisation potential. The purpose of which, is to highlight that hydrogen, amongst other low-carbon fuels and technologies, can play an important role in the UK’s transition to net-zero emissions.

Stay tuned for further SCI Energy Group blogs which will continue to highlight alternative low-carbon technologies and their potential to decarbonise.

Links to References:

1. https://eciu.net/briefings/international-perspectives/cop-26

2. https://www.legislation.gov.uk/ukdsi/2019/9780111187654

3. https://www.soci.org/blog/2019-08-09-Understanding-UK-Carbon-Dioxide-Emissions/

4. http://www.element-energy.co.uk/2020/01/hy4heat-wp6-has-shown-that-switching-industrial-heating-equipment-to-hydrogen-is-technically-feasible-with-large-potential-to-support-initiation-of-the-hydrogen-economy-in-the-2020s/

5. https://www.carbonfootprint.com/energyconsumption.html

6. https://hydeploy.co.uk/hydrogen/

7. https://sgn.co.uk/about-us/future-of-gas/hydrogen/hydrogen-100

8. https://www.hy4heat.info/

9. https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle

10. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/794473/veh0202.ods

https://www.telegraph.co.uk/cars/news/hydrogen-fuel-cell-trains-run-british-railways-2022/


Health & Wellbeing

Who is Dmitri Mendeleev?

Russian chemist, Dmitri Mendeleev was born in 1834 in a Siberian village. His early life has been described as tumultuous; his father lost his sight and died when Dmitri was thirteen, leaving his family in financial difficulties.

His mother prioritised Dmitiri’s academic potential, taking him and his sister to St Petersburg, where he studied at the Main Pedagogical Institute. When his mother died, he carried out his doctoral research in St Petersburg where he explored the interactions of alcohols with water.

 St Petersburg

Between 1859 and 1861 he went to Paris to study the densities of gases, and he travelled to Germany where he studied capillarity and surface tension that subsequently led to his theory of ‘absolute boiling point.’ In 1861 he returned to Russia to publish everything he knew on organic chemistry in a 500-page textbook, and by 1864 he became a professor at the Saint Petersburg Technological Institute and Saint Petersburg State University.

As he continued his research, he tried to classify the elements according to the chemical properties. He became aware of a repeating pattern – elements with similar properties appeared at regular intervals. He arranged the elements in order of increasing relative atomic mass and noticed the chemical properties of these elements revealed a trend, which led to the formation of the periodic table.

 periodic table

Beyond his work in chemistry, during the 1870s, he devoted time to help the Russian industry, particularly in strengthening the productivity in agriculture. He became very active in exploring the Russian petroleum industry and developed projects in the coal industry in the Donets Basin. Additionally, he was responsible for creating and introducing the metric system to Russia.

 chalkboard

Careers

In this third article in our ‘How to…’ series, we reflect on what we learned from Martin Curry, STEM Healthcare, in his training session on managing the money.

What is a profit and loss table?

A table detailing all business transactions showing all incoming and outgoing cash activity. This will inform potential investors and credit sources how your business will generate its income and manage its costs. Documenting this information is important to show the progression (improvement) over a period and to forecast whether your business is set to make a future profit or loss.

 profit loss forecasting

So why is forecasting important?

A profit and loss table give businesses an idea of where the business is headed financially.

If your forecast suggests that profit levels will be low and therefore capital will be limited, it can help you to become more cautious with your credit and supply chain arrangements. Having this level of insight can help you to manage your risks and allow you to rethink your strategy in order to reduce loss and increase profitability.

 Manufacturing costs

Manufacturing costs

Monitoring your manufacturing costs is critical in order to represent the efficiency of the production process. There are two types of costs: fixed and variable.

Fixed: rent, rates, employee, insurance,

Variable: raw materials, transport, utilities,

Keeping track of the manufacturing costs will allow you to review the expenses associated with all the resources spent in the process of making the finished goods. To maximise the productivity of each unit of materials you use in the manufacturing process, ensure you review your procedures, materials and ensure waste is reduced to its minimum during the process.

 Financial awareness

Financial awareness

Awareness of the market is key to impressing potential investors; knowing what the key drivers are and understanding the risks and the market demand. Having this information enables you to provide evidence that you can effectively evaluate the commerciality of the project.

In summary, investors will be able to learn a great deal from the financial figures of a business. Thus, preparing a profit and loss account (detailing the business transactions) is critical to providing an insight of the business’s overall position within the market.


Sustainability & Environment

Growing in just about the most challenging of locations in the SCIence Garden are a small group of Helleborus niger. They are planted in a very dry and shady location underneath a large tree sized Escallonia and although they struggled to establish when they were first planted (in May 2017) they are now flowering and growing well.

This plant was first featured as a Horticulture Group Medicinal Plant of the Month in December 2011 and as it is now in the SCIence garden I thought a reprise was in order.

 Helleborus flower

Helleborus is a genus of 15 species of evergreen perennials in the buttercup family, Ranunculaceae. In common with most members of the family, the flowers are radially symmetric, bisexual and have numerous stamen.

Helleborus is the Latin name for the lent hellebore, and niger means black – referring in this species to the roots.

This species is native to the Alps and Appenines. Helleborus niger has pure white flowers, with the showy white parts being sepals (the calyx) and the petals (corolla) reduced to nectaries. As with other hellebores, the sepals persist long after the nectaries (petals) have dropped.

 Another angle of a Helleborus flower

All members of the Ranunculaceae contain ranunculin, an unstable glucoside, which when the plant is wounded is enzymatically broken down into glucose and protoanemonin. This unsaturated lactone is toxic to both humans and animals, causing skin irritation and nausea, vomiting, dizziness and worse if ingested.

Protoanemonin dimerises to form anemonin when it comes into contact with air and this is then hydrolysed, with a concomitant ring-opening to give a non-toxic dicarboxylic acid.

 Protoanemonin chemical structure

Many hellebores have been found to contain hellebrin, a cardiac glycoside. The early chemical literature suggests that this species also contains the substance but later studies did not find it suggesting that either mis-identified or adulterated material was used in the early studies.

It is reported to contain many other specialized metabolites including steroidal saponins.

This plant has long been used in traditional medicine – in European, Ayurvedic and Unani systems and recent research has been aimed at elucidating what constituents are responsible for the medicinal benefit.

 black hellebore

Extract of black hellebore is used sometimes in Germany as an adjuvant treatment for some types of tumour.

A recent paper* reports the results of a safety and efficacy investigation. The Helleborus niger extract tested was shown to exhibit neither genotoxic nor haemolytic effects but it was shown to have anti-angiogenetic effects on human umbilical vein endothelial cells (HUVEC), anti-proliferative effects and migration-inhibiting properties on tumour cells thus supporting its use in cancer treatment.

 A helleborus flower

* Felenda, J.E., Turek, C., Mörbt, N. et al. Preclinical evaluation of safety and potential of black hellebore extracts for cancer treatment. BMC Complement Altern Med 19, 105 (2019) doi:10.1186/s12906-019-2517-5


Science & Innovation

In this second article in our ‘How to…’ series, we reflect on what we learned from Mugdha Joshi, IP & Licensing expert at Kings College London, in her training session on Intellectual Property.

What is Intellectual Property?

Intellectual Property (IP) is a term that refers to the ‘creations of the mind’ such as inventions, works of art and symbols, names and images used in commerce.

 lightbulb

Types of IP

Patents - Works to prevent another person from being able to use the same invention. They cover how inventions work, how they do it, what they are made of and how they are made. A patent lasts for 20 years and it must be renewed on its fourth anniversary. It then must be renewed every year. After 20 years the patent is given to the public. To qualify for a patent, the invention needs to meet the following criteria:

- The invention needs to be undisclosed and not in the public domain before the date of filing. However, any disclosure under a non-disclosure agreement is fine.

- Your idea needs an inventive step that is not obvious to someone with knowledge of the subject.

- It must be a solution to a problem.

- It must be something that can be made and not just speculative.

Copyrights – Protects work created by their author. It must be the author’s own intellectual creation and not have been copied from somewhere else.

Designs – This refers to the aesthetic aspects of an article. It protects 3D objects, or the designs applied to them.

Trademarks – A distinctive sign that identifies certain goods or properties provided by an individual or a company.

 patent graphic

Commercialisation of IP

The commercialisation process involves:

Market analysis - What does your product solve? Why is it better than your competition? Who wants it and why? What are its limitations? What is the development time? (Click here for more on marketing).

Due Diligence - In-depth research of your company and invention and will include schedules of patents, copyrights and trademarks

IP protection -  Prior art search and patent attorney. You must ensure there is no evidence of your idea already being known.

Proof of concept fund

Marketing - Reaching out to companies and sending non-confidential flyers

Licensing - What’s down the pipeline? Exclusive or non-exclusive licence? What obligations are there, e.g. development milestones?

Spit-out creation - What do venture capitalists look for? They will want to see all your documentation that demonstrates that you meet various requirements. They will want to see your granted patents. It is a good idea to have a portfolio with multiple aspects of the product covered. They want to see that your product and company is professionally managed and that there are no issues of contested ownership or opposition.

 IP graphic

The Bright SCIdea Challenge 2020 Final

SCI are unable to protect any intellectual property submitted as part of the competition. It is in your best interest to not disclose any information that could give away key aspects of your innovation for others to reproduce.


Careers

This latest instalment of SCI Energy Group’s blog delves deeper into the working life of another one of its own members – Peter Reineck.

Peter is currently a consultant working alongside technology developers. Throughout this article, he shares insights into his career to date.

 Peter Reineck

Figure 1- Peter Reineck

Peter, can you please provide a brief introduction about yourself? 

I worked with a number of chemical and environmental service companies in the UK and Canada in commercial operations roles.

I now work as a consultant with technology developers to support market and business development.

Can you please explain how your job is aligned with the energy sector? 

I have a particular interest in advanced combustion systems with CO2 capture.

Most recently, I became involved in a new project to produce bio-based plastic that would replace fossil-based plastics in packaging and other applications.

Bio-based plastic has the advantage of producing biogenic CO2 if composted or sent for energy recovery at end of life.

In your current role, what are your typical day-to-day tasks?

Typically, my work involves communicating with stakeholders by phone and email and in meetings, assessing their responses and planning developments accordingly.

 chemicals in vials

Figure 2 - A knowledge of science is particularly helpful

How has your education/previous experience prepared you for this role?

I would say that English language skills and a knowledge of science and chemistry in particular have been the most helpful in my career.

What is your favourite aspect of your current job role?

Consultancy works well for me as the focus is on business development activities; as well, the hours are flexible.

What is the most challenging part of your job? 

A high degree of self-discipline is required in order to meet deadlines.

So far, what is your biggest accomplishment/ achievement throughout your career? 

The most satisfying were moving a number of businesses forward into new markets and applications.

 hourglass

Figure 3 - Self-discipline is required to meet deadlines

In your opinion, what do you think is the biggest problem faced in this field of work at present? 

I think the biggest problem is regulatory changes which affect the potential market for new technologies for packaging and power generation.

These changes are governmental responses to activist claims which are not based on a holistic interpretation of a complete set of data.

What advice would you give someone who is seeking / about to enter the same field of work? 

A practical understanding of science and statistics is essential. Combined with, an ability to translate new technologies into solutions which are economically viable.


Careers

On 6 December 2019 SCI held its entrepreneurial training day for this year’s Bright SCIdea Challenge. The first article in our How to series will take a look at what we learned from Neil Simpson, R&D Director at Borchers, in his training session on how to market and brand your idea.

In order to successfully promote a product or service, it is essential to understand the customer and the market. It is important to be more effective than your competitors in creating, delivering and communicating your idea.

Segmentation, Targeting and Positioning (STP) is a useful tool to help you to define your product and customer base.

When segmenting your customer base, consider the demographics including age, income and gender, as well as their geographical location and behavioural traits.

Once you have segmented your customer base, you will be able to identify which groups are the most suited for your product.

After you have considered which segments to target, you need to take into consideration what your product solves for these people – what is your unique selling point?

 Marketing Mix

The 4 Ps – Marketing Mix

Once you have used the STP framework to define your product and customer base, you can use the 4 Ps Marketing Mix to develop a strategy to bring your product to the market.

Product – This can be a tangible product, for example clothing, or a service. You should consider: What does your product stand for? What needs does it satisfy? How does it differ to your competitors?

Price – It is vital to think carefully about the pricing of your product. Do you compete on price or quality? Consider the perceived value of your product, along with supply costs and competitors’ prices. Pricing your product too high or too low could harm your sales and reputation.

Place – Where is the best location to provide your product to your customer base, and how do you distribute it to them? If you understand your customer base, you will be able to answer important questions such as: Where do your target customers shop? Do they buy online, or in high street shops?

Promotion – What is the most effective way to market your product and which channels should you use? Will you run a social media and email campaign? Would you benefit from attending conferences and exhibitions?

 laptop
Use SWOT to summarise your position

Finally, a useful tool to analyse your current position is the SWOT model. SWOT stands for Strengths, Weaknesses, Opportunities and Threats.

Strengths – How are you perceived by your customer base? What separates you from your competitors?

Weaknesses – What do others see as your weaknesses? What do your competitors do better than you?

Opportunities – What are current market trends? Are there any funding opportunities you could apply for? Are there any gaps in the market?

Threats – Are there any emerging competitors? Do you have any negative media or press coverage?

Using STP, the 4 Ps, and SWOT will be invaluable when it comes to completing your business plan. The more you understand your product, your customer base, where you sell it, and how you sell it, the more successful you will be!

 ipad graphic



image
Use SWOT to summarise your position

image
Use SWOT to summarise your position


Agrifood

A growing population is placing greater pressure on limited resources including land, oceans, water and energy. If agricultural production continues in its present form, water degradation, biodiversity loss and climate change will continue. As a result, people are adopting an increased interest in the environmental impact of food choice, choosing alternatives like insects.

This round-up explores examples of the various insect-based alternative foods.

Insect Snacks

According to data from Grand View Research, a US-based market research company, the global healthy snacks market is expected to reach $32.88 billion by 2025. Companies across Europe are developing healthy snack products based on insects, tapping into our desire for a variety of foods and tastes.

 insect

 Insect

Eat Grub, established in 2013 and based in London UK, developed an insect snack made from house crickets, which are farmed in Europe. They are a sustainable, nutritious and tasty source of food, rich in protein. Research has indicated that insects are good for gut health due to their high chitin content. Chitinous fibre has been linked to increased levels of a metabolic enzyme associated with gut health.

Insect Beer

A start-up Belgian beer company, Belgium Beetles Beer, described their drink as a real Belgium blond beer enriched with insect vitamins and proteins.

Upon ‘accidentally’ developing this product, they realised that the dry beetle powder offered a rich, light sweet, slightly bitter flavour.

 insect beer

Beer

Insect Burger

A growing number of companies are now focusing their efforts on producing a product that looks and tastes like a traditional meat-based burger.

Bugfoundation’s burgers are based on buffalo worms, which are the larvae of the Alphitobius Diaperinus beetle. The company’s founders said that they decided to use buffalo worms because of their ‘slightly nutty flavour.’

The idea stemmed from a trip to Asia, where co-founder, Max Charmer came across fried crickets. His experience inspired him to bring these flavours to the west, hoping to please western tastes and comply with evolving European regulations.

 insect burger

 Burger

Concerns regarding the livestock system have prompted novel inventions in the food space; insects, considered a source of protein, could outperform conventional meats to reduce environmental impacts.

So, will consumers soon be able to introduce insects to their everyday diets? Only time will tell.

 fried insects

Fried insects


Agrifood

Holly berries are emblematic of Christmas. Decorative wreaths containing sprays of holly boughs, bright red with berries, or sprigs set on cakes and puddings help bring seasonal cheer.

 holly

Holly is a problem for horticulturists! Male and female flowers develop separately requiring cross-pollination before fertilised berries develop. Dutch nurserymen got around this by selecting a self-fertile variety ‘J. C Van Tol’ which sets copious berries. Adding further colour in the winter garden is the variety ‘Golden King’ producing mixtures of creamy-white and green foliage. Most hollies in Great Britain are Ilex aquifolium which is a native of Northern Europe and is still found wild in the Welsh Marches. It is a flexible and valuable garden evergreen, very suitable for hedges as they form tough, prickly, impenetrable barriers.

 holly berries

Holly berries

Why plants use considerable energy to produce brightly coloured fruits is a puzzle for botanists. Co-evolution is an explanation. Bright berries attract birds which eat them, digesting the flesh and excreting the seeds. Wide seed distribution accompanied by a package of manure helps spread these plants increasing their geographical range.

Which came first, bright berries or vectoring birds? A combination is the answer. Plants with brighter berries attracted more birds spreading their seed more widely. Brighter berries are more nutritious and hence those birds which ate them were stronger and better fitted for the rigours of winter. Garden residents such as blackbirds and thrushes now thrive and survive on such natural food. Migratory species such as fieldfares travel from Scandinavia, attracted particularly by other berried treasures such as Cotoneaster.

 Cotoneaster

Cotoneaster

Fleshy fruits such as those of holly or Cotoneaster are examples of some of the last energy sinks formed in the gardening year.

They draw products of photosynthesis from the manufacturing centres in leaves and accumulate sugars plus nutrients drawn up from the soil via root systems. That provides a rich diet for birds.

While digestive acids in the vector’s gut starts degrading the hard shell which surrounds the seed at the centre of the berry. Botanically that term is a misnomer since true berries, such as gooseberry fruits contain several seeds. Holly has one seed contained within a hard case encased in flesh and should be a drupe! Not a term which fits well for Christmas carols, decorations or cards!

Merry Christmas and a Prosperous New Year.

 Gooseberries

Gooseberries- true berry


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on Nickel.

Nickel, a silvery-white lustrous metal with a slight golden tinge may be commonly known as a US five cent coin, however, today nickel is one of the most widely used metals. According to the Nickel Institute, the metal is used in over 300,000 various products. It is also commonly used as a catalyst for hydrogeneration, cathodes for batteries and metal surface treatments.

 nickel coins

Nickel in batteries:

Historically, nickel has been widely used in batteries; nickel cadmium (NiCd) and in nickel metal hydride (NiMH) rechargeable batteries. These batteries were used in power tools and early digital cameras. Their success as batteries in portable devices became a stepping stone that led to the significant use of NiMH batteries in car vehicles, such as the Toyota Prius.

 nickel battery

The demand for nickel will increase even further as we move away from fossil fuel energy. More energy wll need to be stored in the cathode part of lithium-ion batteries as a result.

Socio-economic data on nickel demonstrates the importance the nickel value chain has on industries, which includes mining through end use to recycling.

The data reflects that globally, the nickel value chain supports a large number of jobs, primarily ones in manufacturing and chemical engineering. The output generated by nickel related industries is approximately €130bn, providing around 750,000 jobs.

 nickel machine

Nickel is fully recyclable without its qualities being downgraded, making it very sustainable. It is difficult to destroy and its qualities – corrosion resistance, high-temperature stability, strength, recyclability, and catalytic and electromagnetic properties are enabling qualities required for sustainability.

reduce reuse recycle gif

Originally posted by thesustainer


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on tungsten.

History

Over three centuries ago, this metal was first used by porcelain makers in China. They used a tungsten pigment to incorporate a peach colour into their art work. In 1781, Wilhelm Scheele examined a metal containing tungsten and successfully isolated an acidic white oxide, deducing the oxide of the new metal. In 1783, Wilhelm’s brothers produced the same acidic metal oxide, and upon heating it with carbon, they successfully reduced it to tungsten.

 tungsten

Health concerns

Tungsten raises concerns regarding the health effects associated with its levels of toxicity. Initially, tungsten was perceived to be immobile in the environment and therefore used as a viable replacement for lead and uranium in military applications. However, reports showed traces of tungsten detected in soil and potable water sources, increasing the risk to human exposure. According to public health reports, it is unlikely that tungsten present in consumer products poses a hazard or causes any long-term health effects. Therefore, further assessment on the potential long-term health effects of tungsten exposure is still required.

 tungsten pot

Properties

Tungsten is a refractory metal and as it has the highest melting temperature of all metals, it is used across a range of applications. Tungsten is alloyed with other metals to strengthen them. This makes them useful to many high-temperature applications, including arc-welding electrodes.

 hazard assessment form

Properties

Tungsten is a refractory metal and as it has the highest melting temperature of all metals, it is used across a range of applications. Tungsten is alloyed with other metals to strengthen them. This makes them useful to many high-temperature applications, including arc-welding electrodes.

the simpsons gif - heat wave causes ink to fall off newspaper

Originally posted by everythingstarstuff

It is used as a novel material for glass parts due to its superior thermochemical stability. As it is a good electric conductor, it is also used in solar energy devices. Tungsten compounds act as catalysts for energy converting reactions, leading many manufacturers to investigate further uses of tungsten.


Sustainability & Environment

Springtime colour is one of gardening’s greatest joys. Colourful bursts dispel the long darkness of winter with its depressing wetness and cold. Social research is clearly showing the physical and mental benefits obtained from the emergence in spring of bright garden colours linked with lengthening daylight. As with most gardening pleasures, this requires advanced financial outlay and an understanding of the rhythms of plant growth. 

spring flowers

Originally posted by velvetmotel

Planting bulbs such as daffodils, tulips and hyacinths in autumn is the necessary investment. In return, plant breeders now provide a huge array of colours, shapes, sizes and seasonal sequencing with bulbous plants.

 February Gold daffodils

Geoff Dixon:  February Gold daffodils

Bulbs are large pieces of vegetative tissue which come pre-loaded with immature leaves and flowers, safely wrapped inside a dry coating of protective scales. Essentially, bulbs are large flower buds which are stimulated into growth by planting in warm, moist soil or compost. These conditions trigger the emergence of roots from the base of each bulb. Because bulbs are nascent plants, they require careful handling and are safest once planted. 

Many bulbous species originate from higher altitude mountainous pastures and are naturally evolved for dealing with fluctuating periods of heat, cold and drought. Once safely planted at depths which should equal twice the length of each bulb, they will survive the freezing, thawing and fluctuating soil water- content delivered by winter weather.

 Bulb structure

Geoff Dixon: Bulb structure showing the flower bud embedded in the bulb

Warming soils of spring encourage growth and emergence of the leaves and flower buds contained within each bulb. Speed of emergence is governed by interaction between the genetic complement of bulbs and an interaction with their environment. Identifying and understanding the impact of this interaction formed the basis for Charles Darwin and Alfred Wallaces’ theory of natural selection. For springtime gardeners it is expressed in the multiplicity of bulbs on offer. Choosing a range of daffodil varieties for example, provides colourful gardens from February through to late May.

 Technique for planting bulbs

Geoff DixonTechnique for planting bulbs using hand trowel and some sand for drainage under the bulb

Conserving the joys of spring pleasure over years can be achieved by naturalising bulbs. This means planting them in grass swards. This works effectively for daffodils, provided the foliage is allowed 8 to 10 weeks of uninterrupted growth and senescence after flowering. During this period, photosynthesis produces the chemical energy needed for replacement growth, which provides bulb multiplication and flower bud development for the following year. Tulips are much less easily naturalised in British gardens. This is because the leaves mature and senesce much more quickly after flowering, hence, less energy is produced, therefore, regrowth is less, and replacement flower buds are not formed.

For most gardeners the policy should be one of enjoying each springtime’s show and replacing bulbs with new ones every autumn for a relatively modest outlay.


Careers

Nearly two years ago, while attending admissions day in the Department of Chemical Engineering at Imperial College London, I was asked, ‘Why Chemical Engineering?’ That is also the question I will attempt to answer today, before beginning my second year at Imperial.

sheldon gif

Originally posted by keep-calm-and-allons-y-whovians

1.  ChemEng is everywhere

If you look around, you will see countless things whose production involved chemical engineers. From a plastic bottle on your desk, through cosmetics and medicines, to the fuel that your car uses – all those products involve complex chemical processes designed and improved by engineers. I see chemical engineering as a job full of opportunities – and of many diverse ones, as well.

Not only are there numerous industry sectors to work in, but also possibilities beyond the scope of ChemEng. For example, other areas of employment stretch across research, finance and management, as chemical engineering equips students with many useful transferrable skills, such as problem-solving abilities or analytical thinking.

monica gif

Originally posted by livelovecaliforniadreams

2.      Chemical engineers can make the world a better place

It may sound like a slogan, but I really believe it’s true. Today’s society faces serious problems, some of which are caused by human activity. It is hard to ignore the changes in the natural environment and the problems such as climate change, but chemical engineers are here to find a way to fight it.

Nowadays, the focus in designing chemical processes is increasingly shifting towards environmental sustainability. Even our department has a carbon capture pilot plant, and when implemented on a chemical plant, carbon capture is aimed at reducing CO2 emissions. Chemical engineers can make production processes more eco-friendly and help to develop clean energy generation, which is crucial for today’s world.

 CO2 emissions graphic

Another big challenge of the 21st century is ageing society. It results in increased occurrence of diseases such as cancer, cardiovascular diseases, and many other types of illnesses. Subsequently, this increases the demand for various kinds of medicines, increases the consequent development of pharma industries, and thus, more opportunities for chemical engineers to benefit society.

 yoga stance

3.      ChemEng is fun!

To be perfectly honest, this course can be challenging at times. But at the same time, I find it really exciting and rewarding. Its multidisciplinary nature is what makes it interesting; we study elements of maths, physics, mechanics, some elementary programming and different branches of chemistry. It is also a course full of practical work – lab experiments and group projects, which develop co-operation skills and the ability to solve real-life problems, but it is also a fun way to learn and to meet new people!

Originally posted by kane52630

The most important thing is to enjoy what you study, and ChemEng is an ideal fit for those enjoying STEM subjects and willing to solve practical problems. And that is probably why I am so excited to come back to uni and start second year.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on titanium and its various uses in industries.

 titanium

What is titanium?

Titanium is a silver- coloured transition metal, exhibiting low density, high strength and a strong resistance to corrosion from water and chlorine. Suitably, titanium delivers many uses to various industries with approximately 6.6 million tonnes produced annually. 

Titanium Dioxide 

Titanium Dioxide is the most popular usage of titanium, composed of approximately of 90%. It is a white powder with high opacity; its properties have been made for a broad range of applications in paints, plastic good, inks and papers. Titanium dioxide is manufactured through the chloride process or the sulphate process. The sulphate process is the more popular process making up 70% of the production within the EU. 

 titanium in production

Aerospace industry 

Titanium’s characteristics - lightweight, strong and versatile, make titanium a valuable metal in the aerospace industry. In order for aircrafts to be safely airborne, the aerospace industry need parts which are both light and strong, and at the same time safe. Thus, titanium is seen as the most ideal match for these specifications.

 Aircraft

Dentistry

Titanium implants have been used with success, becoming a promising material in dentistry. As a result of its features, including its physiological inertia, resistance to corrosion, and biocompatibility, titanium plays an important role in the dental market.

 titanium dentistry

However, despite this, the technologies and systems used in the machining, casting and welding of titanium is slow and expensive. Despite the wide availability of these technologies and systems used in the process of creating dental prosthesis from titanium, it does depend on the technological advancements and the availability of resources, to create a more profitable and efficient manufacturing process.


Sustainability & Environment

 sunshine and showers

Aldrin, Armstrong and Collins, Apollo 11’s brave astronauts were the first humans with the privilege of viewing Earth from another celestial body.  These men uniquely wondered “what makes Earth special?” Certainly, within our Solar System, planet Earth is very special. Its environment has permitted the evolution of a panoply of life.

earth gif

Originally posted by spinningblueball

Green plants containing the pigment, chlorophyll either in the oceans as algae or on land as a multitude of trees, shrubs and herbs harvest energy from sunshine. Using a series of chemical reactions, known as photosynthesis, light energy is harvested and attached onto compounds containing phosphorus.

Captured energy then drives a series of reactions in which atmospheric carbon dioxide and water are combined forming simple sugars while releasing oxygen. These sugars are used further by plants in the manufacture of larger carbohydrates, amino acids and proteins, oils and fats.

The release of oxygen during photosynthesis forms the basis of life’s second vital process, respiration. Almost all plants and animals utilise oxygen in this energy releasing process during which sugars are broken down.

 leaf

Released energy then drives all subsequent growth, development and reproduction.   These body-building processes in plants are reliant on the transfer of the products of photosynthesis from a point of manufacture, the source, to the place of use, a sink.

Leaves and shoots are the principle sources of energy harvesting while flowers and fruits are major sinks with high levels of respiration.

 respiration and photosynthesis

Figure 1: Photosynthesis vs respiration, drawn by James Hadley

Transfer between sources and sinks occurs in a central system of pipes, the vascular system, using water as the carrier. Water is obtained by land plants from the soils in which they grow. Without water there would be no transfer and subsequent growth. Earth’s environment is built around a ‘water-cycle’ supplying the land and oceans with rain or snow and recycles water back into the atmosphere in a sustainable manner.

sea gif

Originally posted by gajo1987

Early in Earth’s evolution, very primitive marine organisms initiated photosynthetic processes, capturing sunlight’s energy. As a result, in our atmosphere oxygen became a major component. That encouraged the development of the vast array of land plants which utilise rain water as the key element in their transport systems.

Subsequently, plants formed the diets of all animals either by direct consumption as herbivores or at second-hand as carnivores. As a result, evolution produced balanced ecosystems and humanity has inherited what those astronauts saw, “the Green Planet”.

 globe in hands

Earth will only retain this status if humanity individually and collectively defeats our biggest challenge – climate change. Burning rain forests in South America,  Africa and Arctic tundra will disbalance these ecosystems and quicken climate change.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on sodium and its role in the next series of innovative nuclear energy systems.

 sodium

Sodium; the sixth most abundant element on the planet is being considered as a crucial part of nuclear reactors. Implementing new safety levels in reactors is crucial as governments are looking for environmentally friendly, risk-free and financially viable reactors. Therefore, ensuring new safety levels is a main challenge that is being tackled by many industries and projects.

safety sign gif

Originally posted by contac

In the wake of Fukushima, several European nations and a number of U.S plants have shut down and switched off their ageing reactors in order to eliminate risk and safety hazards.

The sodium- cooled fast reactor (SFR), a concept pioneered in the 1950s in the U.S, is one of the nuclear reactors developed to operate at higher temperatures than today’s reactors and seems to be the viable nuclear reactor model. The SFR’s main advantage is that it can burn unwanted byproducts including uranium, reducing the need for storage. In the long run, this is deemed cost-competitive as it can produce power without having to use new natural uranium.

 nuclear reactor

 Nuclear reactor. Source: Hallowhalls

However, using sodium also presents challenges. When sodium comes into contact with air, it burns and when it is mixed with water, it is explosive. To prevent sodium from mixing with water, nitrogen - driven turbines are in the process of being designed as a solution to this problem.

colourful explosion gif

Originally posted by angulargeometry

A European Horizon 2020 Project, ESFR-SMART project (European Sodium Fast Reactor Safety Measures Assessment and Research Tools), launched in September 2017, aims to improve the safety of Generation-IV Sodium Fast Reactors (SFR). This project hopes to prove the safety of new reactors and secure its future role in Europe. The new reactor is designed to be able to reprocess its own waste, act more reliably in operation, more environmentally friendly and more affordable. It is hoped that this reactor will be considered as one of the SFR options by Generation IV International Forum (GIF), who are focused on finding new reactors with safety, reliability and sustainability as just some of their main priorities.

 EU flag

European Horizon. Source: artjazz

Globally, the SFR is deemed an attractive energy source, and developments are ongoing, endeavouring to meet the future energy demands in a cost-competitive way.  


Health & Wellbeing

On 8th March, I hosted my company’s first International Women’s Day event. Here’s what inspired me to do it…

1.       We need to talk about the lack of women in science

There are a lot of factors at play as to why women are underrepresented in science – it’s a complex issue and there’s been a rise in efforts to tackle it, which is great to see. We need to challenge the idea of what a ‘scientist’ looks like.

Simply by making people aware of stereotype threat and inherent bias, we can begin to break the rigid mould of what it means to be a ‘scientist’. We can’t face it if we never talk about it, and dedicated events are a way of opening up the conversation.

A ‘leaky pipeline’ has actually been coined in science – women ‘trickle out’ as they go up the career ladder. If we’re making an effort to encourage younger girls to study science subjects, we need to question why they’re not being retained at more senior levels. This effort needs to come from businesses.

 women in stem graphic
 women in management graphic

WISE (Women in Science and Engineering) reports the science workforce gender split in 2018Source: WISE

2.       There’s a difference between diversity and inclusion

When we think about the ‘leaky pipeline’, we need to address the difference between diversity and inclusion.

Diversity is important, but it’s not enough. Diversity is the who and what; inclusion is the how. It’s not just about who’s being recruited, or who gets a seat at the table. It’s about creating behaviours that embrace the diverse voices of these people. Diversity without inclusion is just a box-ticking exercise. We need to acknowledge our differences and show a commitment to changing company culture to embrace them.

Hosting events like International Women’s Day is a good start to demonstrating this commitment and dedicating a day for women to be heard.

 funny gif 2

Image: BrandisEGO

3.       I want to celebrate my colleagues

I’m lucky to work with some amazing scientists, some of whom happen to be women. I wanted to take a day to celebrate their accomplishments and those of all the women who are breaking glass ceilings in science. When people feel seen and recognised for their work it creates a healthier work environment. By having this day in place, we can dedicate a day each year to celebrate and congratulate women on their achievements. Plenty of my female colleagues were keen to get involved and help, and I was inspired to hear all their stories and ideas.

funny gif 3

Originally posted by kngoftheclouds

4.       It’s a win-win

I suggested this event because I thought it was a great fit for my company and could benefit us in many tangible ways. Workplace diversity can actually boost performance - a report found that when employees “think their organisation is committed to and supportive of diversity, and they feel included”, their ability to innovate increases by 83%. It also makes perfect sense to me that, by including all genders equally, we have access to a greater pool of talent and a wider range of mentors available for junior talent. Plus, it’s a brand-booster to show that we are bringing ourselves into the future and being socially conscious.

funny gif 4

Originally posted by beamlyus

5.       It’s just the beginning

We’re starting to talk more about gender issues in the workplace, but women are not the only people who are affected by discrimination. We need inclusion for everyone.

For example, most people are aware of the gender pay gap and companies are now obliged to publish their data on this, but in the UK, black male graduates earn almost £4 less per hour than their white peers.  Another study found that almost a third of LGBT+ physical scientists had considered leaving their workplace because of discrimination. These are issues that need to be openly talked about and acknowledged before we can even think about solving them. Science should be for everyone and I’m really excited to host more events to encourage this.

 funny gif 5

Image: Tiffany Pollard


Health & Wellbeing

On 8th March, I hosted my company’s first International Women’s Day event. Here’s what inspired me to do it…

1.       We need to talk about the lack of women in science

There are a lot of factors at play as to why women are underrepresented in science – it’s a complex issue and there’s been a rise in efforts to tackle it, which is great to see. We need to challenge the idea of what a ‘scientist’ looks like.

Simply by making people aware of stereotype threat and inherent bias, we can begin to break the rigid mould of what it means to be a ‘scientist’. We can’t face it if we never talk about it, and dedicated events are a way of opening up the conversation.

A ‘leaky pipeline’ has actually been coined in science – women ‘trickle out’ as they go up the career ladder. If we’re making an effort to encourage younger girls to study science subjects, we need to question why they’re not being retained at more senior levels. This effort needs to come from businesses.

 women in stem graphic
 women in management graphic

WISE (Women in Science and Engineering) reports the science workforce gender split in 2018Source: WISE

2.       There’s a difference between diversity and inclusion

When we think about the ‘leaky pipeline’, we need to address the difference between diversity and inclusion.

Diversity is important, but it’s not enough. Diversity is the who and what; inclusion is the how. It’s not just about who’s being recruited, or who gets a seat at the table. It’s about creating behaviours that embrace the diverse voices of these people. Diversity without inclusion is just a box-ticking exercise. We need to acknowledge our differences and show a commitment to changing company culture to embrace them.

Hosting events like International Women’s Day is a good start to demonstrating this commitment and dedicating a day for women to be heard.

 funny gif 2

Image: BrandisEGO

3.       I want to celebrate my colleagues

I’m lucky to work with some amazing scientists, some of whom happen to be women. I wanted to take a day to celebrate their accomplishments and those of all the women who are breaking glass ceilings in science. When people feel seen and recognised for their work it creates a healthier work environment. By having this day in place, we can dedicate a day each year to celebrate and congratulate women on their achievements. Plenty of my female colleagues were keen to get involved and help, and I was inspired to hear all their stories and ideas.

funny gif 3

Originally posted by kngoftheclouds

4.       It’s a win-win

I suggested this event because I thought it was a great fit for my company and could benefit us in many tangible ways. Workplace diversity can actually boost performance - a report found that when employees “think their organisation is committed to and supportive of diversity, and they feel included”, their ability to innovate increases by 83%. It also makes perfect sense to me that, by including all genders equally, we have access to a greater pool of talent and a wider range of mentors available for junior talent. Plus, it’s a brand-booster to show that we are bringing ourselves into the future and being socially conscious.

funny gif 4

Originally posted by beamlyus

5.       It’s just the beginning

We’re starting to talk more about gender issues in the workplace, but women are not the only people who are affected by discrimination. We need inclusion for everyone.

For example, most people are aware of the gender pay gap and companies are now obliged to publish their data on this, but in the UK, black male graduates earn almost £4 less per hour than their white peers.  Another study found that almost a third of LGBT+ physical scientists had considered leaving their workplace because of discrimination. These are issues that need to be openly talked about and acknowledged before we can even think about solving them. Science should be for everyone and I’m really excited to host more events to encourage this.

 funny gif 5

Image: Tiffany Pollard


Sustainability & Environment

Controlling when and how vigorously plants flower is a major discovery in horticultural science. Its use has spawned vast industries worldwide supplying flowers and potted plants out-of-season. The control mechanism was uncovered by two American physiologists in the 1920s. Temperate plants inhabit zones where seasonal daylength varies between extending light periods in spring and decreasing ones in autumn. 

 flower gif

Originally posted by annataberko

Those environmental changes result in plants which flower in long-days and those which flower in short-days. ‘Photoperiodism’ was coined as the term describing these events. Extensive subsequent research demonstrated that it is the period of darkness which is crucially important. Short-day plants flower when darkness exceeds a crucial minimum, usually about 12 hours which is typical of autumn. Long-day plants flower when the dark period is shorter than the crucial minimum. 

 Irises flowers

Irises are long day flowers. Image: Geoffery R Dixon

A third group of plants usually coming from tropical zones are day-neutral; flowering is unaffected by day-length. Long-day plants include clover, hollyhock, iris, lettuce, spinach and radish. Gardeners will be familiar with the way lettuce and radish “bolt” in early summer. Short-day plants include: chrysanthemum, goldenrod, poinsettia, soybean and many annual weed species. Day-neutral types include peas, runner and green beans, sweet corn (maize) and sunflower. 

Immense research efforts identified a plant pigment, phytochrome as the trigger molecule. This exists in two states, active and inactive and they are converted by receiving red or far-red wavelengths of light. 

 Sunflowers

 Sunflowers are day neutral flowers. ImageGeoffery R Dixon 

In short-day plants, for example, the active form suppresses flowering but decays into the inactive form with increasing periods of darkness. But a brief flash of light restores the active form and stops flowering. That knowledge underpins businesses supplying cut-flowered chrysanthemums and potted-plants and supplies of poinsettias for Christmas markets. Identifying precise demands of individual cultivars of these crops means that growers can schedule production volumes gearing very precisely for peak markets. 

Providing the appropriate photoperiods requires very substantial capital investment. Consequently, there has been a century-long quest for the ‘Holy Grail of Flowering’, a molecule which when sprayed onto crops initiates the flowering process. 

 Chrysanthemums

Chrysanthemums are short day flowers. Image: Geoffery R Dixon

In 2006 the hormone, florigen, was finally identified and characterised. Biochemists and molecular biologists are now working furiously looking for pathways by which it can be used effectively and provide more efficient flower production in a wider range of species.



Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on cobalt and its current and potential uses.

 cobalt

History

In 1739, Georg Brandt, whilst studying minerals that gave gave glass a deep blue colour he discovered a new metal, namely cobalt.Today cobalt’s uses vary from health and nutrition to industry. Cobalt is an essential metal, used in the production of alloys to make rechargeable batteries and catalysts. Cobalt is an essential trace element for the human body, an important component of vitamin B12 and plays an essential role in forming amino acids, proteins in nerve cells and in creating neurotransmitters. 

 b12 diagram

 

 Cobalt is an important component of B12. Image source: flickr: Healthnutrition 

Cobalt and medicine 

The salts found in cobalt can be used as a form of treatment for anaemia, as well as having an important role for athletes acting as an alternative to traditional blood doping. This metal enhances synthesis of erythropoietin, increasing the erythrocyte quantity in blood, and subsequently, improving aerobic performance.

exercise gif

Originally posted by icefitness

The skin

Cobalt can enter the body via various ways: one way is by the skin. This organ is susceptible to environmental pollution, especially in workers who are employed in heavy industry. 

When cobalt ions from different metal objects repeatedly come into contact with skin, these cobalt ions then diffuse through the skin, causing allergic and irritant reactions.

allergic gif

Originally posted by showcaseshirley17

Important raw material for electric transport

Cobalt is also a critical raw material for electric transport. It is used in the production of the most common types of lithum-ion batteries, thus, powering the current boom in electric vehicles. 

The electric vehicle industry has the potential to grow from 3.2 million in 2017 to around 130 million in 2030, seeing the demand for cobalt increase almost threefold within the next decade.

electric vehicle charging

As the EU continues to develop the battery industry, it is becoming a priority for manufacturing industries to secure adequate cobalt supplies. The electric vehicle boom means cobalt will increase in demand in the EU as well as globally; further projects to monitoring the supply-and-demand situation will be announced.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on iron and its importance for human health.

 iron

Iron’s biological role

Iron is an important component of hemoglobin, a protein in the red blood cells which transports oxygen throughout the body. If there is a low level of iron in your body, your body will be unable to carry healthy oxygen-carrying red blood cells and a lack of these red blood cells can result in iron deficiency anemia.

During the 17th century, iron had early medicinal uses by Egyptians, Greeks, Hindus and Romanians, and around 1932, it became established that iron was essential for haemoglobin synthesis.

 red blood cells

Red blood cells 

Figures

The World Health Organisation (WHO) released figures suggesting that iron deficiency is incredibly common in humans and therefore happens to be a primary cause of anaemia. 

According to their statistics, around 1.62 bn cases of anaemia are caused by iron deficiency and according to WHO’s 2008 reports, anaemia can be caused by excessive blood loss, poor iron absorption, and low dietary intake of iron.

Bioavailability

Iron bioavailability in food is low among populations consuming plant-based diets. Iron requirement is very important, and when low levels of iron deficiency are prominent among populations in developing countries, subsequent behavioural and health consequences follow. 

These include reduced fertility rates, fatigue, decreased productivity and impaired school performance among children.

Pregnancy

During pregnancy, iron utilisation is increased as it is essential nourishment for the developing fetus. In 1997, a study proved that pregnant women needed the increase in iron, as 51% of pregnant women suffered from anaemia, which is twice as many non-pregnant women.

 iron graphifc

As iron is a redox-active transitional metal, it can form free radicals and in excessive amounts. This is dangerous as it can cause oxidative stress which could lead to tissue damage. Epidemiological studies provide evidence to show that excessive iron can be a potent risk factor associated with chronic conditions like cardiovascular and developing metabolic abnormalities.

Food sources:

Dietary iron is found in two basic forms. It is found from animal sources (as haem iron) or in the form of plant sources (as non-haem iron). The most bioavailable form of iron is from animal sources, and iron from plant sources are predominantly found in cereals, vegetables, pulses, beans, nuts and fruit. 

However, this form of iron is affected by various factors, as the phytate and calcium can bind iron in the intestine, unfortunately reducing absorption. Vitamin C which is present in fruit and vegetables can aid the absorption of non-haem iron when it is eaten with meat.

 salad bowl

‘The global burden of iron deficiency anaemia hasn’t changed in the past 20 years, particularly in children and women of reproductive age,’ says researcher, Dora Pereira. Although iron is an important nutrient to keeping healthy, it is imperative that iron levels are not too high.


Sustainability & Environment

Banana is the largest herbaceous plant in the world and the UK’s favourite fruit. Every year 100 bn bananas are eaten around the world. The banana industry itself was worth US$44bn in 2011, however taking the fruits from the field to the grocery store relies on a delicately coordinated transportation and ripening system.

monkeys eating

The banana colour scheme distinguishes seven stages from ‘All green’ to ‘All yellow with brown flecks’. The green, unripe banana peel contains leucocyanidin, a flavonoid that induces cell proliferation, accelerating the healing of skin wounds. But once it is yellowish and ready to eat, the chlorophyll breaks down, leaving the recognisable yellow colour of carotenoids.

 unripe and ripe bananas

Unripe (green) and ready-to-eat (yellow) bananas.

The fruits are cut from the plant whilst green and on average, 10-30 % of the bananas do not meet quality standards at harvest. Then they are packaged and kept in cold temperatures to reduce enzymatic processes, such as respiration and ethylene production.

However, below 14°C bananas experience ‘chilling injury’ which changes fruit ripening physiology and can lead to the brown speckles on the skin. Above 24°C, bananas also stop developing fully yellow colour as they retain high levels of chlorophyll.

Once the green bananas arrive at the ripening facility, the fruits are kept in ripening rooms where the temperature and humidity are kept constant while the amount of oxygen, carbon dioxide and ethene are controlled.

 palm tree

The gas itself triggers the ripening process, leads to cell walls breakdown and the conversion of starches to sugars. Certain fruits around bananas can ripen quicker because of their ethene production.

By day five, bananas should be in stage 2½ (’Green with trace of yellow’ to ‘More green than yellow’) according to the colour scale and are shipped to the shops. From stage 5 (’All yellow with green tip’), the fruits are ready to be eaten and have a three-day shelf-life.

 fruit market

A fruit market. Image: Gidon Pico

The very short shelf-life of the fruit makes it a very wasteful system. By day five, the sugar content and pH value are ideal for yeasts and moulds. Bananas not only start turning brown and mouldy, but they also go through a 1.5-4 mm ‘weight loss’ as the water is lost from the peel.

While scientists have been trying out different chemical and natural lipid ‘dips’ for bananas to extend their shelf-life, such methods remain one of the greatest challenges to the industry.

In fruit salads, to stop the banana slices go brown, the cut fruits are sprayed with a mixture of citric acid and amino acid to keep them yellow and firm without affecting the taste.

 bananas and potassium

Bananas are a good source of potassium and vitamins.

The high starch concentration – over 70% of dry weight – banana processing into flour and starch is now also getting the attention of the industry. There are a great many pharmaceutical properties of bananas as well, such as high dopamine levels in the peel and high amounts of beta-carotene, a precursor of vitamin A.

Whilst the ‘seven shades of yellow’ underpin the marketability of bananas, these plants are also now threatened by the fungal Panama disease. This vascular wilt disease led to the collapse of the banana industry in the 1950’s which was overcome by a new variety of bananas.

 bananas growing

However, the uncontrollable disease has evolved to infect Cavendish bananas and has been rapidly spreading from Australia, China to India, the Middle East and Africa.

The future of the banana industry relies on strict quarantine procedures to limit further spread of the disease to Latin America, integrated crop management and continuous development of banana ‘dips’ for extending shelf-life.



Energy

Having previously explored the various ways in which energy is supplied in the UK, this article highlights UK energy consumption by fuel type and the sectors it is consumed in. 

national grid

But before proceeding, it is important to first distinguish between the terms ‘primary energy consumption’ and ‘final energy consumption’. The former refers to the fuel type in its original state before conversion and transformation. The latter refers to energy consumed by end users.

Primary energy consumption by fuel type

 oil rig

Oil consumption is on the decline.

In 2018, UK primary energy consumption was 193.7 m tonnes of oil equivalent. This value is down 1.3% from 2017 and down 9.4% from 2010. This year, the trend has continued so far. Compared to the same time period last year, the first three months of 2019 have shown a declination of 4.4% in primary fuel consumption.

It is also important to identify consumption trends for specific fuels. Figure 1 below illustrates the percentage increases and decreases of consumption per fuel type in 2018 compared to 2017 and 2010.

 

Figure 1 shows UK Primary Energy Consumption by Fuel Type in 2018 Compared to 2017 & 2010. Figure: BEIS. Contains public sector information licensed under the Open Government Licence v1.0.

As can be seen in 2018, petroleum and natural gas were the most consumed fuels. However, UK coal consumption has dropped by almost 20% since 2017 and even more significantly since 2010. But perhaps the most noticeable percentage change in fuel consumption is that of renewable fuels like bioenergy and wind, solar and hydro primary electricity. 

In just eight years, consumption of these fuels increased by 124% and 442%, respectively, thus emphasising the increasingly important role renewables play in UK energy consumption and the overall energy system.

Final energy consumption by sector

Overall, the UK’s final energy consumption in 2018, compared to 2017, was 0.7% higher at a value of approximately 145 m tonnes of oil equivalent. However, since 2010, consumption has still declined by approximately 5%. More specifically, figure 2 illustrates consumption for individual sectors and how this has changed since.

 uk energy consumption statistics 2

Figure 2 from UK Final Energy Consumption by Sector in 2018 Compared to 2017 & 2010. Figure: BEIS. Contains public sector information licensed under the Open Government Licence v1.0.

Immediately, it is seen that the majority of energy, consumed in the UK, stems from the transport and domestic sector. Though the domestic sector has reduced consumption by 18% since 2010, it still remains a heavy emitting sector and accounted for 18% of the UK’s total carbon dioxide emissions in 2018. 

Therefore, further efforts but be taken to minimise emissions. This could be achieved by increasing household energy efficiency and therefore reducing energy consumption and/or switching to alternative fuels.

 loft insulation

Loft insulation is an example of increasing household energy efficiency.

Overall, since 2010, final energy consumption within the transport sector has increased by approximately 3%. In 2017, the biggest percentage increase in energy consumption arose from air transport. 

Interestingly, in 2017, electricity consumption in the transport sector increased by 33% due to an increased number of electric vehicles on the road. Despite this, this sector still accounted for one-third of total UK carbon emissions in 2018.  

 electric vehicle charging

Year upon year, the level of primary electricity consumed from renewables has increased and the percentage of coal consumption has declined significantly, setting a positive trend for years to come.


Policy

Many aid organisations have recognised that to change the growing population rate, investing in women is pivotal. Today (Wednesday 11 July) is World Population Day and we will briefly discuss why changing the living conditions for women and girls is essential to preventing overpopulation.

Although population numbers have stabilised in many regions, recent data has indicated that the global population is set to rise to 10.9 bn people will exist on this earth by 2100.

Today, there are 1.2 bn Africans and, according to figures released by the UN, by 2021 there will be more than 4 bn, stressing the urgency to prioritise the population crisis. Making contraception easily available and improving comprehensive sexual education are key to reducing Africa’s population growth.

 Family photo of five sisters from Africa

Family photo of five sisters from Africa. Image: Sylvie Bouchard

Over 225 m women in developing countries have stressed their desire to delay or stop childbearing, but due to the lack of contraception, this has not been the result.

Family planning would prevent unsafe abortions, unintended pregnancies, which would, in turn, also prevent infant and maternal mortality. If there was a decrease in infant mortality as a result of better medical care, parents would be able to make more informed decisions about having more children. 

It is therefore pivotal that governments and organisations invest more money into projects that will strengthen the health services in these regions, and in women’s health and reproductive rights.

 Lessons on family planning

Lessons on family planning.

In Niger, there are an estimated 205 births per 1,000 women between the ages of 16 and 19 –  a rate that hasn’t changed since 1960. The number of births in Somalia, have increased from around 55 to 105 births per 1,000 women within the same age range in the same time period.

In Rwanda, figures from Rwanda Demographic and Health Survey illustrate an increase in the use of modern contraceptive methods among married women, but the unmet need for family planning remains a large issue, stagnating at 19% between 2010 and 2015. 

Rwanda’s leadership in creating platforms and programmes of action to progress sexual and reproductive health rights has resulted in a decrease in fertility rate, dropping from 6.1 children per women in 2005 to 4.2 in 2015.

 World map of the population growth rate

World map of the population growth rate. Image: Wikimedia Commons.

‘Every year, roughly 74 m women and girls in developing countries experience an unwanted pregnancy primarily because there is a lack of sex education and a lack of contraception. It’s also because women and girls aren’t given equal rights’" said Renate Bähr, Head of the German World Population Foundation (DSW).

With opportunities and access to education, women and girls would be able to understand their rights to voluntary family planning. If women’s access to reproductive education and healthcare services were prioritised, public health and population issues would improve.


Health & Wellbeing

In honour of World Chocolate Day on 7 July, we delve into the health benefits of chocolate. You can thank us later!

chocolate mousse gif

Originally posted by satisfeye

Chocolate – one of the most consumed foods in the world – contains flavonoids, an antioxidant compound present in cocoa pulp, which can cause negative effects on human vascular health. 

However, new studies have explored the benefits of adding nutritional oils to food products, and found that adding high oleic peanut oil can increase the bioactive property of dark chocolate, leading to significant health benefits!

 High oleic peanut oil

 peanut oil

Adding microcapsules of high oleic peanut oil reduces the lipid content of dark chocolate and influences the nutritional composition, thus increasing the content of unsaturated fatty acids in the lipid fraction of chocolate. 

Studies have demonstrated that by adding microcapsules to the chocolate mass, the fat content would not rise, which means dark chocolate containing microcapsules has a lower amount of free fat. Therefore, the use of microcapsules can act as an alternative to protecting the fatty acids.

 chocolate bar

Phenolic compounds

Natural antioxidants are highly valued because they are protective agents and highly sought out to replace synthetic ones in plant products. A broad range of plant foods including cocoa have been sources of phenolic compounds. 

Trans-resveratrol, a phenolic compound is frequently associated with prevention of cancer, ischemias, diabetes, inflammations and viral infections. During chocolate production, the content of phenolic compounds naturally present in cocoa beans becomes lost or reduced. Therefore, it is important to minimise the loss of phenolic compounds. 

 antioxidant graphic

Although, phenolic compounds are essential to obtaining good quality coca beans, they also have a potentially negative influence on flavour conferring to bitterness. Understanding the factors that influence the losses of phenolic compounds is important in obtaining the final product with the desirable sensory attributes.

There is considerable evidence that cocoa with high oleic peanut oil and cocoa with high content of phenolic compounds can provide powerful health benefits, especially against heart disease. 

Science & Innovation

Nowhere on earth has the power to inspire awe and wonder in the endless outcomes of evolution than a natural history museum. It’s a bold claim, but where else can you find over 500m years of biodiversity? 

In a good museum, visitors can literally walk around open mouthed in astonishment at seeing the biggest animals that ever lived – whales and dinosaurs – and specimens showing extraordinary biological processes, like how a two-metre tall kangaroo is born the size of a jelly bean.

butterfly gif

Originally posted by meu-papel-de-carta

But lurking within these wondrous collections are chemical legacies of the ways they were prepared and preserved that can make museums a risky place to work. Here are four of them…

1. Arsenic

One of the main challenges of caring for a biological collection is that everything is edible, and we have to work hard to ensure that insect pests like clothes moths, carpet beetles and silverfish don’t nibble our specimens out of existence. Unchecked, they can turn invaluable objects into dust. When it comes to taxidermy and skins, the practice until recently was to coat the inside of the skins with arsenic soap or other poisons such as heavy metals or even strychnine and cyanide. 

 taxidermy ocelot

A taxidermy ocelot at the University Museum of Zoology. Image: University of Cambridge/Chris Green

While these are extremely effective at killing pests, they have the potential to make us very ill. If a specimen is old but looks in good condition, it’s likely to have been treated in this way. Short story: don’t stroke a museum skin unless you know for sure it’s poison-free.

2. Formalin

Another mainstay of museum collections is animals preserved in jars of fluid. The first step in preparing these specimens is called ‘fixation’, which keeps the animal in suspended animation by halting the decomposition process at a cellular level, causing cross-links between molecules (including DNA). Formalin is a solution of the toxic and carcinogenic gas formaldehyde.

 Preserved fish collected by Charles Darwin

Preserved fish collected by Charles Darwin on the voyage of the Beagle at the University Museum of Zoology. Image: University of Cambridge/Chris Green

3. Alcohol preservative

The second step in preparing fluid specimens is to store them permanently in a preservative, and the most common is a solution of ethanol. Vodka, gin, rum, brandy etc. are all solutions of alcohol, and indeed sailors on historic voyages of discovery would find that the naturalist on board had commandeered their booze rations to preserve an important specimen. 

Today, we tend to use stronger solutions of ethanol – at 70% – as it is more effective. Ethanol is obviously consumable, so why is this in a list of dangers? The ethanol museums use is called industrial methylated spirits, or denatured alcohol: it has a tiny bit of methanol added. 

funny gif

Originally posted by disneyskellington

The toxic methanol has no beneficial properties for preservation – it’s there simply to stop museum workers from drinking it (and means that it isn’t subject to the high tax rates of alcoholic drinks).

4. Radioactivity

Geological collections come with a whole different suite of hazards. Many minerals are inherently poisonous, or can break down in museum conditions to release toxic gasses. Others are naturally radioactive. If you’ve got a lump of uranium ore in your collection, that’s a pretty obvious risk, but there are also certain locations that a lot of fossils come from that have relatively high levels of radiation. 

 funny gif homer simpson

Museums have to be careful about how these are stored as once we lock these fossils up in a museum drawer or cabinet, the concentration of radioactivity in that sealed environment builds up over time, releasing a dangerous cloud once the drawer is eventually opened.

I should say that museums are pretty clued up on managing these risks, and there is no danger to the visiting public. Just don’t lick anything.


Science & Innovation

Nowhere on earth has the power to inspire awe and wonder in the endless outcomes of evolution than a natural history museum. It’s a bold claim, but where else can you find over 500m years of biodiversity? 

In a good museum, visitors can literally walk around open mouthed in astonishment at seeing the biggest animals that ever lived – whales and dinosaurs – and specimens showing extraordinary biological processes, like how a two-metre tall kangaroo is born the size of a jelly bean.

butterfly gif

Originally posted by meu-papel-de-carta

But lurking within these wondrous collections are chemical legacies of the ways they were prepared and preserved that can make museums a risky place to work. Here are four of them…

1. Arsenic

One of the main challenges of caring for a biological collection is that everything is edible, and we have to work hard to ensure that insect pests like clothes moths, carpet beetles and silverfish don’t nibble our specimens out of existence. Unchecked, they can turn invaluable objects into dust. When it comes to taxidermy and skins, the practice until recently was to coat the inside of the skins with arsenic soap or other poisons such as heavy metals or even strychnine and cyanide. 

 taxidermy ocelot

A taxidermy ocelot at the University Museum of Zoology. Image: University of Cambridge/Chris Green

While these are extremely effective at killing pests, they have the potential to make us very ill. If a specimen is old but looks in good condition, it’s likely to have been treated in this way. Short story: don’t stroke a museum skin unless you know for sure it’s poison-free.

2. Formalin

Another mainstay of museum collections is animals preserved in jars of fluid. The first step in preparing these specimens is called ‘fixation’, which keeps the animal in suspended animation by halting the decomposition process at a cellular level, causing cross-links between molecules (including DNA). Formalin is a solution of the toxic and carcinogenic gas formaldehyde.

 Preserved fish collected by Charles Darwin

Preserved fish collected by Charles Darwin on the voyage of the Beagle at the University Museum of Zoology. Image: University of Cambridge/Chris Green

3. Alcohol preservative

The second step in preparing fluid specimens is to store them permanently in a preservative, and the most common is a solution of ethanol. Vodka, gin, rum, brandy etc. are all solutions of alcohol, and indeed sailors on historic voyages of discovery would find that the naturalist on board had commandeered their booze rations to preserve an important specimen. 

Today, we tend to use stronger solutions of ethanol – at 70% – as it is more effective. Ethanol is obviously consumable, so why is this in a list of dangers? The ethanol museums use is called industrial methylated spirits, or denatured alcohol: it has a tiny bit of methanol added. 

funny gif

Originally posted by disneyskellington

The toxic methanol has no beneficial properties for preservation – it’s there simply to stop museum workers from drinking it (and means that it isn’t subject to the high tax rates of alcoholic drinks).

4. Radioactivity

Geological collections come with a whole different suite of hazards. Many minerals are inherently poisonous, or can break down in museum conditions to release toxic gasses. Others are naturally radioactive. If you’ve got a lump of uranium ore in your collection, that’s a pretty obvious risk, but there are also certain locations that a lot of fossils come from that have relatively high levels of radiation. 

 funny gif homer simpson

Museums have to be careful about how these are stored as once we lock these fossils up in a museum drawer or cabinet, the concentration of radioactivity in that sealed environment builds up over time, releasing a dangerous cloud once the drawer is eventually opened.

I should say that museums are pretty clued up on managing these risks, and there is no danger to the visiting public. Just don’t lick anything.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on silicon’s positive effects on the body.

Silicon was not originally regarded as an important element for human health, as it was seen to have a larger presence in (other) animal and plant tissue. It was not until a 2002 ‘The American Journal of Clinical Nutrition’ paper that surmised that accumulating research found that silicon plays an important role in bone formation in humans.  

Silicon was first known to ‘wash’ through biology with no toxological or biological properties. However, in the 1970s, animal studies provided evidence to suggest that silicon deficiency in diets produced defects in connective and skeletal tissues. Ongoing research has added to these findings, demonstrating the link between dietary silicon and bone health.

health and fitness gif

Originally posted by tvneon

Silicon plays an important role in protecting humans against many diseases.  Silicon is an important trace mineral essential for strengthening joints. Additionally, silicon is thought to help heal and repair fractures.

The most important source of exposure to silicon is your diet. According to two epidemiological studies (Int J Endocrinol. 2013: 316783 ; J Nutr Health Aging. 2007 Mar-Apr; 11(2): 99–110) conducted, dietary silicon intake has been linked to higher bone mineral density.

pullup gif

Originally posted by ckhrrr

Silicon is needed to repair tissue, as it is important for collagen synthesis – the most abundant protein in connective tissue in the body – which is needed for the strengthening of bones. 

However, silicon is very common in the body and therefore it is difficult to prove how essential it is to this process when symptoms of deficiency vary among patients. 

brain gif

Originally posted by civisiii

There has also been a plausible link between Alzheimer’s disease and human exposure to aluminium. Research has been underway to test whether silicon-rich mineral waters can be used to reduce the body burden of aluminium in individuals with Alzheimer’s disease. 

However, longer term study is needed to prove the aluminium hypothesis of Alzheimer’s disease.


Health & Wellbeing

Globally, beers with flavours of fruits and touches of acidity notes have become very popular among consumers. Nowadays, experience has become the biggest trend in drinks; consumers desire an immersive experience and seek drinks with enhanced characteristics which include texture, mouthfeel, taste, flavour and colour.

 beers

Over the course of history, brewing became an essential element in rural communities. A study at Simon Fraser University in Canada investigated beer-brewing tools in archaeological remains belonging to the Natufian culture in the Eastern Mediterranean. The examination showed that the brewing of beer was an important cultural component of their society. Studies in Mexico suggested that generations of Mexican farmers domesticated grass into maize, which became a staple of the local diet before it became great for making beer.

As suggested, brewing became an essential element in rural communities and has now transformed from a small-scale local activity to a worldwide industry.

 beer fermenting

Belgium is known for its traditional and spontaneous mixed fermented beers, such as lambic beers which harbour complex micro-biotics. 

Lambic beers are among the most ancient brewing styles and its unique flavour profile has garnered global popularity. 

Wooden barrels play an essential role during its fermentation processes. Lambic brewers prefer using wooden barrels, which often come from red wine productions, as the wooden surfaces harbour a resident microbiota, providing an additional microbial inoculation source for lambic production. 

These barrels are preferred because most of the oak flavours will not come through in the final production of lambic, as the oak character has been stripped from the barrel.

 beer barrels

Consumers regard the combination of taste and odour as essential factors to their choice.  Flavour quality degradation can be triggered by various factors.

Prolonged periods of transportation and storage causes the fresh flavour of beer to deteriorate. Different temperatures in combination with vibrations during transport can negatively influence the quality of beer.

High temperatures can reduce the freshness of beer, increasing the amount of oxidative and non-oxidative chemical reactions which take place. These oxidative reactions degrade the flavour and quality of beer.

funny gif

Originally posted by fromthemotionpicture

It seems vibrations can cause an impact on beer quality subject to an elevated temperature, therefore, temperature reductions during transport and storage should be a primary focus for brewers. However, further research is required with regard to closely examining the influence of transport vibrations on the flavour of beer. 


Health & Wellbeing

Food safety refers to handling, preparing and storing food in a way that best reduces the risk of people becoming sick, and it’s a topic that’s high on everyone’s agenda. Here we explore three recent scientific advances in the area of food safety.  

Antibiotic detection in dairy products

pouring milk gif

Originally posted by butteryplanet

Antibiotics are the largest group of medicines and, due to their use in treating animals, they have been making their way into the food chain and into food products. Consuming food that contain antibiotics could result in poor health outcomes, such as allergic reactions and other events. Antibiotics that accumulate in cattle milk can transfer into dairy products and so it’s urgent that we detect and address the issue.

A new test has been developed that showed, in a recent study, that it can detect antibiotics in food products. The precision of the test means that it can test for a wide range of antibiotics and the testing process is very simple and easy to conduct. It could also detect antibiotics at all stages of the food production process, which is great news in the fight to reduce antibiotics in the food chain.

Reducing contamination of smoked fish

 smoked fish

Smoked fish is very popular in developing countries, as it is a good source of protein. The preparation of it involves hot‐smoking on traditional kilns using wood fuel. This practice is associated with high levels of a substance known as polycyclic aromatic hydrocarbons (PAHs) in the food, which has an impact on health. 

An improved kiln has been introduced by the Food and Agriculture Organization of the United Nations to address the levels of PAHs in smoked fish. A recent study showed that the improved kiln not only works just as well at smoking the fish, but does so with safer levels of PAHs. This means that people can continue to consume this valuable protein source without the potentially cancer-causing chemicals. 

The safest way to prepare fruit and veg?

swirling gif

Originally posted by konczakowski

Pesticides have been reported to find their way into our fruit and vegetables, albeit at minimal amounts. A recent study looked at food preparation techniques to compare what methods were the most effective in removing pesticides, with interesting results.

The simplest and most effective way was shown to be peeling the skin of fruit or trimming the outer layers of vegetables before cooking. Whilst this is the most effective, most of the vitamins may be stored close to the skin surface and so these are lost in this process.

Washing and soaking were sometimes effective and sometimes not. Washing causes less loss of nutrients and is less time consuming than peeling and it reduces the pesticide residue by a reasonable amount but it wasn’t always shown to be effective. How effective it could depended on the type of skin of the food. 

Blanching was another method that was explored. Blanching vegetables in boiling water for one minute loses less nutrients than cooking, whilst removing pesticides very efficiently.  

The results certainly give us food for thought in our meal preparation! 


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today, we investigate the uses of platinum.

Early uses

Around 1200BC, archaeologists discovered traces of platinum in gold in ancient Egyptian burials. 

However, the extent of Egyptians’ knowledge of the metal remains unknown, which suggests that Egyptians might have been unaware that platinum existed in the gold.

 Ancient Egyptian

The Ancient Egyptians made elaborate masks for royals to wear once they were mummified.

Platinum was also used by South Americans with dates going back 2000 years. Burial goods show that in the pacific coast of South America, people were able to work platinum, producing artifacts of a white gold-platinum alloy. 

Archaeologists link the South American tradition of platinum-working with the La Tolita Culture. Archaeological sites show the highly artistic nature of this culture, with the artifacts characterised by gold and platinum jewellery, and anthropomorphic masks symbolising the hierarchical and ritualistic society.

 nthropomorphic mask

What are its properties?

Platinum is a silvery white metal, also known as ‘white gold’. It is extremely resistant to tarnishing and corrosion and it is one of the least reactive metals, unaffected by water and air, which means it will not oxidise with air. 

It is also very soft and malleable, and therefore can be shaped easily and due to its ductility, it can be easily stretched into wire.

 Platinum ring

Platinum is a member of group 10 of the periodic table. The group 10 metals have several uses including decorative purposes, electrical components, catalysts in a variety of chemical reactions and play an important role in biochemistry, particularly platinum compounds which have widely been used as anticancer drugs. 

Additionally, platinum’s tarnish resistance characteristics makes it one the most well-suited elements for making jewelry.


Biological role

 tablets

Platinum bonds are often used as a form of medicine in treatments for cancer. However, the health effects of platinum are dependent on the kinds of bonds that are formed, levels of exposure, and the immunity of the individual.

In 1844, Michele Peyrone, an Italian chemist, discovered the anti-neo plastic properties (apparently prohibiting the development of tumours) and later in 1971, the first human cancer patient was treated with drugs containing platinum.

sheldon gif

Originally posted by keep-calm-and-allons-y-whovians

Today, approximately 50% of patient are treated using medicine which includes the rare metal. Scientists will look further into all the ways platinum drugs affect biology, and how to design better platinum drugs in the future. 


Health & Wellbeing

A 3D printed hydrogel structure can absorb metal pollutants in water significantly faster than solid alternatives.

a running water tap

Clean and fresh water is essential for human life, and water is a necessity to agricultural and other industries. However, global population growth and pollution from industrial waste has put a strain in local fresh water resources.

 hydrogel showing polymer chains

A hydrogel is made up of polymer chains that are hydrophilic (attracted to water) and are known for being highly absorbent.

Current clean-up costs can be extremely expensive, leaving poorer and more remote populations at risk to exposure of metal pollutants such as lead, mercury, cadmium and copper, which can lead to severe effects on the neurological, reproductive and immune systems.

Now, a group of scientists at the University of Texas at Dallas, US, have developed a 3D printable hydrogel that is capable of 95% metal removal within 30 minutes.

brushing teeth gif

Originally posted by biscuitsarenice

Clean water is also needed for one’s hygiene, including brushing your teeth and bathing.

The hydrogel is made from a cheap, abundant biopolymer chitosan and diacrylated pluronic, which forms cDAP. The cDAP mixture is then loaded into the printer as a liquid and allowed to cool to <4⁰C, before rising again to room temperature to form a gel that can be used to produce various 3D printed shapes.

The Dallas team also tested the reusability of their hydrogel and found that it had a recovery rate of 98% after five cycles of use, proving it to be a potentially reliable resource to communities with limited fresh water supply.

.

Life without clean water. Video: charitywater

‘This novel and cost-effective approach to remove health and environmental hazards could be useful for fabricating cheap and safe water filtration devices on site in polluted areas without the need for industrial scale manufacturing tools,’ the paper reads.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at copper and some of its popular uses.


A brief history

 copper

Copper was one of the first metals ever extracted and used by humans. According to the US Geological Survey, copper ranks as the third most consumed industrial metal in the world, dating back to around 5000BC.

Around 5500BC, early ancestors discovered the malleable properties of copper, and discovered they could be fashioned into tools and weapons – a discovery that allowed humans to emerge out of the stone age and drift into the age of metals.

 volcanic rocks

Volcanic rocks in Tenerife, Spain.

Approximately two-thirds of the Earth’s copper is found in volcanic rocks, while approximately one-quarter occurs in sedimentary rocks. 

Th metal is malleable, meaning it can conduct heat and electricity, making copper an extremely useful industrial metal and is used to make electronics, cables and wiring.


What is it used for?

 copper tools

Since 4500BC humans have made and manufactured items from copper. Copper is used mostly as a pure metal, but its strength and hardness can be adjusted by adding tin to create a copper alloy known as bronze. 

In the 1700s, pennies were made from pure copper; in the 1800s they were made from bronze; and today, pennies consist of approximately 97.5% zinc and 2.5% copper.

 

Copper is utilised for a variety of industrial purposes. In addition to copper’s good thermal and electric conductivity, copper now plays an important role in renewable energy systems. 

As copper is an excellent conductor of heat and electricity, power systems use copper to generate and transmit energy with high efficiency and minimal environmental impacts.


Antimicrobial properties

 E Coli cultures on a Petri dish

E. Coli cultures on a Petri dish.

Copper plays an important role as an anti-bacterial material. Copper alloy surfaces have properties which are set out to destroy a wide range of microorganisms.

Recent studies have shown that copper alloy surfaces kill over 99.9% of E.coli microbes within two hours. In the interest of public health, especially in healthcare environments, studies led by the Environmental Protection Agency (EPA) have listed 274 different copper alloys as certified antimicrobial materials, making copper the first solid surfaced material to have been registered by the EPA.

bye gif

Originally posted by nursegif

Copper has always maintained an important role in modern society with a vast list of extensive uses. With further development of renewable energy systems and electric vehicles, we will likely see an ongoing increase in demand for copper.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at arsenic and some of its effects.


What is arsenic?

 arsenic

Arsenic is a chemical element found in nature – low levels of arsenic are found in water, air and soil – in man-made products. As arsenic is distributed throughout the environment, people have high exposure to elevated levels of inorganic arsenic through contaminated drinking water, as well as exposure to arsenic through oceans, food and insecticides.


Is arsenic harmful?

poison gif

Originally posted by venus-aversa

Arsenic can occur in an organic and inorganic form. Organic arsenic compounds are less harmful to our health, whereas, inorganic arsenic compounds (e.g those found in water) are carcinogens, which are highly toxic and dangerous. Arsenic contamination of groundwater has led to arsenic poisoning which affects the skin, liver, lungs and kidneys.

Prominently, arsenic has attracted much attention in Bangladesh, as 21.4% of all the deaths in a highly affected area were caused by levels of arsenic surpassing WHO’s provisional guideline value of 10 μg/L.


Health risks

 bacteria

Long-term exposure to low doses of arsenic can cause a negative interference in the way cells communicate, which may minimise their ability to function, subsequently playing a role in the development of disease and causing an increase in health risks.

For example, cells use phosphate to communicate with other cells, but arsenate, which is one form of arsenic, can replace and imitate phosphate in the cell. This damages cells so they can not generate energy and impairs the ability of cells to communicate.

 

 

 

The health risks of arsenic in drinking water. Video: EnviroHealthBerkeley 

Symptoms of arsenic poisoning can be acute, severe or chronic depending on the period of exposure and method of exposure. Symptoms may include vomiting, abdominal pain and diarrhoea, and long-term exposure can lead to cancers of the bladder and lungs.

Certain industries may face exposure to arsenic’s toxicity, but the maximum exposure to arsenic allowed is limited to 10 micrograms per cubic metre of air for every 8-hour shift. These industries include glass production, smelting, wood treatment, and the use of pesticides. Traces of arsenic can also be found in tobacco, posing a risk to people who smoke cigarettes and other tobacco products.


A global threat

 washing hands

Arsenic is naturally found in the Earth’s crust and can easily contaminate water and food.

WHO has ranked arsenic as one of the top 10 chemicals posing a huge threat to public health. WHO is working to reduce arsenic exposure, however, assessing the dangers on health from arsenic is not straightforward.

As symptoms and signs caused by long-term exposure to inorganic arsenic varies across population groups, geographical regions, as well as between individuals, there is no universal definition of the disease caused by this element. However, continuous efforts and measures are being made to keep concentrations as low as possible.


Careers

Jenny Gracie was awarded a Messel Travel Bursary for an internship with the Naked Scientists based at the University of Cambridge. Here she describes how her internship has helped her to develop her skills and confidence in science communication, which she can now use to help shape her future career.

 Jenny in The Naked Scientists studio

Jenny in The Naked Scientists studio.


I am currently in the final year of a PhD in Chemistry at the University of Strathclyde. My project seeks to better treat cardiovascular disease, which is still the world’s leading cause of death. I am working towards a drug delivery system which utilises hollow gold nanoparticles as a ‘vehicle’ for delivering statins to the fatty plaques that block the arteries. Although I’m still interested in my research project, I’ve developed a real enthusiasm for science communication over the last few years and would like pursue a career in this field.

As a STEM ambassador I have attended fairs, festivals and schools to help spark a curiosity in science among children. During my PhD, the opportunity of an eight-week internship with The Naked Scientists came up, and I simply couldn’t let it pass. Without the funding support from SCI I could not have taken the internship, and so I am extremely grateful for the Messel Travel Bursary, and I know that this contribution helped make this transformative career experience a reality.

funny gif

Originally posted by healthyhappysexywealthy

The Naked Scientists are an award-winning science production group based at the University of Cambridge. They create one of the world’s most popular science shows, achieving over 50m downloads in the last five years. They broadcast weekly on BBC Cambridgeshire, BBC 5Live, ABC National Radio in Australia and also publish a podcast of the show. Podcasts are free, available on-demand and are a widely accessible source of science information to the general public. The Naked Scientist internship programme develops the skill set of early career communicators and provides first-hand experience in the world of science media communication.

Podcast production has grown exponentially in the last few years, however chemistry still remains underrepresented compared to the other traditional physical sciences, like physics and biology. As a chemist who is interested in a career in science communication, this role has allowed me to gain the necessary skills to make my own podcasts in the future.

chemistry gif

Originally posted by luciela-marche

As an intern I was part of the production team from the first day! It was a catapult into the world of radio broadcast and podcast production, but perfect for understanding how a show is produced from scratch. Our weekly show consisted of two parts – one half would cover the news and recently published articles, and the second half would cover a specific topic within science.

Media privileges gave me access to all the journals to be published that week, with them sealed under embargo until publication. We tended to pick articles that have a global impact and capture the interest of the listener. Each team member would be assigned an article, and we would then have to contact the authors to scope the story and arrange a recorded interview. The skills I required to organise and execute a good interview improved over the course of the eight weeks. I could see a real development in both my style and confidence.

funny gif

Originally posted by itslilky

During the internship I also learned how to use software to edit audio, and stitch together multiple tracks to create build pieces with music and sound effects. To accompany the interview, each week we also wrote a short article on the research. This required converting high-level science into a form that could be understood by the general public… something that is much harder than it sounds!


Careers

Jenny Gracie was awarded a Messel Travel Bursary for an internship with the Naked Scientists based at the University of Cambridge. Here she describes how her internship has helped her to develop her skills and confidence in science communication, which she can now use to help shape her future career.

 Jenny in The Naked Scientists studio

Jenny in The Naked Scientists studio.


I am currently in the final year of a PhD in Chemistry at the University of Strathclyde. My project seeks to better treat cardiovascular disease, which is still the world’s leading cause of death. I am working towards a drug delivery system which utilises hollow gold nanoparticles as a ‘vehicle’ for delivering statins to the fatty plaques that block the arteries. Although I’m still interested in my research project, I’ve developed a real enthusiasm for science communication over the last few years and would like pursue a career in this field.

As a STEM ambassador I have attended fairs, festivals and schools to help spark a curiosity in science among children. During my PhD, the opportunity of an eight-week internship with The Naked Scientists came up, and I simply couldn’t let it pass. Without the funding support from SCI I could not have taken the internship, and so I am extremely grateful for the Messel Travel Bursary, and I know that this contribution helped make this transformative career experience a reality.

funny gif

Originally posted by healthyhappysexywealthy

The Naked Scientists are an award-winning science production group based at the University of Cambridge. They create one of the world’s most popular science shows, achieving over 50m downloads in the last five years. They broadcast weekly on BBC Cambridgeshire, BBC 5Live, ABC National Radio in Australia and also publish a podcast of the show. Podcasts are free, available on-demand and are a widely accessible source of science information to the general public. The Naked Scientist internship programme develops the skill set of early career communicators and provides first-hand experience in the world of science media communication.

Podcast production has grown exponentially in the last few years, however chemistry still remains underrepresented compared to the other traditional physical sciences, like physics and biology. As a chemist who is interested in a career in science communication, this role has allowed me to gain the necessary skills to make my own podcasts in the future.

chemistry gif

Originally posted by luciela-marche

As an intern I was part of the production team from the first day! It was a catapult into the world of radio broadcast and podcast production, but perfect for understanding how a show is produced from scratch. Our weekly show consisted of two parts – one half would cover the news and recently published articles, and the second half would cover a specific topic within science.

Media privileges gave me access to all the journals to be published that week, with them sealed under embargo until publication. We tended to pick articles that have a global impact and capture the interest of the listener. Each team member would be assigned an article, and we would then have to contact the authors to scope the story and arrange a recorded interview. The skills I required to organise and execute a good interview improved over the course of the eight weeks. I could see a real development in both my style and confidence.

funny gif

Originally posted by itslilky

During the internship I also learned how to use software to edit audio, and stitch together multiple tracks to create build pieces with music and sound effects. To accompany the interview, each week we also wrote a short article on the research. This required converting high-level science into a form that could be understood by the general public… something that is much harder than it sounds!


Health & Wellbeing

Macular degeneration is a leading cause of blindness – and emerging techniques to treat it could see the end of painful eye injections.

Macular degeneration

Of all places to have an injection, the eyeball is probably near the bottom of anybody’s list. Yet this is how macular degeneration – the leading cause of sight loss in the developed world – is commonly treated.

 Macular degeneration blurred vision

Individuals who have macular degeneration will have blurred or no vision in the center of their visual fields (as shown above).

In the UK, nearly 1.5m people are affected by macular disease, according to the Macular Society. In its commonest ‘wet’ form, macular degeneration is caused by the growth of rogue blood vessels at the back of the eye, due to over-production of a protein called vascular endothelial growth factor (VEGF).

The blood vessels leak, causing damage to the central part of the retina – the macula – and a loss of central vision. Regular injections of so-called anti-VEGF drugs help to alleviate the problem.

eye gif

Originally posted by f-u-g-i-t-i-v-o

As well as being time-consuming, these injections can be stressful and upsetting for sufferers, many of whom are elderly. Because the condition is prevalent among older people, it is usually referred to as age-related macular degeneration, or AMD.

However, a number of emerging treatments – including eye drops, inserts and a modified ‘contact lens’ – could spell the end of regular injections, and treat the condition less invasively.

Anatomy of the eye. Video: Handwritten Tutorials

At the same time, emerging stem cell therapy, which has reversed sight loss for two patients with the ‘dry’ form of macular degeneration, could find wider use within a few years.


Health & Wellbeing

Organised by the National Human Genome Research Institute each year, National DNA Day in the US on 25 April celebrates the discovery of DNA’s double helix in 1953 and the completion of the Human Genome Project in 2003. Here, we explore the history of DNA and its discovery’s unparalleled effect on science, medicine and the way we now understand the human body.


Discovering DNA’s structure

In 1952, a young female scientist Rosalind Franklin at Kings’ College London took the first known picture of DNA in its helical structure using x-ray crystallography.

­Using the pictures that she had taken, Franklin was able to calculate the dimensions of the strands and found the phosphates were on the outside of the DNA helix.

 Rosalind Franklin working in her lab

Rosalind Franklin working in her lab. Image: Wikimedia Commons

Meanwhile, at the University of Cambridge, James Watson and Francis Crick deduced the double-helix structure of DNA, describing it as ‘two helical chains each coiled round the same axis’ following a right-handed helix containing phosphate diester groups joining β-D-deoxyribofuranose residues with 3’,5’ linkages.

The discoveries made by these scientists would propel the study of genetics into the modern science we know today. Crick and Watson were awarded the Nobel Prize for Physiology or Medicine alongside Maurice Wilkins, who worked with Rosalind Franklin, in 1962. You can read their original paper here.


Dolly the sheep

 Dolly on display at the National Museum of Scotland UK

Dolly on display at the National Museum of Scotland, UK.

Dolly is arguably the most famous sheep in the world, having been the first mammal to be cloned from an adult cell. Born in 1996, Dolly was part of a series of experiments at the Roslin Institute in Edinburgh to create GM livestock that could be used in scientific experiments.

She was cloned using a technique called somatic cell nuclear transfer, where a cell nucleus from one adult is transferred into an unfertilised developing egg cell of another that has had its nucleus removed, which is then implanted into a surrogate mother.

The scientific legacy of Dolly the sheep. Video: Al Jazeera English

Dolly lived until 2003 when she was euthanised after contracting a form of lung cancer. Many speculated that Dolly’s early death was related to the cloning experiment but extensive health screening throughout Dolly’s life by the Roslin Institute suggest otherwise.

Her creation has led to further cloning projects and could be used in the future to preserve the populations of endangered or extinct species, and has led to significant developments in stem cell research.

In 2009, Spanish researchers announced the cloning of a Pyrenean ibex, which has been extinct since 2000, and was the first cloning of an extinct animal. Unfortunately, the ibex died shortly after birth but there have been a few successful stories since then.


The Human Genome Project

human genome gif

Originally posted by teded

Beginning in 1990 and finishing in 2003, the Human Genome Project was an international research initiative that aimed to write the entire sequence of nucleotide base pairs that make up the human genome, including the mapping of all its genes that determine our physical and functional attributes.

The publicly funded $3bn project was able to map 99% of the human genome with 99.99% accuracy, which included its 3.2bn Mega-base pairs, 20,000 genes and 23 chromosome pairs, and has led to advancements in bioinformatics, personalised medicine and a deeper understanding of human evolution.



Health & Wellbeing

Scientists are closer to developing 3D printed artificial tissues that could help heal bones and cartilage, specifically those damaged in sports-related injuries. Scaffolds for the tissues have been successfully engineered.

3d printer

Small injuries to osteochondral tissue – a hard bone that sits beneath a layer of cartilage that appears smooth – can be extremely painful and heal slowly. These injuries are very common in athletes and can stop their careers in their tracks. Osteochondral tissue can also lead to arthritis over time.

 injuries in athletes

These types of injuries are commonly seen in athletes.

As osteochondral tissue is somewhere between bone and cartilage, and is quite porous and very difficult to reproduce. But now, bioengineering researchers at Rice University, Texas, US, have used 3D printing techniques to develop a material that may be be suitable in future for medical use.

A porous scaffold, with custom polymer mixes for cartilage and ceramic for bone, was engineered. The imbedded pores allow cells and blood vessels from the patient to infiltrate, integrating the scaffold into the natural bone and cartilage.

running gif

Originally posted by operationenvy

‘For the most part, the composition will be the same from patient to patient,’ said Sean Bittner, graduate student at Rice University and lead author of the study.


Science & Innovation

Researchers have created a new extremely light and durable ceramic aerogel. The material could be useful for applications like insulating spacecraft because it can withstand intense heat and severe temperature changes. 

rocket taking off

The aerogel could be used to coat spacecrafts due to its resilience to certain conditions.

The aerogel comprises a network of tiny air pockets, with each pocket separated by two atomically thin layers of hexagonal boron nitride. It’s at least 99% space. To build the aerogel, Duan’s team used a graphene template coated with borazine, which forms crystalline boron nitride when heated. When the graphene template oxidises, this leaves a ‘double-pane’ boron nitride structure.

 aerogel

The basis of the newly developed aerogel is the 2D structure of graphene.

‘The key to the durability of our new ceramic aerogel is its unique architecture,’ says study co-author Xiangfeng Duan of the University of California, US. 

‘The “double-pane” ceramic barrier makes it difficult for heat to transfer from one air bubble to another, or to spread through the material by traveling along the hexagonal boron nitride layers themselves, because that would require following long, circuitous routes.’

How does Aerogel technology work? Video: Outdoor Research

Unlike other ceramic aerogels, the material doesn’t become brittle under extreme conditions. The new aerogel withstood 500 cycles of rapid heating and cooling from -198°C to 900°C, as well as 1400°C for one week. A piece of the insulator shielded a flower held over a 500°C flame.

 

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today we look at mercury and some of its reactions.

 Mercury

Mercury is a silver, heavy, liquid metal. Though mercury is a liquid at room temperature, as a solid it is very soft. Mercury has a variety of uses, mainly in thermometers or as an alloy for tooth fillings.


Mercury & Aluminium

 mercury gif

Mercury is added directly to aluminium after the oxide layer is removed. Source: NileRed

The reaction between mercury and aluminium forms an amalgam (alloy of mercury). The aluminium’s oxide layer is disturbed When the amalgam forms, in the following reaction:

Al+ Hg → Al.Hg

Some of the Al.Mg get’s dissolved in the mercury. The aluminium from the amalgam then reacts with the air to form white aluminium oxide fibres, which grow out of the solid metal.


Mercury & Bromine

 mercury and bromine gif

Mercury and bromine are the only two elements that are liquid at room temperature on the periodic table. Source: Gooferking Science

When mercury and bromine are added together they form mercury(I) bromide in the following reaction:

Hg2 + Br2 → Hg2Br2

This reaction is unique as mercury can form a metal-metal covalent bond, giving   mercury(I) bromide a structure of Br-Hg-Hg-Br

 

Pharaoh’s Serpent

 igniting mercury

Making the Pharaoh's Serpent by igniting mercury (II) thiocyanate. Source: NileRed

The first step of this reaction is to generate water-soluble mercury (II) nitrate by combining mercury and concentrate nitric acid. The reaction goes as follows:

Hg + 4NO3 → Hg(NO3)2 + 2H2O + 2NO2

Next, the reaction is boiled to remove excess NO2 and convert mercury(I) nitrate by-product to mercury (II) nitrate. The mixture is them washed with water and potassium thiocyanate added to the mercury (II) nitrate:

Hg(NO3)+ 2KSCN→ Hg(SCN)2 + 2KNO3

The mercury (II) thiocyanate appears as a white solid. After this is dried, it can be ignited to produce the Pharaoh’s serpent, as it is converted to mercury sulfide in the following reaction:

Hg(SCN)2 → 2HgS + CS2 + + C3N4

The result is the formation of a snake-like structure. Many of the final products of this process are highly toxic, so although this used to be used as a form of firework, it is no longer commercially available.

Though many reactions of mercury look like a lot of fun, mercury and many of it’s products is highly toxic - so don’t try these at home!


Policy

 Bright SCIdea Challenge 1

All Images: Andrew Lunn/SCI

On 19 March 2019, SCI hosted the second annual final of the Bright SCIdea Challenge, bringing together some of the brightest business minds of the future to pitch their science-based innovation to a panel of expert judges and a captivated audience.

As an opportunity to support UK/ROI students interested in commercialising their ideas and developing their business skills, the final included talks and training from our judges and networking with industry professionals.

 Bright SCIdea Challenge

The day started with a poster session and networking, including posters from teams Glubiotech, Online Analytics, HappiAppi and NovaCAT.

 Bright SCIdea Challenge
 Bright SCIdea Challenge

Training sessions came next, with Neil Wakemen from Alderley Park Accelerator speaking first on launching a successful science start-up.

 Bright SCIdea Challenge

Lucinda Bruce-Gardyne from Genius Foods spoke next on her personal business story, going from the kitchen to lab to supermarket shelves.

 Bright SCIdea Challenge

Participants could catch a glimpse of the trophies before giving their pitches.

 Bright SCIdea Challenge
 Bright SCIdea Challenge

The first team to pitch were Team Seta from UCL, with their idea for a high-throughput synthetic biology approach for biomaterials.

 Bright SCIdea Challenge
 Bright SCIdea Challenge

Team Plastech Innovation from Durham University presented their sustainable plastic-based concrete.

 Bright SCIdea Challenge 11
 

Closing the first session, Team DayDreamers. pitched their AI-driven mental wellness app.

 

The break was filled with networking between delegates and industry professionals.

 
 

Opening the second session, Team BRISL Antimicrobials, from UCL, showcased their innovative light-activated antimicrobial bristles that could be used in toothbrushes.

 
 

The final pitch of the day was from Team OxiGen, from the University of St Andrews, presenting their designer cell line for optimised protein expression.

 

After asking lots of questions during each pitch, the judges were left with the difficult task of deciding a winner.

 

Team HappiAppi, from Durham University, were voted the best poster by the audience!

 

The second runner-up was Team Seta!

 

The first runner-up was Team BRISL Antimicrobials!

 

Congratulations to the winners Team Plastech Innovation!! They win £5000 towards their idea.


We would like to thank our participating teams, sponsors (INEOS and Synthomer), guest speakers and judges (Lucinda Bruce-Gardyne, Robin Harrison, Inna Baigozina-Goreli, Ian Howell & Dave Freeman).


Science & Innovation

On 15 March 2019, chemists from across the UK country came to compete in the 6th National SCI/RSC Retrosynthesis Competition at SCI HQ in London.

 6th national SCI RSC competition

All images: Andrew Lunn/SCI

The event, organised by SCI’s Young Chemists Panel and Fine Chemicals Group, alongside RSC’s Heterocycle and Synthesis Group and Organic Division Council, saw 11 teams from across academia and industry to showcase their synthetic prowess.

At the event, the teams presented their synthetic routes for the novel sulfonated alkaloid Aconicarmisulfonine A. After their presentations, teams were questioned by the judges and audience on their synthetic route selections.

Scroll down to experience the day…

 

Chair of the Retrosynthesis Competition Organising Committee, Jason Camp, opens proceedings.

 
 

Live and Let Diene from Concept Life Sciences kick off the day’s pitches.

 

The Tryptophantastic Four from the University of Bristol followed.

 
 

Total Synthesisers from the University of Manchester deliver their synthesis model to a packed audience.

 

The Bloomsbury Group from the University of Manchester close the first session of the day.

 

During breaks, the competitors networked with senior scientists and our company exhibitors.

 

SygTeamTwo from Sygnature Discovery take to the podium.

 
 

The judges seem impressed with this year’s teams as Shawshank Reduction from the University of Oxford pitch next. 

 

Next up is In Tsuji We Trost from Evotec.

 
 

Totally Disconnected from the University of Strathclyde close the second session.

 
 

The competition gets more competitive and popular each year! SCI and RSC members discuss the teams so far.

 

Hold Me Closer Vinyl Dancer from the University of Cambridge are up.

 

Flower Power from Syngenta give an intriguing talk.

 

The second University of Oxford Team, Reflux and Chill?, finish the day’s impressive set of pitches.

 

Audience members then casted their votes for the Audience Vote winner…

 

…which went to In Tsuji We Trost!

 

Our 3rd place finalists were SygTeamTwo…

 

Oxford team Shawshank Reduction took 2nd place…

 

Congratulations to 2019 winners, Flower Power!


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is an element which gives us life, oxygen.


Physical Properties

Oxygen is a group 5 gas that is found abundantly in nature. Of the air we breathe, 20.8% is oxygen in its elemental, diatomic form of O2. Oxygen is also one of the most abundant elements in nature, and along with carbon, hydrogen and nitrogen, makes up the structures of most of the natural world. Oxygen can be found in DNA, sugar, hormones, proteins and so many more natural structures.

Although oxygen mainly exists as a colourless gas, at -183°C it can be condensed as a pale blue liquid. Oxygen may seem unsuspecting, but it is highly reactive and highly oxidising. A common example of this reactivity is how oxygen reacts with iron to produce iron oxide, which appears as rust.

Elements: Oxygen, with Dr Andrea Sella. Source: Wellcome Collection

Oxygen molecules are paramagnetic – they exhibit magnetic characteristics when in the presence of a magnetic field. Liquid oxygen is so magnetic that the effect can be seen by suspending it between the poles of a powerful magnet.

Oxygen gas has applications for medicine and space travel in breathing apparatus.


Ozone

Oxygen can be found as ozone or O3. Ozone is a pale blue gas and has a distinctive smell. It is not as stable as diatomic oxygen (dioxygen) and is formed when ultraviolet light (UV) and electrical charges interact with O2.

The highest concentration of ozone can be found in the Earth’s stratosphere, which absorbs the Sun’s UV radiation, providing natural protection for planet Earth.

 ozone layer

Ozone (O3) is most concentrated in the stratosphere. Image: Pixabay

Ozone can be used industrially as a powerful oxidising agent. Unfortunately, it can be a dangerous respiratory hazard and pollutant so much be used with care.


Water

Water consists of an oxygen atom and two hydrogen atoms. Though this may seem remarkably unassuming, this combination gives water unique properties that are crucial to it’s functions in the natural world.

water stream

Originally posted by wiccangoddes

Water can form hydrogen bonds between the slightly positive hydrogen and the slightly negative oxygen. These hydrogen bonds, along with waters other practical properties, make water useful in nature.

Without the hydrogen bonding found in water, plants could not transpire – transport water through their phloem’s against gravity. The surface tension of water provides stability for many natural structures.

 lilypad

Oxygen plays a key role in nature, including in water molecules. Image: Pixabay

Oxygen plays a key role in nature, from the ozone layer that encapsulates our planet, to our DNA. It’s combination with hydrogen in water makes a molecule which is integral to the natural world, and both water and oxygen itself are pivotal to our existence the planet.


Policy

To celebrate World Poetry Day, today we look at how poetry and science interlink, and how poetry can be a unique medium for science communication.

 old book

History

Poetry and science have an interesting history – John Keats once said that Isaac Newton, one of the most prominent scientists of the time, had ‘destroyed the poetry of the rainbow by reducing it to a prism’. However, poetry can be a powerful tool to disseminate scientific research to a wider audience.

In 1984, J. W. V. Storey published his works on ‘The Detection of Shocked CO Emission’ in The Proceedings of the Astronomical Society of Australia as a lengthy poem. He even noted on the paper that his colleagues may wish to dissociate themselves from the presentation style.

image

A note from J. M. V. Storey’s paper dissociating his colleagues from the poetry style. Source:  The Detection of Shocked CO Emission

Modern Science Poetry

Notable British poet Ruth Gabel, also the great-great-granddaughter of Charles Darwin, has written a plethora of poetry about science, including works on Darwin’s writings. She has written a multitude of poems, mainly on zoology and genetics.

In 2015, Professor Stephen Hawking, world-renowned physicist, collaborated with poet Sarah Howe to write a poem about relativity for National Poetry Day in the UK.

Stephen Hawking reads “Relativity” By Sarah Howe Film Bridget Smith. Source: National Poetry Day

Poetry can also be utilised for outreach, especially for younger audiences. The SAW Trust is a charity that uses art and poetry to engage school children in science. SAW Trust was founded by Professor Anne Osbourne, Associate Research Director and Institute Strategic Programme Leader, Plant and Microbial Metabolism at the John Innes Centre, Norwich, UK. The charity inspires children to find a love for science through the arts.

Science and poetry, or more generally art have always been interlinked, and by using poetry we can spread science to a wider audience.

 

Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. Discoveries made by British physicists have changed the way we see the world, and are still used and celebrated today.

One of the world’s most recognisable scientists is mathematician and physicist Isaac Newton (1643-1727), who is credited with the discovery of the law of gravitation.

It is scientific legend that during one afternoon in his garden in 1666, during which Newton was sat under an apple tree, that an apple fell on his head. This led to a moment of inspiration from which he based his theory of gravity.

Gravity is an invisible force that pulls objects towards each other – anything with mass is affected by gravity – and is the reason why we don’t float off into space and why objects fall when you throw or drop them.

 Isaac Newton

An illustration of Isaac Newton in 1962.

The Earth’s gravity comes from its mass, which ultimately determines your weight. As the different plants in our universe are different masses, our weight on Earth is different to what it would be on Saturn or Uranus.

Whilst Newton’s theory has since been superseded by Einstein’s theory of relativity, it remains an important breakthrough in scientific history. The apple tree that supposedly led to his theory can still be found at Newton’s childhood home, Woolsthorpe Manor, in Grantham, UK.

 Newtons apple tree

Newton’s apple tree. Image: Martin Pettitt/Flickr


The Higgs boson

As a Senior Research Fellow at the University of Edinburgh, physicist Peter Higgs hypothesised that when the universe began, all particles had no mass. This changed a second later when they came into contact with a theoretical field – later named the Higgs field – and each particle gained mass.

The more a particle interacts with the field, the more mass it acquires and therefore the heavier it is, he postulated. The Higgs boson is a physical manifestation of the field.

 higgs boson

A computer generated rendering of the Higgs boson.

Back in 2012, the scientific community celebrated an important discovery made by researchers at CERN using the Large Hadron Collider – the world’s most powerful particle accelerator. 

After years of theorised work, they found a particle that behaved the way that the Higgs boson supposedly behaved.

The celebration was warranted, as the discovery of the Higgs boson verified the Standard Model of Particle Physics, which states that the Higgs boson gives everything in the universe its mass. It has been estimated that it cost $13.25bn to find the Higgs boson.  

 Large Hadron Collider

Inside the Large Hadron Collider at CERN in Switzerland. Image: Thomas Cizauskas/Flickr

In 2013, Higgs was presented with the Nobel Prize in Physics, which he shared with Belgian researcher Franҫois Englert, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles’.

Having avoided the limelight and media since his retirement, Higgs found out about his win from an ex-neighbour on his way home as he did not have a mobile phone!

Beyond the Higgs: What’s Next for the LHC? Video: The Royal Institution

The success of British physics isn’t slowing down either. It was in Manchester that two Russian scientists discovered graphene, which has influenced a wave of new research and investment into the use of this versatile material set to be a cornerstone for the fourth Industrial Revolution.


Science & Innovation

For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. First, we are delving into genetics and molecular biology – from Darwin’s legacy, to the structure of DNA and now modern molecular techniques.

The theory of evolution by natural selection is one of the most famous scientific theories in biology to come from Britain. Before Charles Darwin famously published this theory, several classical philosophers considered how some traits may have occurred and survived, including works where Aristotle pondered the shape of teeth. 

These ideas were forgotten until the 18th century, when they were re-introduced by philosophers and scientists including Darwin’s own grandfather, Erasmus Darwin.

 colorful bird

Darwin used birds, particularly pigeons and finches to demonstrate his theories. Image: Pixabay

In 1859, Darwin first set out his theory of evolution by natural selection to explain adaptation and speciation. He was inspired by observations made on his second voyage of HM Beagle, along with the work of political economist Thomas Robert Malthus on population.

Darwin coined the term ‘natural selection’, thinking of it as like the artificial selection imposed by farmers and breeders. After publishing a series of papers with Alfred Russel Wallace, followed by On the Origin of Species, the concept of evolution was widely accepted.

 darwin gif

Although many initially contested the idea of natural selection, Darwin was ahead of his time, and further evidence was yet to come in the form of genetics.


Double Helix

Gregor Mendel first discovered genetics whilst working on peas and inheritance in the late 19th century. The unraveling of the molecular processes that were involved in this inheritance, however, allowed scientists to study inheritance and genetics in a high level of detail, ultimately advancing the field dramatically. 

A major discovery in the history of genetics was the determination of the structure of deoxyribose nucleic acid (DNA).

 double helix

DNA was first isolated by Swiss scientists, and it’s general structure – four bases, a sugar and a phosphate chain – was elucidated by researchers from the United States. It was a British team that managed to make the leap to the three-dimensional (3D)structure of DNA.

Using x-ray diffraction techniques, Rosalind Franklin, a British chemist, discovered that the bases of DNA were paired. This lead to the first accurate model of DNA’s molecular structure by James Watson and Francis Crick. The work was initially published in Nature in 1953, and would later win them a Nobel Prize.

The age of genetic wonder. Source: TED

By understanding the structure of DNA, further advances in the field were made. This has lead to a wide range of innovations, from Crispr/CAS9 gene editing to targeted gene therapies. The British-born science has been utilised by British pharmaceutical companies – pharma-giants GlaxoSmithKline (GSK) and AstraZeneca use this science today in driving new innovations.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today, on International Women’s Day, we look at the two elements radium and polonium and the part Marie Curie that played in their discovery.


Who is Marie Curie?

 Marie Sklodowska and her future husband Pierre Curie

Marie Sklodowska and her future husband Pierre Curie.

Marie Sklodowska-Curie was born in 1867 in Poland. As a young woman she had a strong preference for science and mathematics, so in 1891 she moved to Paris, France, and began her studies in physics, chemistry and mathematics at the University of Paris.

After gaining a degree in physics, Curie began working on her second degree whilst working in an industrial laboratory. As her scientific career progressed, she met her future husband, Pierre Curie, whilst looking for larger laboratory space. The two bonded over their love of science, and went on to marry, have two children and discover two elements together.

vial gif

Originally posted by savagebeastrecords

After finishing her thesis on ‘Studies in radioactivity’, Curie became the first woman to win a Nobel Prize, the first and only woman to win twice, and the only person to win in two different sciences.

Curie, along with husband Pierre and collaborator Henri Becquerel, won the 1903 Nobel prize in Physics for their radioactivity studies, and the 1911 Nobel prize in Chemistry for the isolation and study of elements radium and polonium.

 nobel prize

Curie won the Nobel prize twice in two different subjects. Image: Pixabay

As of 2018, Curie is one of only three women to have won the Nobel Prize in Physics and one of the five women to be awarded the Nobel Prize in Chemistry.


Polonium

Polonium, like radium, is a rare and highly reactive metal with 33 isotopes, all of which are unstable. Polonium was named after Marie Curie’s home country of Poland and was discovered by Marie and Pierre Curie from uranium ore in 1898.

 homer simpson radioactive gif

Polonium is not only radioactive but is highly toxic. It was the first element discovered by the Curies when they were investigating radioactivity. There are very few applications of polonium due to its toxicity, other than for educational or experimental purposes.


Radium

Radium is an alkaline earth metal which was discovered in the form of radium chloride by Marie and her husband Pierre in December 1898. They also extracted it from uranite (uranium ore), as they did with polonium. Later, in 1911, Marie Curie and André-Louis Debierne isolated the metal radium by electrolysing radium chloride.

 radiotherapy

The discovery of radium led to the development of modern cancer treatments, like radiotherapy.

Pure radium is a silvery-white metal, which has 33 known isotopes. All isotopes of radium are radioactive – some more than others. The common historical unit for radioactivity, the curie, is based on the radioactivity of Radium-226.

Famously, radium was historically used as self-luminescent paint on clock hands. Unfortunately, many of the workers that were responsible for handling the radium became ill – radium is treated by the body as calcium, where it is deposited in bones and causes damage because of its radioactivity. Safety laws were later introduced, followed by discontinuation of the use of radium paint in the 1960s.

Marie Curie: A life of sacrifice and achievement. Source: Biographics

Curie’s work was exceptional not only in its contributions to science, but in how women in science were perceived. She was an incredibly intelligent and hard-working woman who should be celebrated to this day.

 

Science & Innovation

Spaceflight is a high-risk business. Spacecraft break down all the time and when that happens funding and careers evaporate. Back in the late 1960s, NASA decided to double the odds of success and send two spacecraft on one mission. Voyagers 1 and 2, for example, were the spacecraft that returned the first detailed pictures of the outer planets of our solar system and introduced us to the neighbourhood. Launched in 1977, both are still flying.

Any spacecraft must have three components: a payload, an engine and a fuel supply – by far the heaviest component. But what if we could do away with the onboard fuel supply and replace it with an external fuel supply? Say light itself?

Can you push a spacecraft with light? Video: Physics Girl

The idea of solar sail technology has been floating around for decades. Indeed, the notion of a solar pressure can be traced back to 1610 in a letter that Johannes Kepler wrote to Galileo. 

But it was only in the 20th century that solar sails began to be considered as an achievable engineering reality. Broadly, solar sails fall into two categories: those using light from natural sources – the sun and ambient starlight in space; and those using coherent light from lasers.

 

Sustainability & Environment

At the SCI HQ in Belgrave Square, London, we have curated a beautiful garden filled with plants that represent our technical and regional interest groups. Each of these plants has a scientific significance. On World Wildlife Day, we take a look at how some of our plants are doing in March.

 Cyclamen hederifolium

Cyclamen hederifolium - the ivy-leaved cyclamen. Image: SCI

Cyclamen hederifolium is included in the SCIence garden to represent the horticulture group. This beautiful pink flower has a mutualistic relationship with ants, in which the ants carry the seeds far away, ensuring no competition between young plants and the original. 

 Dichroa febrifuga

Dichroa febrifuga - a hydrangea with anti-malarial properties. Image: SCI

Not yet flowering, D. febrifuga is a traditional Chinese herbal medicine that is used for treatment of malaria. It contains the alkaloids febrifugine and isofebrifugine which are thought to be responsible for it’s anti-malaria properties.

 Fatsia japonica

Fatsia japonica - the paper plant. Image: SCI

F. japonica is also known as the glossy-leaved paper plant and is native to Japan, southern Korea and Taiwan. This plant represents our materials group.

 Rosmarinus officinalis

Rosmarinus officinalis aka rosemary - a herb with many uses from culinary to chemical. Image: SCI

Rosemary is a common herb that originates in the Mediterranean. It has many uses, including as a herb for cooking and fragrance. One of it’s more scientific uses is as a supply of lucrative useful phytochemicals such as camphor and rosemarinic acid.

 Prunus mume

Prunus mume ‘Beni-chidori’ - a Chinese ornamental flower. Image: SCI

The Prunus mume tree is a beautiful ornamental tree that has significance in East Asian culture. It has a wide variety of applications, from medicinal to beverages, and can been seen in many pieces of art. This plant is in the SCIence garden to represent our Chinese Group UK.

 Pieris japonica

Pieris japonica - the Dwarf-Lilly-of-the-Valley-Shrub. Image: SCI

The Pieris japonica ree has Asian origins, and represents our Agrisciences group. The leaves contain diterpenoids which inhibit the activity of feeding pests, such as insects.

 Pulmonaria

Pulmonaria ‘Blue Ensign’ - lungwort. Image: SCI

The lungwort has been used since the Middle Ages as a medicinal herb to treat chest or lung diseases. It is an example of the use of the doctrine of signatures - where doctors believed that if a plant resembled a body, it could be used to treat illness in that body part.

 Euphorbia amygdaloides

Euphorbia amygdaloides - the wood spruce. Image:SCI

Euphorbia amygdaloides is planted to represent our Materials Chemistry group. It has a waxy feel, and has potential to be used as an alternative to latex.

 Erysimum

Erysimum ‘Bowles Mauve’ - a flowering plant in the cabbage family. Image: SCI

The Erysimum ‘Bowles Mauve’ is a member of the cabbage family (Brassicaceae). This plant was used to make the first synthetic dye, Mauvine, when SCI founding member William Perkin discovered in in 1858.

 

Agrifood

A big congratulations to our Agri-Food Early Careers Committee #agrifoodbecause Twitter competition winner, Hannah Blyth. Hannah is a PhD student at Rothamsted Research. Her winning entry, a fungal plate, really wowed us!

 fungal plate

Hannah will receive a a years free membership to SCI and a £50 Amazon voucher!

shaun the sheep gif

Originally posted by usedpimpa

 

Careers

Cassie Sims is a PhD student and SCI early career member, sitting on the committees of SCI’s Agrisciences Group and Agrifood Early Career Committee. Read more of Cassie’s work at soci.org/news and soci.org/blog.

funny gif internship blog

Originally posted by a-little-bit-of-thisandthat

Undertaking an internship in digital media has exposed me to a completely new part of science. As a young scientist, we are regularly taught the value of communicating our work, but often we are not taught how to best do this. 

There are many nuances and tricks to getting digital media to be the most engaging it can be, and here are a few that I have learnt over the last couple of months.


Know your audience

Before you start producing any kind of content, you need to know your audience. Are they scientists or the general public, early- or late-career, students or professionals? Understanding your target demographic can help you make informed decisions about the media or topic you choose, and how you write the piece.

 child chemist

It is crucial to know who your audience is!

It is important to keep your audience in mind at every stage of the process, from conception of the idea, to writing, presentation and marketing. By targeting your piece, you will produce a higher quality piece of content and have much more engagement overall.


Image is important

When presenting a piece of work to the world, be in a long-read article or just a Tweet, image is crucial. Choosing images or photographs to best display your message takes time and careful curation. 

Images can be obtained from a wide variety of sources, from stock photo websites, such as Shutterstock or Pixabay, to original images you may have designed or photographed. Remember to always give credit where appropriate. 

emoji gif

Originally posted by darokin

At SCI we are big fans of gifs and emojis. When targeting a younger audience, or using more informal media like out blog, these can engage and draw the eye much more than a standard image. This again requires meticulous decision-making skills, and it can be crucial to know the meanings behind each emoji.


Trust your gut

A large part of science communication is choosing which science to communicate. This involves selecting topics and editing to the most critical and interesting information.

 At SCI, we release innovation news pieces on a regular basis, where we choose the most exciting science news from the week. This involves looking through press releases, and sometimes selecting one piece from hundreds can be a daunting task.

funny gif internship blog

Originally posted by onlyonepisode

One thing I have learnt during my time at SCI is to trust that I can select something that people will want to read. When pitching ideas for articles and blog pieces, I have learnt to value my own opinion in what is engaging and relevant science that our members and the broader public might want to read about.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about iodine and some of the exciting reactions it can do!


Iodine & Aluminium

 iodine and aluminum gif

Reaction between iodine and aluminum. These two components were mixed together, followed by a few drops of hot water. Source: FaceOfChemistry

Reactions between iodine and group 2 metals generally produce a metal iodide. The reaction that occurs is:

2Al(s) + 3I2(s) → Al2I6(s)

Freshly prepared aluminium iodide reacts vigorously with water, particularly if its hot, releasing fumes of hydrogen iodide. The purple colour is given by residual iodine vapours.


Iodine & Zinc

 Zinc and iodine gif

Zinc and iodine react similarly to aluminium and iodine. Source: koen2all

Zinc is another metal, and when it reacts with iodine it too forms a salt – zinc iodide. The reaction is as follows:

Zn + I2→ ZnI2

The reaction is highly exothermic, so we see sublimation of some of the iodide and purple vapours, as with the aluminium reaction. Zinc iodide has uses in industrial radiography and electron microscopy. 


Iodine & Sodium

 Iodine reacting with molten sodium gif

Iodine reacting with molten sodium gives an explosive reaction that resembles fireworks. Source: Bunsen Burns

As with the other two metals, sodium reacts violently with iodine, producing clouds of purple sublimated iodine vapour and sodium iodide. The reaction proceeds as follows:

Na + I2→ 2NaI

Sodium iodide is used as a food supplement and reactant in organic chemistry.


Iodine Clock reaction

 iodine clock reaction gif

The iodine clock reaction – a classic chemical clock used to study kinetics. Source: koen2all

The reaction starts by adding a solution of potassium iodide, sodium thiosuphate and starch to a mixture of hydrogen peroxide and sulphuric acid. A set of two reactions then occur.

First, in a slow reaction, iodine is produced:

H2O2 + 2I + 2H+ → I2 + 2H2O

This is followed by a second fast reaction, where iodine is converted to iodide by the thiosulphate ion:

2S2O32− + I2 → S4O62− + 2I

The reaction changes colour to a dark blue or black.


Elephants toothpaste

 elephants toothpaste reaction gif

The elephant’s toothpaste reaction is a favourite for chemistry outreach events. Source: koen2all

In this fun reaction, hydrogen peroxide is decomposed into hydrogen and oxygen, and catalysed by potassium iodide. When this reaction is mixed with washing-up liquid, the oxygen and hydrogen gas that is produced creates bubbles and the ‘elephant’s toothpaste’ effect.

There are lot’s of fun reactions to be done with iodine and the other halogens (fluorine, bromine, chlorine). 

Iodine’s sublimation to a bright purple vapour makes it’s reactions visually pleasing, and great fun for outreach events and science classes.

 

Sustainability & Environment

Over 1.5bn smartphones will be manufactured globally in 2019, each one filled with valuable minerals and metals such as gold, platinum and silver. On average, they will be kept for just 21 months before being replaced. Over 60% of them will end up in landfills. And even when recycled, some 30% of material will still be lost, because smartphone design, and contemporary recycling systems render its recovery inefficient.

 ewaste

The predicted mass of the global e-waste mountain by 2021 is > 52m t/year, according to the UN. 

Smartphones represent a fraction of global electronic waste. Discarded electronics are one of the fastest growing waste streams, with the UN predicting that the global e-waste mountain will reach over 52m t/year by 2021. Meantime, we are gradually running out of valuable minerals, such as neodymium, terbium and iridium, that are crucial in manufacturing electronics.

 smart phones ewaste

More than 60% of smartphones end up in landfills. Even if recycled, some 30% of material will still be lost. Image: Pixabay

As the scale of the problem is becoming clear, there has recently been a surge in efforts to understand what goes into electronic products, and how it can be recovered, says Susanne Baker from techUK, the association for companies in the digital economy. ‘We are seeing a lot of academic proposals looking at better understanding the flow of products and waste within the economy,’ says Baker, who heads the trade body’s environment and compliance programme.

Recycling e-waste into art. Source: Great Big Story

 

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog is about sulphur, specifically sulphites and their significance to the wine industry.

 wine glass

Sulphites and wine - what is all the fuss about? Image: Pixabay


What is a sulphite?

Sulphites are compounds that contain the sulphite ion (sulphate (IV) or SO32- ). There a wide-range of compounds of this type, but common ones include sodium sulphite, potassium bisulphite and sulphur dioxide.

Sulphites are often added as preservatives to a variety of products, and help maintain shelf-life, freshness and taste of the food or drink. They can be found in wines, dried fruits, cold meats and other processed food. Some are produced naturally during wine-making however, they are mainly added in the fermentation process, protecting the wine from bacteria and oxidation.

wine pouring gif

Originally posted by settebelllo


Sneezing and wine

Sulphites have a bad reputation for causing adverse reactions, such as sneezing and other allergic symptoms. But are sulphites really allergens, or just another urban myth?

Despite it being one of the top nine listed food allergens, many experts believe that the reaction to sulphites in wine can be considered not a ‘true allergy’, rather a sensitivity. Symptoms only usually occur in wine-drinkers with underlying medical issues, such as respiratory problems and asthma, and do not include headaches.

 sneezing

Some people report sneezing and similar symptoms when drinking wine.

Sulphites are considered to be generally safe to eat, unless you test positive in a skin allergy test –some individuals, particularly those who are hyperallergic or aspirin-allergic, may have a true allergy to sulphites. Sufferers of a true allergy would not suffer very mild symptoms if they consumed sulphites, instead they would have to avoid all food with traces of sulphite.

Some scientists believe adverse reactions to red wine could be caused by increased levels of histamine. Fermented products, such as wine and aged cheese, have histamine present, and red wine has significantly more histamine than white wine. They suggest taking an anti-histamine around one hour before drinking to help reduce symptoms.


Sulphite-free wine!

Despite it not being considered a true allergen, wine-makers must still label wine as containing sulphites. In 1987, a law was passed in the US requiring labels to be placed on wine containing a large amount of added sulphites. Similarly, in 2005, a European law was brought in to regulate European wine labelling. Sulphites are now often listed as a common allergen on bottle labels in wines that have over 10mg/l.

 wine bottles

You can often find the words ‘contains sulphites’ on a wine bottle. Image: Pixabay

Many food and drink industries are producing products suitable for allergy sufferers, and winemakers have followed this trend by beginning to make sulphite-free wine. These are mainly dry red wines that contain high levels of tannins, which act as a natural preservative. Wines without added sulphites are generally labelled as organic or natural wines and have grown in popularity over the last few years, but unfortunately, many wine critics believe that these naturally preserved wines sacrifice on flavour and shelf life.

In summary, sulphites are a common preservative, not only found in wine, but a range of food, and do not generally cause allergic reactions. If you are an individual with a true sulphite allergy, you may want to try sulphite free wine – but you will have to compromise on shelf life!

wine gif 2

Originally posted by key-change

 

Careers

 ivalina minova

Ivalina Minova is an SCI Ambassador, 2018 SCI Scholar, and a third-year PhD student at the University of St Andrews, Scotland, UK, where her research involves the development of new techniques to help understand and improve industrially important reactions.

In this article, she discusses four aspects that have helped with her success as an early career scientist and the invaluable support resources she has benefited from.

Her last blog ‘How the SCI Early Careers programme helped me’ can be found here.


Mark your milestones

As a student at the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT), one of the milestones outlined in my four-year PhD training programme is to complete a three-month industrial placement abroad.

Having a clear goal and timeline is critical in early career development. I started thinking about potential placement visit options early and took the initiative in setting up an arrangement with a chemical company, Johnson Matthey (JM).


Find a mentor

cartoon phone gif

Originally posted by fluffywhitecloud

Having a mentor in industry can significantly benefit you in the early stages of your career, especially if you are working in academia. I was determined to find influential people who could help me to achieve my goals.

Part of this mission was being awarded an SCI scholarship in July 2018, which will support my three-month research placement visit at JM, a pioneering chemical company in sustainable technologies. I had built links with JM through my MChem studies at Durham University.

These have developed throughout my PhD, as I have initiated several catch-up meetings with research teams and R&D managers to discuss my research. In one of those meetings last year, I asked about the possibility of completing a placement visit at their US site, to which they agreed!


Look for funding opportunities

cartoon counting money gif

Originally posted by excitementshewrote

Once I had identified my desired placement visit abroad, I focused on applying for various funding opportunities to help fund my trip. Although my PhD programme provides financial support towards such placement visits, the costs of going to the US would exceed my budget.

There are a number of mobility grants and scholarship opportunities that I applied for listed below, that have allowed me to secure sufficient funding for this placement:

I was successful in obtaining the last two of those three.


The power of networking

garfield gif

Originally posted by various-cartoon-awesomeness

I attended a lot of conferences early on in my studies and was not shy to give oral talks, where my confidence in giving presentations on my research naturally grew.

Some of my personal highlights include presenting at the 6th International Congress in Operando Spectroscopy in Spain and being awarded an SCI Messel Travel Bursary to present my first manuscript on ‘Unravelling the mechanism of direct alkene formation from methoxy groups in H-ZSM-5, as revealed by synchrotron infrared microspectroscopy’ at the ACS Spring 2019 National Meeting and Exposition in Orlando, US, in March 2019.

Overall, I found these four key things beneficial to me in advancing my early career research and I hope that this blog will inspire others to take initiative as they move towards their next career step.

 

Materials