Many of us have contemplated buying a reconditioned phone. It might be that bit older but it has a new screen and works as well as those in the shop-front. I’m not sure, however, that any of us have thought of investing in a reconditioned liver – but it could be coming to a body near you.
Researchers based in São Paulo’s Institute of Biosciences have been developing a technique to create and repair transplantable livers. The proof-of-concept study published in Materials Science and Engineering by the Human Genome and Stem Cell Research Centre (HUG-CELL) is based on tissue bioengineering techniques known as decellularisation and recellularisation.
The organs of some donors are sometimes damaged in traffic accidents, but these may soon be transplantable if the HUG-CELL team realises its goal.
The decellularisation and recellularisation approach involves taking an organ from a deceased donor and treating it with detergents and enzymes to remove all the cells from the tissue. What remains is the organ’s extracellular matrix, containing its original structure and shape.
This extracellular matrix is then seeded with cells from the transplant patient. The theoretical advantage of this method is that the body’s immune system won’t rile against the new organ as it already contains cells from the patient’s own body, thereby boosting the chance of long-term acceptance.
However, the problem with the decellularisation process is that it removes the very molecules that tell cells to form new blood vessels. This weakens cell adhesion to the extracellular matrix. To get around this, the researchers have introduced a stage between decellularisation and recellularisation. After decellularising rat livers, the scientists injected a solution that was rich in the proteins produced by lab-grown liver cells back into the extracellular matrix. These proteins then told the liver cells to multiply and form blood vessels.
These cells then grew for five weeks in an incubator that mimicked the conditions inside the human body. According to the researchers, the results showed significantly improved recellularisation.
“It’s comparable to transplanting a ‘reconditioned’ liver, said Mayana Zatz, HUG-CELL’s principal investigator and co-author of the article. “It won't be rejected because it uses the patient’s own cells, and there’s no need to administer immunosuppressants.”
Extracellular matrix of a decellularised liver | Image Credit: HUG-CELL/USP
Obviously, there is a yawning gap between proof of concept and the operating theatre, but the goal is to scale up the process to create human-sized livers, lungs, hearts, and skin for transplant patients.
“The plan is to produce human livers in the laboratory to scale,” said lead author Luiz Carlos de Caires-Júnior to Agência FAPESP. “This will avoid having to wait a long time for a compatible donor and reduce the risk of rejection of the transplanted organ."
This technique could also be used to repair livers given by organ donors that are considered borderline or non-transplantable. “Many organs available for transplantation can’t actually be used because the donor has died in a traffic accident,” Caires-Júnior added. “The technique can be used to repair them, depending on their status.”
Even if we are at the early stages of this approach, it bodes well for future research. And for those on the organ transplant list, a reconditioned liver would be as good as a new one – complete with their very own factory settings.
Read the paper here: https://www.sciencedirect.com/science/article/abs/pii/S0928493120337814
Variously known as zucchini, courgette, baby marrows and summer squash, this frost tender crop is a valuable addition for gardens and allotments. Originating in warm temperate America, the true zucchini was developed by Milanese gardeners in the 19th century and popularised in the UK by travellers in Italy. It quickly matures in 45 to 50 days from planting out in open ground by early May in the south and a couple of weeks later farther north.
Alternatively, use cloches as frost protection for early crops. Earliness is also achieved by sowing seed in pots of openly draining compost by mid-April in a greenhouse or cold frame. Courgettes have large, energy-filled seeds. Consequently, germination and subsequent growth are rapid.
Sow seed singly in 10cm diameter pots and plant out when the first 2-3 leaves are expanding (illustration number 1). Alternatively, garden centres supply transplants. These should be inspected carefully, avoiding those with yellowing leaves or wilting foliage. Each plant should have white healthy-looking roots without browning.
Illustration 1: Courgette seedlings germinated in a greenhouse.
Courgettes grow vigorously and each plant should be allocated at least 1 metre spacing within and between rows. They require copious watering and feeding with a balanced fertiliser containing equal quantities of nitrogen, phosphorus and potassium.
Botanically, they are dioecious plants, having separate male and female flowers, (illustration number 2). They are beloved by bees, hence supporting biodiversity in the garden. Slugs are their main pest, causing browsing wounds on courgette fruits; mature late-season foliage is usually infected by powdery mildew fungi that cause little harm.
Illustration 2: Bee-friendly (and tasty) courgette flower.
Quick maturing succulent courgettes are hybrid cultivars, producing harvestable 15-25 cm long fruit (berries) before the seeds begin forming (illustration number 3). Harvest regularly at weekly intervals before the skins (epicarps) begin strengthening and toughening. Skin colour varies with different cultivars from deep green to golden yellow. The choice rests on gardeners’ preferences.
Courgettes are classed and cooked as vegetables and their dietary value is retained by steaming thinly sliced fruits. Courgettes are a low-energy food but contain useful amounts of folate, potassium and vitamin A (retinol). The latter boosts immune systems, helping defend against illness and infection and increasing respiratory efficiency. Eyesight is also protected by increasing vision in low light.
Illustration 3: Courgette fruit ready for the table.
Courgettes are, therefore, valuable dietary additions year-round. Courgette flowers are bonuses, used as garnishes or dipped in batter as fritters or tempura. Overall, the courgette is a most useful plant that provides successional cropping using ground vacated by over-wintered vegetables such as cabbage, Brussels sprouts or leeks.
Written by Professor Geoff Dixon, author of Garden practices and their science, published by Routledge 2019.
Every day, there are subtle signs that machine learning is making our lives easier. It could be as simple as a Netflix series recommendation or your phone camera automatically adjusting to the light – or it could be something even more profound. In the case of two recent machine-learning developments, these advances could make a tangible difference to both microscopy, cancer treatment, and our health.
The first is an artificial intelligence (AI) tool that improves the information gleaned from microscopic images. Researchers at the University of Gothenburg have used this deep machine learning to enhance the accuracy and speed of analysis.
The tool uses deep learning to extract as much information as possible from data-packed images. The neural networks retrieve exactly what a scientist wants by looking through a huge trove of images (known as training data). These networks can process tens of thousands of images an hour whereas some manual methods deliver about a hundred a month.
Machine learning can be used to follow infections in a cell.
In practice, this algorithm makes it easier for researchers to count and classify cells and focus on specific material characteristics. For example, it can be used by companies to reduce emissions by showing workers in real time whether unwanted particles have been filtered out.
“This makes it possible to quickly extract more details from microscope images without needing to create a complicated analysis with traditional methods,” says Benjamin Midtvedt, a doctoral student in physics and the main author of the study. “In addition, the results are reproducible, and customised. Specific information can be retrieved for a specific purpose."
The University of Gothenburg tool could also be used in health care applications. The researchers believe it could be used to follow infections in a cell and map cellular defense mechanisms to aid the development of new medicines and treatments.
Machine learning by colour
On a similar thread, machine learning has been used to detect cancer by researchers from the National University of Singapore. The researchers have used a special dye to colour cells by pH and a machine learning algorithm to detect the changes in colour caused by cancer.
The researchers explain in their APL Bioengineering study that the pH (acidity level) of a cancerous cell is not the same as that of a healthy cell. So, you can tell if a cell is cancerous if you know its pH.
With this in mind, the researchers have treated cells with a pH-sensitive dye called bromothymol blue that changes colour depending on how acidic the solution is. Once dyed, each cell exudes its unique red, green, and blue fingerprint.
By isolating a cell’s pH, researchers can detect the presence of cancer.
The authors have also trained a machine learning algorithm to map combinations of colours to assess the state of cells and detect any worrying shifts. Once a sample of the cells is taken, medical professionals can use this non-invasive method to get a clearer picture of what is going on inside the body. And all they need to do all of this is an inverted microscope and a colour camera.
“Our method allowed us to classify single cells of various human tissues, both normal and cancerous, by focusing solely on the inherent acidity levels that each cell type tends to exhibit, and using simple and inexpensive equipment,” said Chwee Teck Lim, one of the study’s authors.
“One potential application of this technique would be in liquid biopsy, where tumour cells that escaped from the primary tumour can be isolated in a minimally invasive fashion from bodily fluids.”
The encouraging sign for all of us is that these two technologies are but two dots on a broad canvas, and machine learning will enhance analysis. There are certainly troubling elements to machine learning but anything that helps hinder disease is to be welcomed.
Machine Learning-Based Approach to pH Imaging and Classification of Single Cancer Cells:
https://aip.scitation.org/doi/10.1063/5.0031615
Quantitative Digital Microscopy with Deep Learning:
https://aip.scitation.org/doi/10.1063/5.0034891
Rising anxiety about air pollution, physical, and mental health, exacerbated by Covid-19 and concerns about public transport, has seen an increase in the popularity of cycling around Europe, leading many cities to transform their infrastructure correspondingly.
These days, Amsterdam is synonymous with cycling culture. Images of thousands of bikes piled up in tailor-made parking facilities continue to amaze and it is routinely held up as an example of greener, cleaner, healthier cities. Because The Netherlands is so flat, people often believe it has always been this way. But, in the 1970s, Amsterdam was a gridlocked city dominated by cars. The shift to cycling primacy took work and great public pressure.
For some cities, however, the pandemic has provided an unexpected opportunity on the roads. Milan's Deputy Mayor for Urban Planning, Green Areas and Agriculture, Pierfrancesco Maran, has explained that, "We tried to build bike lanes before, but car drivers protested". Now, however, numbers have increased from 1,000 to 7,000 on the main shopping street. "Most people who are cycling used public transport before”, he said. “But now they need an alternative”.
Creating joined up cycling networks is a major challenge for urban planners.
In Paris, the Deputy Mayor David Belliard does not seem concerned that the city’s investment since the start of the pandemic will go to waste. “It's like a revolution," he said. “Some sections of this road are now completely car-free. The more you give space for bicycles, the more they will use it.” They are committed to creating a cycle culture, providing free cycling lessons and subsidising the cost of bike repairs. The city intends to create more than 650km of cycle lanes in the near future.
The success in these two cities has been supported by local government but it has also been fuelled by an understandable (and encouraged) avoidance of public transport and fewer cars on the road generally. Going forward, however, it seems likely that those last two factors won’t be present. So how do you create a cycling culture in your city in the long run?
The answer is both simple and difficult: cyclists (and pedestrians) need to have priority over cars. In Brussels, where 40km of cycle track have been put down in the last year, specific zones have been implemented where this is the case, and speed limits have been reintroduced across the city.
In Copenhagen, in the late 1970s, the Danish Cyclists’ Federation arranged demonstrations demanding more cycle tracks and a return to the first half of the century, when cyclists had dominated the roads. Eventually, public pressure paid off — although there is still high demand for more cycle lanes. A range of measures, including changes made to intersections, make cyclists feel safer and local studies show that, as cyclist numbers increase, safety also increases. In many parts of the city, it is noticeable how little of the wide roads are actually available to cars: bikes, joggers, and pedestrians are all accommodated.
Segregated cycleways, like this one in Cascais, Portugal, make people more likely to cycle.
But, if you were starting from scratch, you might not simply add cycle lanes to existing roads and encourage behavioural changes on the road. Segregated, protected bike lanes like those introduced in Paris are the next level up and the results suggest they work — separated from the roads, more people are inclined to try cycling.
Dutch experts suggest, where possible, going even further. Frans Jan van Rossem, a civil servant specialising in cycling policy in Utrecht, believes the best option is to create solitary paths, separated from the road by grass, trees, or elevated concrete. Consistency is also important. Cities need networks of cycle tracks, not just a few highways. Again, prioritising cyclists is key to the Dutch approach. Many cities have roads where cars are treated as guests, restricted by a speed limit of 30km/hour and not permitted to pass. Signage is also key.
In London, Mayor Sadiq Khan’s target is for 80% of journeys to be made by walking, cycling, and/or public transport by 2041. Since 2018, the city has been using artificial intelligence to better understand road use in the city and plan new cycle routes in the capital. However, the experience of other European capitals suggests that, "if you build it, they will come" might be a better approach than working off current usage.
Broad beans are an undemanding and valuable crop for all gardens. Probably originating in the Eastern Mediterranean and grown domestically since about 6,000BC, this plant was brought to Great Britain by the Romans.
Header image: a rich harvest of succulent broad beans for the table
Capable of tolerating most soil types and temperatures they provide successional fresh pickings from June to September. Early crops are grown from over-wintered sowings of cv Aquadulce. They are traditionally sown on All Souls Day on 2 November but milder autumns now cause too rapid germination and extension growth. Sowing is best now delayed until well into December. Juicy young broad bean seedlings offer pigeons a tasty winter snack, consequently protection with cloches or netting is vital insurance.
From late February onwards dwarf cultivars such as The Sutton or the more vigorous longer podded Meteor Vroma are used. Early cropping is promoted by growing the first batches of seedlings under protection in a glasshouse. Germinate the seed in propagating compost and grow the resultant seedlings until they have formed three to four prominent leaflets. Plant out into fertile, well-cultivated soil and protect with string or netting frameworks supported with bamboo canes to discourage bird damage.
Young broad bean plants supported by string and bamboo canes
More supporting layers will be required as the plants grow and mature. Later sowings are made directly into the vegetable garden. As the plants begin flowering remove the apical buds and about two to three leaves. This deters invasions by the black bean aphid (Aphis fabae). Winged aphids detect the lighter green of upper foliage of broad beans and navigate towards them!
Allow the pods ample time for swelling and the development of bean seeds of up to 2cm diameter before picking. Beware, however, of over-mature beans since these are flavourless and lack succulence. Broad beans have multiple benefits in the garden and for our diets. They are legumes and hence the roots enter mutually beneficial relationships with nitrogen fixing bacteria. These bacteria are naturally present in most soils. They capture atmospheric nitrogen, converting it into nitrates which the plant utilises for growth. In return, the bacteria gain sources of carbohydrates from photosynthesis.
Broad bean root carrying nodules formed around colonies of nitrogen fixing bacteria
Broad beans are pollinated by bees and other beneficial insects. They are good sources of pollen and nectar, encouraging biodiversity in the garden. Nutritionally, beans are high in protein, fibre, folate, Vitamin B and minerals such as manganese, phosphorus, magnesium and iron, therefore cultivating healthy living. Finally, they form extensive roots, improving soil structure, drainage and reserves of organic nitrogen. Truly gardeners’ friends!
Professor Geoff Dixon, author of Garden practices and their science (ISBN 978-1-138-20906-0) published by Routledge 2019.
Thinking of popping to your nearest specialist store for some sesame oil, turmeric, or soy? Some things haven't changed in 3,700 years, it turns out...
At least, that's what a growing new field of research, palaeoproteomics, suggests. Human mouths are full of bacteria, which continually petrify and form dental calculus — which can entrap and preserve tiny food particles. These remnants can be accessed and analysed thousands of years later, providing remarkable insight into the dietary habits of our ancestors.
Philip Stockhammer, an archaeologist at the Ludwig Maximilian University of Munich (LMU), has worked with Christina Warinner, a molecular archaeologist at Harvard University and the Max Planck Institute for the Science of Human History, and a team of researchers to apply this new method to the eastern Mediterranean, including the Bronze Age site of Megiddo and the Early Iron Age site of Tel Erani.
“Our high-resolution study of ancient proteins and plant residues from human dental calculus is the first of its kind to study the cuisines of the ancient Near East,” said Warinner, explaining its significance. “Our research demonstrates the great potential of these methods to detect foods that otherwise leave few archaeological traces. Dental calculus is such a valuable source of information about the lives of ancient peoples.”
High-resolution analyses of ancient dental calculus have given us a whole new perspective on the diets of Bronze Age people.
The research team took samples from a range of individuals and analysed which food proteins and plant residues were preserved in their teeth. “This enables us to find traces of what a person ate,” said Stockhammer. “Anyone who does not practice good dental hygiene will still be telling us archaeologists what they have been eating thousands of years from now!”
Of course, it's not quite as simple as looking at the teeth of those who didn't thoroughly clean them nearly four millennia ago and hoping the proteins survived. “Interestingly, we find that allergy-associated proteins appear to be the most stable in human calculus”, remarked Ashley Scott, LMU biochemist and lead author. That might be because of the known thermostability of many allergens. For instance, the researchers were able to detect wheat via wheat gluten proteins, which they independently confirmed with a different method using a type of plant microfossil known as phytoliths.
This substance has previously been used to identify millet and date palm in the same area during the Bronze and Iron Ages but phytoliths are not plentiful or even present in many foods, which is why this research is so exciting — palaeoproteomics means foods that have left few other traces, such as sesame, can now be identified.
Research suggests that the humble banana was eaten throughout the Mediterranean far earlier than first thought.
The method has allowed the team to identify that people at these sites ate, among other things, sesame, turmeric, soy, and bananas far earlier than anyone had realised. “Exotic spices, fruits and oils from Asia had thus reached the Mediterranean several centuries, in some cases even millennia, earlier than had been previously thought,” explained Stockhammer.
The finds mean that we have direct evidence for a flourishing long-distance trade in fruits, spices, and oils, from East and South Asia to the Levant via Mesopotamia or Egypt as early as the second millennium BCE.
More than that, the analyses "provide crucial information on the spread of the banana around the world. No archaeological or written evidence had previously suggested such an early spread into the Mediterranean region,” according to Stockhammer (although the sudden appearance of bananas in West Africa a few centuries later has previously led archaeologists to believe that such a trade might have existed, this is the first evidence).
The team acknowledged that other explanations are possible, including that the individuals concerned had travelled to East or South Asia at some point but there is evidence for other trade in food and spices in the Eastern Mediterranean — for instance, we know Pharaoh Ramses II was buried with peppercorns from India in 1213 BCE.
But it certainly seems like some foods might have been popular in the Mediterranean for much longer than we realised, which might be an interesting thought to accompany you next time you add some spices or bananas to your shopping basket.
The Organisation for Economic Cooperation and Development (OECD) defines the Blue Economy as ‘all economic sectors that have a direct or indirect link to the oceans, such as marine energy, coastal tourism and marine biotechnology.’ Other organisations have their own definitions, but they all stress the economic and environmental importance of seas and oceans.
Header image: Our oceans are of economic and environmental importance
To this end there are a growing number of initiatives focused on not only protecting the world’s seas but promoting economic growth. At the start of 2021 the Asian Development Bank (ADB) and the European Investment Bank (EIB) joined forces to support clean and sustainable ocean initiatives in the Asia-Pacific region, and ultimately contribute to achieving Sustainable Development Goals and the climate goals of the Paris Agreement.
Both institutions will finance activities aimed at promoting cleaner oceans ‘through the reduction of land-based plastics and other pollutants discharged into the ocean,’ as well as projects which improve the sustainability of all socioeconomic activities that take place in oceans, or that use ocean-based resources.
ADB Vice-President for Knowledge Management and Sustainable Development, Bambang Susantono, said ‘Healthy oceans are critical to life across Asia and the Pacific, providing food security and climate resilience for hundreds of millions of people. This Memorandum of Understanding between the ADB and EIB will launch a framework for cooperation on clean and sustainable oceans, helping us expand our pipeline of ocean projects in the region and widen their impacts’.
The blue economy is linked to green recovery
In the European Union the blue economy is strongly linked to the bloc’s green recovery initiatives. The EU Blue Economy Report, released during June 2020, indicated that the ‘EU blue economy is in good health.’ With five million people working in the blue economy sector during 2018, an increase of 11.6% on the previous year, ‘the blue economy as a whole presents a huge potential in terms of its contribution to a green recovery,’ the EU noted. As the report was launched, Mariya Gabriel, Commissioner for Innovation, Research, Culture, Education and Youth, responsible for the Joint Research Committee said; ‘We will make sure that research, innovation and education contribute to the transition towards a European Blue Economy.’
The impact of plastics in oceans is well known and many global initiatives are actively tackling the problem. At the end of 2020 the World Economic Forum and Vietnam announced a partnership to tackle plastic pollution and marine plastic debris. The initiative aims to help Vietnam ‘dramatically reduce its flow of plastic waste into the ocean and eliminate single-use plastics from coastal tourist destinations and protected areas.’ Meanwhile young people from across Africa were congratulated for taking leadership roles in their communities as part of the Tide Turners Plastic Challenge. Participants in the challenge have raised awareness of the impact of plastic pollution in general.
But it isn’t just the health of our oceans that governments and scientists are looking at. There is growing interest in the minerals and ore that could potentially be extracted via sea-bed mining. The European Commission says that the quantity of minerals occupying the ocean floor is potentially large, and while the sector is small, the activity has been identified as having the potential to generate sustainable growth and jobs for future generations. But adding a note of caution, the Commission says, ‘Our lack of knowledge of the deep-sea environment necessitates a careful approach.’ Work aimed at shedding light on the benefits, drawbacks and knowledge gaps associated with this type of mining is being undertaken.
With the push for cleaner energy and the use of batteries, demand for cobalt will rise, and the sea-bed looks to have a ready supply of the element. But, the World Economic Forum points out that the ethical dimensions of deep-sea cobalt have the potential to become contentious and pose legal and reputational risks for mining companies and those using cobalt sourced from the sea-bed.
Energy will continue to be harnessed from the sea.
But apart from its minerals, the ocean’s ability to supply energy will continue to be harnessed through avenues such as tidal and wind energy. During the final quarter of 2020, the UK Hydrographic Office launched an Admiralty Marine Innovation Programme. Led by the UK Hydrographic Office, the programme gives innovators and start-ups a chance to develop new solutions that solve some of the world’s most pressing challenges as related to our oceans.
The UK’s Blue Economy is estimated to be worth £3.2 trillion by the year 2030. Marine geospatial data will be important in supporting this growth by enabling the identification of new areas for tidal and wind energy generation, supporting safe navigation for larger autonomous ships, which will play a vital role in mitigating climate change, and more.
The world’s biggest ever survey of public opinion on climate change was published on 27th January, covering 50 countries with over half of the world’s population, by the United Nations Development Programme (UNDP) and the University of Oxford. Of the respondents, 64% believe climate change is a global emergency, despite the ongoing Covid-19 pandemic, and sought broader action to combat it. Earlier in the month, US President Joe Biden reaffirmed the country's commitment to the Paris Agreement on Climate Change.
It is possible that the momentum, combined with the difficulties many countries currently face, may make many look again to geoengineering as an approach. Is it likely that large scale engineering techniques could mitigate the damage of carbon emissions? And is it safe to do so or could we be exacerbating the problem?
The term has long been controversial, as have many of the suggested techniques. But it would seem that some approaches are gaining more mainstream interest, particularly Carbon Dioxide Removal (CDR) and Solar Radiation Modification (SRM), which the 2018 Intergovernmental Panel on Climate Change (IPCC) report for the UN suggested were worth further investigation (significantly, it did not use the term "geoengineering" and distinguished these two methods from others).
One of the most covered CDR techniques is Carbon Capture and Storage (CCS) or Carbon Capture, Utilisation, and Storage (CCUS), the process of capturing waste carbon dioxide, usually from carbon intensive industries, and storing (or first re-using) it so it will not enter the atmosphere. Since 2017, after a period of declining investment, more than 30 new integrated CCUS facilities have been announced. However, there is concern among many that it will encourage further carbon emissions when the goal should be to reduce and use CCS to buy time to do so.
CDR techniques that utilise existing natural processes of natural repair, such as reforestation, agricultural practices that absorb carbon in soils, and ocean fertilisation are areas that many feel could and should be pursued on a large scale and would come with ecological and biodiversity benefits, as well as fostering a different, more beneficial relationship with local environments.
A controversial iron compound deposition approach has been trialled to boost salmon numbers and biodiversity in the Pacific Ocean.
The ocean is a mostly untapped area with huge potential and iron fertilisation is one very promising area. The controversial Haida Salmon Corporation trial in 2012 is perhaps the most well-known example and brings together a lot of the pros and cons frequently discussed in geoengineering — in many ways, we can see it as a microcosm of the bigger issue.
The trial deposited 120 tonnes of iron compound in the migration routes of pink and sockeye salmon in the Pacific Ocean 300k west of Haida Gwaii over a period of 30 days, which resulted in a 35,000km2, several month long phytoplankton bloom that was confirmed by NASA satellite imagery. That phytoplankton bloom fed the local salmon population, revitalising it — the following year, the number of salmon caught in the northeast Pacific went from 50 million to 226 million. The local economy benefited, as did the biodiversity of the area, and the increased iron in the sea captured carbon (as did the biomass of fish, for their lifetimes).
Small but mighty, phytoplankton are the laborers of the ocean. They serve as the base of the food web.
But Environment Canada believes the corporation violated national environmental laws by depositing iron without a permit. Much of the fear around geoengineering is how much might be possible by rogue states or even rogue individuals, taking large scale action with global consequences without global consent.
The conversation around SRM has many similarities — who decides that the pros are worth the cons, when the people most likely to suffer the negative effects, with or without action, are already the most vulnerable? This is a concern of some of the leading experts in the field. Professor David Keith, an expert in the field, has publicly spoken about his concern around climate change and inequality, adding after the latest study that, "the poorest people tend to suffer most from climate change because they’re the most vulnerable. Reducing extreme weather benefits the most vulnerable the most. The only reason I’m interested in this is because of that."
But he doesn't believe anywhere near sufficient research has been done into the viability of the approach or the possible consequences and cautions that there is a need for "an adequate governance system in place".
There is no doubt that the research in this field is exciting but there are serious ethical and governance problems to be dealt with before it can be considered a serious component of an emissions reduction strategy.
The theme of the 2021 World Economic Forum’s Davos Agenda was ‘The Great Reset’ and how the world might recover from the effects of Covid-19. Because of the current circumstances, the forum was split into two parts, with a virtual meeting held January 25-29 and an in-person gathering planned for May 13-16, in Singapore.
Each day of the January summit was dedicated to discussing a key area for recovery. On Monday, January 25, the focus was on designing cohesive, sustainable and resilient economic systems. On Tuesday, delegates discussed how to drive responsible industry transformation and growth, while on Wednesday they spoke about enhancing the stewardship of our global commons. Thursday's talks centred on harnessing the technologies of the Fourth Industrial Revolution, and on Friday attendees discussed ways to advance global and regional cooperation.
With the International Labor Organization jobs report, published at the start of the week, stating that at least 225 million jobs vanished worldwide over the past year (four times more than the 2008 global financial crisis) and concerns that vaccine nationalism will see the pandemic continue to ravage many less wealthy nations, much of the talk was around equality and unity.
Christine Lagarde, President of the European Central Bank, spoke in Monday's meeting. ‘Once we’re through to the "second phase" of the 2021 Covid-19 recovery,’ Lagarde said, ‘it is most likely going to be a new economy, which will be associated with positive developments and also with challenges.’ Many advanced economies, she noted, particularly in Europe, have jumped forward in terms of digitalisation, some by up to seven years.
Christine Lagarde, President of the European Central Bank, has called for continued support for the digital-centred, post-pandemic economy. | Credit: Alexandros Michailidis / Shutterstock.com
She added that it is likely that there will be a 20% increase in the amount of people working from home post-pandemic, which will have an impact on many economies, and claimed that technological changes are already having positive effects. She said that it is critical to continue ‘favouring and supporting investment into this new economy’ and that on the fiscal and monetary policy front, authorities will have to stay the course and continue to support. At the same time, investment will have to be focused on laying the ground for a new economy.
Ursula von der Leyen, President of the European Commission (EC), agreed about the increase in digitalisation, and reported that the EU hopes ‘the 2020s can finally be Europe’s Digital Decade’, highlighting a number of investments to boost this process, including the startup scenes in cities such as Sofia and Lisbon.
However, she warned that there is a ‘darker side of the digital world,’ noting the assault on Capitol Hill in the US and making clear that ‘The immense power of the big digital companies must be contained. She spoke of the EC's plans ‘to make internet companies take responsibility for content, from dissemination to promotion and removal, and highlighted the Commission’s new rulebooks, the Digital Services Act and the Digital Markets Act.
Ursula von der Leyen, President of the European Commission, believes the 2020s can be Europe’s ‘Digital Decade’. | Credit: John Smith Williams / Shutterstock.com
She invited the US to work together to: ‘Create a digital economy rulebook that is valid worldwide: it goes from data protection and privacy to the security of critical infrastructure. A body of rules based on our values: Human rights and pluralism, inclusion and the protection of privacy.’
Marc Benioff, Salesforce CEO, made a noteworthy intervention in his panel discussion, claiming, ‘There has been a mantra for too long that the business of business is business, but today the business of business is improving the state of the world.’ He added that, while there were many CEOs who had been ‘bad actors,’ others had used their considerable resources to help fight the pandemic.
Many speakers noted a shift towards sustainability in investments, with others demanding more change and faster. Of the latter, Mark Carney, Special Envoy for Climate Action and Finance to the UN, said bluntly, ‘if you are part of the private financial sector and you are not part of the solution […] you will have made the conscious decision not to be aligned to net zero […] if you’re not in, you’re out because you chose to be out.’
It could be concluded that there was a great deal to feel positive about, but the circumstances are difficult. Now we will see whether the attendees of the World Economic Forum can deliver on their inspiring rhetoric.
The Organisation for Economic Cooperation and Development (OECD) has published its Science Technology and Innovation Outlook 2021: Time of Crises and Opportunity report.
Published at the beginning of 2021, the report focuses on the ‘unparalleled mobilisation of the scientific and innovation community’ in response to the covid-19 pandemic. The report indicates that newly funded research initiatives have been established by public research agencies and organisations, private foundations and charities, while the health sector has similarly invested in an array of research programmes worth billions of dollars in record time.
The pandemic has led an unprecedented mobilisation of the scientific and innovation community
However, the report also exposes gaps in overall system resilience to future crises. ‘It’s a wake-up call that highlights the need to recalibrate science, technology and innovation (STI) policies, so that they better orient research and innovation efforts towards sustainability, inclusivity and resiliency goals,’ the report asserts.
Highlighting the rapid response by governments around the world, the report indicates that in the first few months of the pandemic, national research funding bodies spent around $5 billion on emergency financial support. This includes $300 million in Asia-Pacific, excluding China, over $850 million in Europe and more than $3.5 billion in North America. At the same time, research efforts led to around 75,000 scientific publications on covid-19 being released between January and November 2020, the report says. The largest share came from the US, followed by China and the UK. Research databases and scientific publishers removed paywalls so that covid-19 related information could be quickly shared.
Research efforts led to around 75,000 scientific publications on covid-19 being released between January and November 2020
‘These developments mark important changes that could accelerate the transition to a more open science in the longer run,’ the report says. It is also noted that not only have researchers continued their work with more than three quarters of scientists indicating that they had shifted to working from home at some point in 2020, but almost two thirds experienced, or expected to see, an increase in the use of digital tools for research as a consequence of the crisis. The report also mentions the contribution of the general public, with so called ‘frugal innovations’ in response to shortages of medical equipment and emergency supplies.
Looking to the future of the research community, the report says that postgraduate training regimes require reform to support a diversity of career paths. ‘The crisis has shown that the need for STI expertise is not limited to the public laboratory; it is also important for business, government and NGOs […] Reforming PhD and post-doctoral training to support a diversity of career paths is essential for improving societies’ ability to react to crises like covid-19 and to deal with long-term challenges like climate change that demand science-based responses […] There has been a 25% increase in the number of people with PhDs in OECD countries over the past decade with no corresponding increase in academic posts. The pandemic is expected to make matters worse, more than half of the scientists participating in the OECD Science Flash Survey expect the crisis to negatively affect their job security and career opportunities,’ the report says.
Post-graduate training regimes require reform to support a diversity of career paths
While still in the midst of the pandemic, the report stresses that STI policies now need to be reoriented to tackle the challenges of sustainability, inclusivity and resiliency. ‘In the short-term governments should continue their support for science and innovation activities that aim to develop solutions to the pandemic and mitigate its negative impacts, while paying attention to its uneven distributional effects. Science for policy will remain in the spotlight as governments seek to strike the right balance in their response to covid-19. This will effect public perceptions of science that could have long term implications for science-society relations.’
The report concludes that governments now have the task of developing public sector capabilities to deliver more ambitious STI policy. This will require engagement from stakeholders and citizens in order to capture a diversity of knowledge and values.
DOI:10.1787/75f79015-en
Galen (129-216 CE) is one of the most famous and influential medical practitioners in history but he was also a scientist, an author, a philosopher, and a celebrity. He wrote hundreds of treatises, travelled and studied widely, was the physician to three emperors, and left a legacy of scientific thought that lasted for fifteen hundred years — even today, his work has an influence.
Header image Editorial credit: Eray Adiguzel / Shutterstock.com
He grew up in Pergamum, an intellectual centre of the Mediterranean world, in a wealthy family that encouraged him to pursue academia and funded his travels to learn in the best environments available, acquiring the latest techniques in medicine and healing.
He understood that diet, exercise, and hygiene were essential for good health and put that into practice in the four years he spent working for the High Priest of Pergamum's Gladiator School. This was a high profile and high pressure role and we know he reduced the death rate dramatically in his four years there. The recommendation he got helped secure him a position in Rome, capital of the empire.
He was not popular in the city — at one point, he seems to have been chased out by the local physicians, who strenuously disagreed with his methods — but he was eventually summoned by the emperor Marcus Aurelius to be his personal physician. He was described by the emperor as, “First among doctors and unique among philosophers".
Galen; Line engraving | Credit: Wellcome Images, Wikimedia Commons
Galen continued to navigate the difficult political environment of the imperial capital and was personal physician to two more emperors, while publishing prolifically and becoming one of the most well-known figures in the Roman Empire. Much of his work is lost to us but we still know a great deal about him, including that he had a flair for showmanship and controversy.
In the Greek world where he grew up, dissections had been common — of animals and humans. In Rome, this was not the case. In fact, human dissections were banned across the empire shortly before Galen arrived in the city. Undaunted, he gave a number of public anatomical demonstrations using pigs, monkeys, sheep, and goats to show his new city what they were missing (this was one of many incidents that contributed to local dislike of his methods as well as his increasing fame).
His legacy was huge, both because he recorded and critiqued the work of others in his field and because of the huge volumes of his own observations and theories. His texts were the foundation for much of medical education in the Islamic, Byzantine, and European worlds until the 17th Century.
The ban on human dissection likely limited his progress in some areas and many of his theories have (eventually) been disproved, such as the theory of the four humours — blood, black bile, yellow bile, and phlegm — based on Hippocrates' system and elaborated, as well as the efficacy of bloodletting.
Galen observed that cataracts could be removed.
In other areas, however, he was remarkably successful. He observed that the heart has four valves that allow blood to flow in only one direction, that a patient's pulse or urine held clues to their disease, that urine forms in kidneys (previously thought to be the bladder), that arteries carry liquid blood (previously thought to be air), that cataracts could be removed from patients' eyes, among others. He also identified seven of the 12 cranial nerves, including the optic and acoustic nerves.
His focus on practical methods such as direct observation, dissection, and vivisection is obviously still relevant to modern medical research. Indeed, scientists who disproved his theories, such as Andreas Vesalius and Michael Servetus in the 16th century, did so using Galen's own methods.
The study of his work remains hugely important to the history and understanding of medicine and science, as well as the ancient world. The Galenic formulation, which deals with the principles of preparing and compounding medicines in order to optimise their absorption, is named after him.
More people are looking at their nutritional intake, not only to improve wellbeing but also reduce their environmental impact. With this, comes a move to include foods that are not traditionally cultivated or consumed in Europe.
Assessing whether this growing volume of so called ‘novel foods’ are safe for human consumption is the task of the European Food Safety Authority. The EFSA points out, ‘The notion of novel food is not new. Throughout history new types of food and food ingredients have found their way to Europe from all corners of the globe. Bananas, tomatoes, tropical fruit, maize, rice, a wide range of spices – all originally came to Europe as novel foods. Among the most recent arrivals are chia seeds, algae-based foods, baobab fruit and physalis.’
Under EU regulations any food not consumed ‘significantly’ prior to May 1997 is considered to be a ‘novel food’. The category covers new foods, food from new sources, new substances used in food as well as new ways and technologies for producing food. Examples include oils rich in omega-3 fatty acids from krill as a new source of food, phytosterols as a new substance, or nanotechnology as a new way of producing food.
Providing a final assessment on safety and efficacy of a novel food is a time consuming process. At the start of 2021 the EFSA gave its first completed assessment of a proposed insect-derived food product. The panel on Nutrition, Novel Foods and Food Allergens concluded that the novel food dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption.
Dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption, according to the EFSA.
Commenting in a press statement, as the opinion on insect novel food was released, Ermolaos Ververis, a chemist and food scientist at EFSA who coordinated the assessment said that evaluating the safety of insects for human consumption has its challenges. ‘Insects are complex organisms which makes characterising the composition of insect-derived products a challenge. Understanding their microbiology is paramount, considering also that the entire insect is consumed,’
Ververis added, ‘Formulations from insects may be high in protein, although the true protein levels can be overestimated when the substance chitin, a major component of insects’ exoskeleton, is present. Critically, many food allergies are linked to proteins so we assess whether the consumption of insects could trigger any allergic reactions. These can be caused by an individual’s sensitivity to insect proteins, cross-reactivity with other allergens or residual allergens from insect feed, e.g. gluten.’
EFSA research could lead to increased choice for consumers | Editorial credit: Raf Quintero / Shutterstock.com
The EFSA has an extensive list of novel foods to assess. These include dried crickets (Gryllodes sigillatus), olive leaf extract, and vitamin D2 mushroom powder. With the increasing desire to find alternatives to the many foods that we consume on a regular basis, particularly meat, it is likely that the EFSA will be busy for some time to come.
A year after the world was put on alert about the rapidly spreading covid-19 virus, mass vaccination programmes are providing a welcome light at the end of the tunnel.
However, for many people vaccination remains a concern. A World Economic Forum – Ipsos survey: Global Attitudes on a Covid-19 Vaccine, indicates that while an increasing number of people in the US and UK plan to get vaccinated, the intent has dropped in South Africa, France, Japan and South Korea. The survey was conducted in December 2020, following the first vaccinations in the US and the UK.
This study shows that overall vaccination intent is below 50% in France and Russia. ‘Strong intent’ is below 15% in Japan, France and Russia.
Many cities are still in lockdown
Between 57% and 80% of those surveyed cited concerns over side effects as a reason for not getting a covid-19 vaccination. Doubts over the effectiveness of a vaccine was the second most common reason cited in many countries, while opposition to vaccines in general was mentioned by around 25% those who will refuse a vaccination.
The survey was conducted among 13,542 adults aged 18–74 in Canada, South Africa, and the US, while those surveyed in Australia, Brazil, China, France, Germany, Italy, Japan, Mexico, Russia, South Korea, Spain and the UK were aged 16–74.
A previous survey, Global Attitudes on a Covid-19 Vaccine carried out in July and August 2020, indicated that 74% of those surveyed intended to get vaccinated. At that time the World Economic Forum said that this majority could still fall short of the number required to ‘beat covid-19.’
Commenting on the newest data Arnaud Bernaert, Head of Health and Healthcare at the World Economic Forum said; ‘As vaccinations roll out, it is encouraging to see confidence improve most in countries where vaccines are already made available. It is critical that governments and the private sector come together to build confidence and ensure that manufacturing capacity meets the global demand.’
World Economic Forum-Ipsos Survey indicates a rise in number of people in US and UK intending to get vaccinated.
With the imperative now to move towards some sort of ‘normality’, as well as getting economies moving, fears over vaccination need to be allayed. However, what also needs to be considered is what underlies those fears. Misinformation, no doubt, has a part to play. This highlights a lack of trust in governments and a sector that has worked tirelessly to develop vaccines in record time.
As different companies bring their vaccines to the market, care now needs to be taken to reassure people around the world that whichever manufacturer’s vaccine they are given, they are in safe hands. As any adverse reactions occur – an inevitability with any vaccine rollout – these ought to be made known to the wider public by companies and governments as soon as it is feasible, preventing space for the spread of rumour and misinformation, which could undo the hard work of the scientists, businesses and governments bringing vaccines to the public.
Researchers have worked tirelessly to bring vaccines to the market
Chemists have created a new type of artificial cell that can communicate with other parts of the body. A study, published in Science Advances this month, describes a new type of artificial cell that can communicate with living cells.
“This work begins to bridge the divide between more theoretical ‘what is cellular life’ type of work and applicative, useful technologies,” said Sheref Mansy, Chemistry Professor at the University of Alberta and co-author of the study.
The artificial cells are made using an oil-water emulsion, and they can detect changes within their environments and respond by releasing protein signals to influence surrounding cells. This work is the first that can chemically communicate with and influence natural living cells. They started with bacteria, later moving to multicellular organisms.
“In the future, artificial cells like this one could be engineered to synthesizes and deliver specific therapeutic molecules tailored to distinct physiological conditions or illnesses–all while inside the body,” explained Sheref Mansy, professor in the University of Alberta’s Department of Chemistry,
Though the initial study was undertaken using a specific signalling system, the cells have applications in therapeutic use, going beyond traditional smart-drug delivery systems and allowing for an adaptable therapeutic.
Since the start of 2020 the world has been a different place. During March the UK Government instigated a lock down, with those who could required to work from home, this included scientists. Completing my PhD studying insect olfaction during a global pandemic was not something I expected, but how did I spend my days?
Computational Working
As a scientist I spend a portion, if not the majority of my time in a lab doing experiments. Pausing this work created several challenges, and as a final year student induced a serious amount of panic! To adapt, I focused more on computational experiments and extensive data analysis. Thankfully, I had some small computational projects already, which could be extended and explored further. This also included attending online courses and webinars to develop new skills – I really enjoyed SCI’s webinar series on computational chemistry and found it useful when completing my protein docking experiments!
Writing, Writing, Writing
As a final year PhD student, there was one task at the beginning of this year that was high on the agenda – writing my thesis. Many past PhD students will tell horror stories about how they were rushing to finish lab work and writing up in a mad dash at the end. Being forced to give up lab work, and having no social activities, meant a lot more focus was put on writing during this time. Personally, I have been privileged to be in a house with other final year PhD students, creating a distraction free zone, and managed to crack down on thesis writing!
Online Events
Despite in-person events, including many large international conferences, being cancelled, many organisers were quick to move meetings online. This made so many events more accessible. Though I am sad to have missed out on a trip to San Francisco, during lockdown I have attended numerous webinars, online seminars, two international conferences and even given outreach talks to the public and school children.
Getting back to ‘normal’
It is safe to say the world, and the way science works, is never going to be the same. But scientists are slowly migrating back to the lab, adorned with a new item of PPE. On top of our lab coats, goggles and gloves we can add…a mask. Despite the stressful time, I managed to get my thesis finished handing it in with a lot more computational work included than I had initially planned!
It’s quite likely that most people who end up in the vicinity of a scorpion will more than likely beat a hasty retreat, not least because they can impart a potentially life threatening dose of venom should one get stung.
But scientists are now finding that the venom from these creatures, along with snakes and spiders, could be beneficial in treating heart attacks. Scorpion venom in particular contains a peptide that has been found to have a positive impact on the cardiovascular system of rats with high blood pressure. Reporting their findings in Journal of Proteome Research, scientists from Brazil, Canada and Denmark say that they now have a better understanding of the processes involved.
Emperor Scorpion
Scorpion venom is a complex mixture of molecules including neurotoxins, vasodilators and antimicrobial compounds, among many others. Individual venom compounds, if isolated and administered at the proper dose, could have surprising health benefits, the researchers say.
One promising compound is the tripeptide KPP (Lys-Pro-Pro), which the researchers say is part of a larger scorpion toxin. KPP was shown to cause blood vessels to dilate and blood pressure to decline in hypertensive rats.
A blood vessel on organic tissue
To understand how KPP worked, the researchers treated cardiac muscle cells from mice, in a Petri dish, with KPP and measured the levels of proteins expressed by the cells at different times using mass spectrometry. They found that KPP regulated proteins associated with cell death, energy production, muscle contraction and protein turnover. In addition the scorpion peptide triggered the phosphorylation of a mouse protein called AKT, which activated another protein involved in production of nitric oxide, a vasodilator.
Treatment with KPP led to dephosphorylation of a protein called phospholamban, which led to reduced contraction of cardiac muscle cells. Both AKT and phospholamban are already known to protect cardiac tissue from injuries caused by lack of oxygen. The researchers said that these results indicate that KPP should be further studied as a drug lead for heart attacks and other cardiovascular problems.
Conceptual image for cardiovascular problems .
According to two studies published in The BMJ, higher consumption of fruit, vegetables and whole grain foods is linked with a lower risk of developing type 2 diabetes.
In the first study, a team of European researchers examined the link between vitamin C, carotenoids and type 2 diabetes.
The findings were based on 9754 participants with type 2 diabetes, compared with a group of 12,622 individuals who were free of diabetes. All of the participants were part of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort totalling 340 234 people.
The results revealed that individuals with the highest intake of fruits and vegetables reduced the risk of developing diabetes by up to 50%.
Fresh fruit and vegetables
The results also showed that increasing intake of fruit and vegetables by 66g per day was linked with a 25% decreased risk of developing type 2 diabetes.
In the second study, researchers in the United States examined the association between whole grain food intake and type 2 diabetes.
Their research involved 158,259 women and 36,525 men who were diabetes, heart disease and cancer free and who took part in the Nurses’ Health Study, Nurses’ Health Study II, and Health Professionals Follow-Up Study.
Healthy heart
Those with the highest intake of whole grains had a 29% lower rate of developing type 2 diabetes compared with those who consumed the least amount. With regards to individual whole grain foods, those with an intake of one or more servings a day of whole grain cold breakfast cereal or dark bread, were associated with a 19% or 21% lower risk of type 2 diabetes, compared with the participants consuming less than one serving a month.
Fresh bread
Although both studies took into account several well-known lifestyle risk factors and markers of dietary health, both studies are observational, therefore it should be considered that some of the results may be due to unmeasured factors.
These new research findings provide more evidence that increasing fruit, vegetable and whole grain foods can lower the risk of developing type 2 diabetes.
DOI: https://www.bmj.com/content/370/bmj.m2194
Generally, food intake measurement relies on an individual’s ability to recall what and how much they ate, which has inherent limitations. This can be overcome using biomarkers, such as urine, which contains high amounts of data, and looks to be a promising new indicator of nutritional status.
Funded by the U.S. National Institutes of Health and Health Data Research UK, the group of scientists analysed levels of 46 different metabolites in the urine of 1,848 people in the U.S, publishing their findings in the journal Nature Food.
The team illustrated the effectiveness of using metabolites in urine as an alternative approach to obtaining information on dietary patterns. Analysing the urinary metabolic profile of the individuals, they found that the 46 metabolites in urine accurately predicted healthy / unhealthy patterns, making the link between 46 metabolites in urine, as well as the types of foods and nutrients in the diet.
Urine test sample
The team believes that this technology could inspire healthy changes as health professionals could be better equipped to provide dietary advice tailored to their individual biological make-up. As Dr Isabel Garcia-Perez, author of the research also from Imperial’s Department of Metabolism, Digestion and Reproduction explained: ‘Our technology can provide crucial insights into how foods are processed by individuals in different ways.’
To build on this research, the same Imperial team, in collaboration with Newcastle University, Aberystwyth University, and Murdoch University, developed a five-minute test to measure the health of a person’s diet.
This five-minute test can reveal differences in urinary metabolites, generating a dietary metabotype score for each individual. As part of this research, 19 people were recruited to follow four different diets ranging from very healthy to unhealthy. The experiments indicated that the healthier their diet, the higher the DMS score, associating higher DMS score with lower blood sugar and a higher amount of energy excreted in the urine.
Heart in hands
Professor John Mathers, co-author of research and Director of the Human Nutrition Research Centre at Newcastle University said: ‘We show here how different people metabolise the same foods in highly individual ways. This has implications for understanding the development of nutrition-related diseases and for more personalised dietary advice to improve public health.’
The week provides the opportunity for participants to promote overall awareness for the wide ranging aspects of wellbeing, including social, physical, emotional, financial, career and environmental.
This week, 22-26 June, 2020 is World Wellbeing Week. The observance began in Jersey, the Channel Islands in 2019 and has since been taken up across the world.
Wellbeing and healthy lifestyle concept
Since the beginning of the global lockdown, people have been encouraged to maintain some sort of physical activity or exercise. While it is known that exercise is beneficial for overall physical and mental health and wellbeing, researchers from the University of Cambridge and University of Edinburgh UK, have released a study in which they say that physical activity prevents 3.9 million early deaths each year.
Publishing their work in The Lancet Global Health the researchers said that there is often too much focus on the negative health consequences of poor levels of physical activity, when we should be celebrating what we gain from physical activity.
Exercises and warm up before run
Researchers from the Medical Research Council Epidemiology Unit at the University of Cambridge looked at previously published data for 168 countries which covered the proportion of the population meeting WHO global recommendation of at least 150 minutes of moderate-intensity throughout the week or 75 minutes of vigorous-intensity activity.
By combining these data, with estimates of the relative risk of dying early for active people compared to inactive people, the researchers were able to estimate the proportion of premature deaths that were prevented because people were physically active.
They found that globally, due to physical activity, the number of premature deaths was an average 15% lower than it would have been, equating to 3.9 million lives saved each year. Despite the considerable variation in physical activity levels between countries, the positive contribution of physical activity was remarkably consistent across the globe, with a broad trend towards a greater proportion of premature deaths averted for low and middle income countries.
Hands holding red heart representing healthy heart and wellbeing
The researchers argue that the debate on physical activity has often been framed in terms of the number of early deaths due to the lack of exercise, currently estimated at 3.2 million each year. But showing how many deaths are averted it might be possible to frame the debate in a positive way which could have benefits for policy and population messaging.
Fitness session
Dr Tess Strain from the Medical Research Council Epidemiology Unit at the University of Cambridge said; ‘We’re used to looking at the downsides of not getting enough activity – whether that’s sports or a gym or just a brisk walk after lunch time. But by focusing on the number of lives saved, we can tell a good news story of what is already being achieved…We hope our finding will encourage governments and local authorities to protect and maintain services in these challenging times.’
Fan of milk and cheese? Here’s some good news - researchers have associated dairy-rich diets to reduced risk of developing diabetes and high blood pressure.
According to a large international study published in BMJ Open Diabetes Research & Care, a research team has found that eating at least two daily servings of dairy is associated with lower risk of diabetes and high blood pressure.
Dairy products; milk and cheese
To see if this link exists across a range of countries, researchers drew on people taking part in the Prospective Urban Rural Epidemiology (PURE) study, in which involves participants from 21 countries aged 35–70. Information on dietary intake over a period of 12 months was collected using food frequency questionnaires. Dairy products included milk, yoghurt, yoghurt drinks, cheese, and dishes prepared with dairy products. Butter and cream were assessed separately as they are not so commonly eaten.
The results demonstrated that total and full fat dairy were associated with a lower prevalence of metabolic syndrome, which was not the case for a diet with no daily dairy intake. Two dairy servings a day was associated with a 24% lower risk of metabolic syndrome, rising to a 28% lower risk for a full fat dairy intake.
It was also noted that consuming at least two servings of full fat dairy per day was linked to an 11%–12% lower risk of high blood pressure and diabetes, whilst three servings of full fat dairy intake per day decreased the risks by 13% -14%.
Heart and stethoscope
The researchers stated that ‘If our findings are confirmed in sufficiently large and long term trials, then increasing dairy consumption may represent a feasible and low cost approach to reducing (metabolic syndrome), hypertension, diabetes, and ultimately cardiovascular disease events worldwide.’
Here is a roundup on some of the most recent research and scientific efforts against the coronavirus.
Novartis:
Novartis has reached an agreement with the US Food and Drug Administration to proceed with a phase III clinical trial of hydroxychloroquine in hospitalized Covid-19 patients. The large trial will be conducted at more than a dozen sites in the US and tested on approximately 440 patients to evaluate the use for this treatment.
Additionally, Norvatis plans to make its hydroxychloroquine intellectual property available to support broad access to hydroxychloroquine. Read more here.
Causaly
Causaly, an innovative technology company that harnesses AI to interpret vast databases of biomedical knowledge, is collaborating with UCL academics to increase research on potential therapeutic agents and the identification of biomarkers.
Several researchers and research groups within UCL have been granted access to Causaly technology, allowing them the access to rapidly analyse and derive insights from biomedical literature.
Read more here.
Vaccine Taskforce
As part of the UK’s wider efforts to support the development of a vaccine, a new government-led Vaccine Taskforce will soon be launched to drive forward the manufacturing and research efforts to fight the virus.
The government will review regulations to facilitate fast and safe vaccine trials, as well as operational plans, to ensure a vaccine can be produced at a large scale when it becomes available. Industry and academic institutions will be given the resources and support needed.
Business Secretary Alok Sharma said, ‘UK scientists are working as fast as they can to find a vaccine that fights coronavirus, saving and protecting people’s lives. We stand firmly behind them in their efforts. The Vaccine Taskforce is key to coordinating efforts to rapidly accelerate the development and manufacture of a potential new vaccine.’ Read more here.
A new biosensor for the COVID-19 virus
Research teams at Empa and ETH Zurich have developed an alternative test method in the form of an optical biosensor. The sensor made up of gold nanostructure, known as gold nonoislands on a glass substrate, combines two different effects to detect covid-19: an optical and a thermal one.
According to the release, ‘Artificially produced DNA receptors that match specific RNA sequences of the SARS-CoV-2 [virus] are grafted onto the nanoislands,’ and researchers will then use the optical phenomena, - localised surface plasmon resonance - to monitor the presence of the virus.
The biosensor is not yet ready to be used to monitor and detect COVID-19, however tests showed the sensor can distinguish between very similar RNA sequences of SARS-CoV-2 virus and its relative, SARS-Cov. Read more here.
For more information and more updates on the coronavirus, please visit our hub here.
As the COVID-19 outbreak increases pressure on the UK’s NHS services and frontline staff, leading scientists and businesses are taking on new initiatives to tackle the outbreak. As there is currently no treatment or vaccine for this virus, researchers are working at unprecedented speed to accelerate the development of a treatment. Businesses are putting in more effort to help those on the frontline of this global crisis.
INEOS has managed to built a hand sanitzer plant in the UK and will soon open the facility in Germany, aiming to produce 1m bottles per month each to address a supply shortage across the UK and Europe.
BASF will soon be producing hand sanitizers at its petrochemicals hub in Germany to address the shortage in the region.
Ramping up the supply of PPE, AstraZeneca is donating nine million face masks to support healthcare workers around the world. Alongside this, AstraZeneca is accelerating the development of its diagnostic testing capabilities to scale-up screening and is also partnering with governments on existing screening programmes.
Pharmaceutical company Novartis UK, along with several others, is making available a set of compounds from its library that it considers are suitable for in vitro antiviral testing.
GSK has announced that is donating $10 million to the COVID-19 Solidarity Response Fund. The Fund was created by the World Health Organisation (WHO) to help WHO and its partners to prevent, detect and manage the pandemic
Alongside the efforts and initiatives from industries, to continue to aid those on the frontline of this global crisis, social distancing interventions must remain to flatten the curve.
Research and data modelling has shown that policy strategies, such as social distancing and isolation interventions which aim to suppress the rate of transmission, might reduce death and peak healthcare demand by two-thirds.
Stopping non-essential contact can flatten the curve. Suppressing the curve means we may still experience the same number of people becoming infected but over a longer period of time and at a slower rate, reducing the stress on our healthcare system.
Yesterday was Shrove Tuesday, the traditional feast day before the start of Lent. Also known as Pancake Day, many people will have returned to traditional recipes or experimented with the myriad of options available for this versatile treat.
But you may not realise pancakes are helping to advance medicine. Here we revisit some interesting research
The appearance of pancakes depends on how water escapes the batter mix during the cooking process. This is impacted by the batter thickness. Understanding the physics of the process can help in producing the perfect pancake, but also provides insights into how flexible sheets, like those found in human eye, interact with flowing vapour and liquids.
Illustration of a healthy eye, glaucoma, cataract
The researchers at University College London (UCL), UK, compared recipes for 14 different types of pancake from across the world. For each pancake the team analysed and plotted the aspect ratio, i.e. the pancake diameter to the power of three in relation to the volume of batter. They also calculated the baker’s percentage, the ratio of liquid to flour in the batter.
Pancake batter
It was found that thick, almost spherical pancakes had the lowest aspect ratio at three, whereas large thin pancakes had a ratio of 300. The baker’s percentage did not vary as dramatically, ranging from 100 for thick mixtures to 175 for thinner mixtures.
Co-author Professor Sir Peng Khaw, Director of the NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology said; ‘We work on better surgical methods for treating glaucoma, which is a build-up of pressure in eyes caused by fluid. To treat this, surgeons create an escape route for the fluid by carefully cutting the flexible sheets of the sclera.’
‘We are improving this technique by working with engineers and mathematicians. It’s a wonderful example of how the science of everyday activities can help us with medicinal treatments of the future.’
Classic american pancakes
Who is Dmitri Mendeleev?
Russian chemist, Dmitri Mendeleev was born in 1834 in a Siberian village. His early life has been described as tumultuous; his father lost his sight and died when Dmitri was thirteen, leaving his family in financial difficulties.
His mother prioritised Dmitiri’s academic potential, taking him and his sister to St Petersburg, where he studied at the Main Pedagogical Institute. When his mother died, he carried out his doctoral research in St Petersburg where he explored the interactions of alcohols with water.
Between 1859 and 1861 he went to Paris to study the densities of gases, and he travelled to Germany where he studied capillarity and surface tension that subsequently led to his theory of ‘absolute boiling point.’ In 1861 he returned to Russia to publish everything he knew on organic chemistry in a 500-page textbook, and by 1864 he became a professor at the Saint Petersburg Technological Institute and Saint Petersburg State University.
As he continued his research, he tried to classify the elements according to the chemical properties. He became aware of a repeating pattern – elements with similar properties appeared at regular intervals. He arranged the elements in order of increasing relative atomic mass and noticed the chemical properties of these elements revealed a trend, which led to the formation of the periodic table.
Beyond his work in chemistry, during the 1870s, he devoted time to help the Russian industry, particularly in strengthening the productivity in agriculture. He became very active in exploring the Russian petroleum industry and developed projects in the coal industry in the Donets Basin. Additionally, he was responsible for creating and introducing the metric system to Russia.
A growing population is placing greater pressure on limited resources including land, oceans, water and energy. If agricultural production continues in its present form, water degradation, biodiversity loss and climate change will continue. As a result, people are adopting an increased interest in the environmental impact of food choice, choosing alternatives like insects.
This round-up explores examples of the various insect-based alternative foods.
Insect Snacks
According to data from Grand View Research, a US-based market research company, the global healthy snacks market is expected to reach $32.88 billion by 2025. Companies across Europe are developing healthy snack products based on insects, tapping into our desire for a variety of foods and tastes.
Insect
Eat Grub, established in 2013 and based in London UK, developed an insect snack made from house crickets, which are farmed in Europe. They are a sustainable, nutritious and tasty source of food, rich in protein. Research has indicated that insects are good for gut health due to their high chitin content. Chitinous fibre has been linked to increased levels of a metabolic enzyme associated with gut health.
Insect Beer
A start-up Belgian beer company, Belgium Beetles Beer, described their drink as a real Belgium blond beer enriched with insect vitamins and proteins.
Upon ‘accidentally’ developing this product, they realised that the dry beetle powder offered a rich, light sweet, slightly bitter flavour.
Beer
Insect Burger
A growing number of companies are now focusing their efforts on producing a product that looks and tastes like a traditional meat-based burger.
Bugfoundation’s burgers are based on buffalo worms, which are the larvae of the Alphitobius Diaperinus beetle. The company’s founders said that they decided to use buffalo worms because of their ‘slightly nutty flavour.’
The idea stemmed from a trip to Asia, where co-founder, Max Charmer came across fried crickets. His experience inspired him to bring these flavours to the west, hoping to please western tastes and comply with evolving European regulations.
Burger
Concerns regarding the livestock system have prompted novel inventions in the food space; insects, considered a source of protein, could outperform conventional meats to reduce environmental impacts.
So, will consumers soon be able to introduce insects to their everyday diets? Only time will tell.
Fried insects
Aldrin, Armstrong and Collins, Apollo 11’s brave astronauts were the first humans with the privilege of viewing Earth from another celestial body. These men uniquely wondered “what makes Earth special?” Certainly, within our Solar System, planet Earth is very special. Its environment has permitted the evolution of a panoply of life.
Green plants containing the pigment, chlorophyll either in the oceans as algae or on land as a multitude of trees, shrubs and herbs harvest energy from sunshine. Using a series of chemical reactions, known as photosynthesis, light energy is harvested and attached onto compounds containing phosphorus.
Captured energy then drives a series of reactions in which atmospheric carbon dioxide and water are combined forming simple sugars while releasing oxygen. These sugars are used further by plants in the manufacture of larger carbohydrates, amino acids and proteins, oils and fats.
The release of oxygen during photosynthesis forms the basis of life’s second vital process, respiration. Almost all plants and animals utilise oxygen in this energy releasing process during which sugars are broken down.
Released energy then drives all subsequent growth, development and reproduction. These body-building processes in plants are reliant on the transfer of the products of photosynthesis from a point of manufacture, the source, to the place of use, a sink.
Leaves and shoots are the principle sources of energy harvesting while flowers and fruits are major sinks with high levels of respiration.
Figure 1: Photosynthesis vs respiration, drawn by James Hadley
Transfer between sources and sinks occurs in a central system of pipes, the vascular system, using water as the carrier. Water is obtained by land plants from the soils in which they grow. Without water there would be no transfer and subsequent growth. Earth’s environment is built around a ‘water-cycle’ supplying the land and oceans with rain or snow and recycles water back into the atmosphere in a sustainable manner.
Early in Earth’s evolution, very primitive marine organisms initiated photosynthetic processes, capturing sunlight’s energy. As a result, in our atmosphere oxygen became a major component. That encouraged the development of the vast array of land plants which utilise rain water as the key element in their transport systems.
Subsequently, plants formed the diets of all animals either by direct consumption as herbivores or at second-hand as carnivores. As a result, evolution produced balanced ecosystems and humanity has inherited what those astronauts saw, “the Green Planet”.
Earth will only retain this status if humanity individually and collectively defeats our biggest challenge – climate change. Burning rain forests in South America, Africa and Arctic tundra will disbalance these ecosystems and quicken climate change.
On 8th March, I hosted my company’s first International Women’s Day event. Here’s what inspired me to do it…
1. We need to talk about the lack of women in science
There are a lot of factors at play as to why women are underrepresented in science – it’s a complex issue and there’s been a rise in efforts to tackle it, which is great to see. We need to challenge the idea of what a ‘scientist’ looks like.
Simply by making people aware of stereotype threat and inherent bias, we can begin to break the rigid mould of what it means to be a ‘scientist’. We can’t face it if we never talk about it, and dedicated events are a way of opening up the conversation.
A ‘leaky pipeline’ has actually been coined in science – women ‘trickle out’ as they go up the career ladder. If we’re making an effort to encourage younger girls to study science subjects, we need to question why they’re not being retained at more senior levels. This effort needs to come from businesses.
WISE (Women in Science and Engineering) reports the science workforce gender split in 2018. Source: WISE
2. There’s a difference between diversity and inclusion
When we think about the ‘leaky pipeline’, we need to address the difference between diversity and inclusion.
Diversity is important, but it’s not enough. Diversity is the who and what; inclusion is the how. It’s not just about who’s being recruited, or who gets a seat at the table. It’s about creating behaviours that embrace the diverse voices of these people. Diversity without inclusion is just a box-ticking exercise. We need to acknowledge our differences and show a commitment to changing company culture to embrace them.
Hosting events like International Women’s Day is a good start to demonstrating this commitment and dedicating a day for women to be heard.
Image: BrandisEGO
3. I want to celebrate my colleagues
I’m lucky to work with some amazing scientists, some of whom happen to be women. I wanted to take a day to celebrate their accomplishments and those of all the women who are breaking glass ceilings in science. When people feel seen and recognised for their work it creates a healthier work environment. By having this day in place, we can dedicate a day each year to celebrate and congratulate women on their achievements. Plenty of my female colleagues were keen to get involved and help, and I was inspired to hear all their stories and ideas.
4. It’s a win-win
I suggested this event because I thought it was a great fit for my company and could benefit us in many tangible ways. Workplace diversity can actually boost performance - a report found that when employees “think their organisation is committed to and supportive of diversity, and they feel included”, their ability to innovate increases by 83%. It also makes perfect sense to me that, by including all genders equally, we have access to a greater pool of talent and a wider range of mentors available for junior talent. Plus, it’s a brand-booster to show that we are bringing ourselves into the future and being socially conscious.
5. It’s just the beginning
We’re starting to talk more about gender issues in the workplace, but women are not the only people who are affected by discrimination. We need inclusion for everyone.
For example, most people are aware of the gender pay gap and companies are now obliged to publish their data on this, but in the UK, black male graduates earn almost £4 less per hour than their white peers. Another study found that almost a third of LGBT+ physical scientists had considered leaving their workplace because of discrimination. These are issues that need to be openly talked about and acknowledged before we can even think about solving them. Science should be for everyone and I’m really excited to host more events to encourage this.
Image: Tiffany Pollard
The banana colour scheme distinguishes seven stages from ‘All green’ to ‘All yellow with brown flecks’. The green, unripe banana peel contains leucocyanidin, a flavonoid that induces cell proliferation, accelerating the healing of skin wounds. But once it is yellowish and ready to eat, the chlorophyll breaks down, leaving the recognisable yellow colour of carotenoids.
Unripe (green) and ready-to-eat (yellow) bananas.
The fruits are cut from the plant whilst green and on average, 10-30 % of the bananas do not meet quality standards at harvest. Then they are packaged and kept in cold temperatures to reduce enzymatic processes, such as respiration and ethylene production.
However, below 14°C bananas experience ‘chilling injury’ which changes fruit ripening physiology and can lead to the brown speckles on the skin. Above 24°C, bananas also stop developing fully yellow colour as they retain high levels of chlorophyll.
Once the green bananas arrive at the ripening facility, the fruits are kept in ripening rooms where the temperature and humidity are kept constant while the amount of oxygen, carbon dioxide and ethene are controlled.
The gas itself triggers the ripening process, leads to cell walls breakdown and the conversion of starches to sugars. Certain fruits around bananas can ripen quicker because of their ethene production.
By day five, bananas should be in stage 2½ (’Green with trace of yellow’ to ‘More green than yellow’) according to the colour scale and are shipped to the shops. From stage 5 (’All yellow with green tip’), the fruits are ready to be eaten and have a three-day shelf-life.
A fruit market. Image: Gidon Pico
The very short shelf-life of the fruit makes it a very wasteful system. By day five, the sugar content and pH value are ideal for yeasts and moulds. Bananas not only start turning brown and mouldy, but they also go through a 1.5-4 mm ‘weight loss’ as the water is lost from the peel.
While scientists have been trying out different chemical and natural lipid ‘dips’ for bananas to extend their shelf-life, such methods remain one of the greatest challenges to the industry.
In fruit salads, to stop the banana slices go brown, the cut fruits are sprayed with a mixture of citric acid and amino acid to keep them yellow and firm without affecting the taste.
Bananas are a good source of potassium and vitamins.
The high starch concentration – over 70% of dry weight – banana processing into flour and starch is now also getting the attention of the industry. There are a great many pharmaceutical properties of bananas as well, such as high dopamine levels in the peel and high amounts of beta-carotene, a precursor of vitamin A.
Whilst the ‘seven shades of yellow’ underpin the marketability of bananas, these plants are also now threatened by the fungal Panama disease. This vascular wilt disease led to the collapse of the banana industry in the 1950’s which was overcome by a new variety of bananas.
However, the uncontrollable disease has evolved to infect Cavendish bananas and has been rapidly spreading from Australia, China to India, the Middle East and Africa.
The future of the banana industry relies on strict quarantine procedures to limit further spread of the disease to Latin America, integrated crop management and continuous development of banana ‘dips’ for extending shelf-life.
In honour of World Chocolate Day on 7 July, we delve into the health benefits of chocolate. You can thank us later!
Chocolate – one of the most consumed foods in the world – contains flavonoids, an antioxidant compound present in cocoa pulp, which can cause negative effects on human vascular health.
However, new studies have explored the benefits of adding nutritional oils to food products, and found that adding high oleic peanut oil can increase the bioactive property of dark chocolate, leading to significant health benefits!
High oleic peanut oil
Adding microcapsules of high oleic peanut oil reduces the lipid content of dark chocolate and influences the nutritional composition, thus increasing the content of unsaturated fatty acids in the lipid fraction of chocolate.
Studies have demonstrated that by adding microcapsules to the chocolate mass, the fat content would not rise, which means dark chocolate containing microcapsules has a lower amount of free fat. Therefore, the use of microcapsules can act as an alternative to protecting the fatty acids.
Phenolic compounds
Natural antioxidants are highly valued because they are protective agents and highly sought out to replace synthetic ones in plant products. A broad range of plant foods including cocoa have been sources of phenolic compounds.
Trans-resveratrol, a phenolic compound is frequently associated with prevention of cancer, ischemias, diabetes, inflammations and viral infections. During chocolate production, the content of phenolic compounds naturally present in cocoa beans becomes lost or reduced. Therefore, it is important to minimise the loss of phenolic compounds.
Although, phenolic compounds are essential to obtaining good quality coca beans, they also have a potentially negative influence on flavour conferring to bitterness. Understanding the factors that influence the losses of phenolic compounds is important in obtaining the final product with the desirable sensory attributes.
There is considerable evidence that cocoa with high oleic peanut oil and cocoa with high content of phenolic compounds can provide powerful health benefits, especially against heart disease.
2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on silicon’s positive effects on the body.
Silicon was not originally regarded as an important element for human health, as it was seen to have a larger presence in (other) animal and plant tissue. It was not until a 2002 ‘The American Journal of Clinical Nutrition’ paper that surmised that accumulating research found that silicon plays an important role in bone formation in humans.
Silicon was first known to ‘wash’ through biology with no toxological or biological properties. However, in the 1970s, animal studies provided evidence to suggest that silicon deficiency in diets produced defects in connective and skeletal tissues. Ongoing research has added to these findings, demonstrating the link between dietary silicon and bone health.
Silicon plays an important role in protecting humans against many diseases. Silicon is an important trace mineral essential for strengthening joints. Additionally, silicon is thought to help heal and repair fractures.
The most important source of exposure to silicon is your diet. According to two epidemiological studies (Int J Endocrinol. 2013: 316783 ; J Nutr Health Aging. 2007 Mar-Apr; 11(2): 99–110) conducted, dietary silicon intake has been linked to higher bone mineral density.
Silicon is needed to repair tissue, as it is important for collagen synthesis – the most abundant protein in connective tissue in the body – which is needed for the strengthening of bones.
However, silicon is very common in the body and therefore it is difficult to prove how essential it is to this process when symptoms of deficiency vary among patients.
There has also been a plausible link between Alzheimer’s disease and human exposure to aluminium. Research has been underway to test whether silicon-rich mineral waters can be used to reduce the body burden of aluminium in individuals with Alzheimer’s disease.
However, longer term study is needed to prove the aluminium hypothesis of Alzheimer’s disease.
Globally, beers with flavours of fruits and touches of acidity notes have become very popular among consumers. Nowadays, experience has become the biggest trend in drinks; consumers desire an immersive experience and seek drinks with enhanced characteristics which include texture, mouthfeel, taste, flavour and colour.
Over the course of history, brewing became an essential element in rural communities. A study at Simon Fraser University in Canada investigated beer-brewing tools in archaeological remains belonging to the Natufian culture in the Eastern Mediterranean. The examination showed that the brewing of beer was an important cultural component of their society. Studies in Mexico suggested that generations of Mexican farmers domesticated grass into maize, which became a staple of the local diet before it became great for making beer.
As suggested, brewing became an essential element in rural communities and has now transformed from a small-scale local activity to a worldwide industry.
Belgium is known for its traditional and spontaneous mixed fermented beers, such as lambic beers which harbour complex micro-biotics.
Lambic beers are among the most ancient brewing styles and its unique flavour profile has garnered global popularity.
Wooden barrels play an essential role during its fermentation processes. Lambic brewers prefer using wooden barrels, which often come from red wine productions, as the wooden surfaces harbour a resident microbiota, providing an additional microbial inoculation source for lambic production.
These barrels are preferred because most of the oak flavours will not come through in the final production of lambic, as the oak character has been stripped from the barrel.
Consumers regard the combination of taste and odour as essential factors to their choice. Flavour quality degradation can be triggered by various factors.
Prolonged periods of transportation and storage causes the fresh flavour of beer to deteriorate. Different temperatures in combination with vibrations during transport can negatively influence the quality of beer.
High temperatures can reduce the freshness of beer, increasing the amount of oxidative and non-oxidative chemical reactions which take place. These oxidative reactions degrade the flavour and quality of beer.
It seems vibrations can cause an impact on beer quality subject to an elevated temperature, therefore, temperature reductions during transport and storage should be a primary focus for brewers. However, further research is required with regard to closely examining the influence of transport vibrations on the flavour of beer.
Food safety refers to handling, preparing and storing food in a way that best reduces the risk of people becoming sick, and it’s a topic that’s high on everyone’s agenda. Here we explore three recent scientific advances in the area of food safety.
Antibiotic detection in dairy products
Antibiotics are the largest group of medicines and, due to their use in treating animals, they have been making their way into the food chain and into food products. Consuming food that contain antibiotics could result in poor health outcomes, such as allergic reactions and other events. Antibiotics that accumulate in cattle milk can transfer into dairy products and so it’s urgent that we detect and address the issue.
A new test has been developed that showed, in a recent study, that it can detect antibiotics in food products. The precision of the test means that it can test for a wide range of antibiotics and the testing process is very simple and easy to conduct. It could also detect antibiotics at all stages of the food production process, which is great news in the fight to reduce antibiotics in the food chain.
Reducing contamination of smoked fish
Smoked fish is very popular in developing countries, as it is a good source of protein. The preparation of it involves hot‐smoking on traditional kilns using wood fuel. This practice is associated with high levels of a substance known as polycyclic aromatic hydrocarbons (PAHs) in the food, which has an impact on health.
An improved kiln has been introduced by the Food and Agriculture Organization of the United Nations to address the levels of PAHs in smoked fish. A recent study showed that the improved kiln not only works just as well at smoking the fish, but does so with safer levels of PAHs. This means that people can continue to consume this valuable protein source without the potentially cancer-causing chemicals.
The safest way to prepare fruit and veg?
Pesticides have been reported to find their way into our fruit and vegetables, albeit at minimal amounts. A recent study looked at food preparation techniques to compare what methods were the most effective in removing pesticides, with interesting results.
The simplest and most effective way was shown to be peeling the skin of fruit or trimming the outer layers of vegetables before cooking. Whilst this is the most effective, most of the vitamins may be stored close to the skin surface and so these are lost in this process.
Washing and soaking were sometimes effective and sometimes not. Washing causes less loss of nutrients and is less time consuming than peeling and it reduces the pesticide residue by a reasonable amount but it wasn’t always shown to be effective. How effective it could depended on the type of skin of the food.
Blanching was another method that was explored. Blanching vegetables in boiling water for one minute loses less nutrients than cooking, whilst removing pesticides very efficiently.
The results certainly give us food for thought in our meal preparation!
Clean and fresh water is essential for human life, and water is a necessity to agricultural and other industries. However, global population growth and pollution from industrial waste has put a strain in local fresh water resources.
A hydrogel is made up of polymer chains that are hydrophilic (attracted to water) and are known for being highly absorbent.
Current clean-up costs can be extremely expensive, leaving poorer and more remote populations at risk to exposure of metal pollutants such as lead, mercury, cadmium and copper, which can lead to severe effects on the neurological, reproductive and immune systems.
Now, a group of scientists at the University of Texas at Dallas, US, have developed a 3D printable hydrogel that is capable of 95% metal removal within 30 minutes.
Clean water is also needed for one’s hygiene, including brushing your teeth and bathing.
The hydrogel is made from a cheap, abundant biopolymer chitosan and diacrylated pluronic, which forms cDAP. The cDAP mixture is then loaded into the printer as a liquid and allowed to cool to <4⁰C, before rising again to room temperature to form a gel that can be used to produce various 3D printed shapes.
The Dallas team also tested the reusability of their hydrogel and found that it had a recovery rate of 98% after five cycles of use, proving it to be a potentially reliable resource to communities with limited fresh water supply.
.
Life without clean water. Video: charitywater
‘This novel and cost-effective approach to remove health and environmental hazards could be useful for fabricating cheap and safe water filtration devices on site in polluted areas without the need for industrial scale manufacturing tools,’ the paper reads.
Treatments for Alzheimer’s disease can be expensive to produce, but by using novel cultivation of daffodils, one small Welsh company has managed to find a cost-effective production method of one pharmaceutical drug, galanthamine.
The disease has been identified as a protein misfolding disease which leads to the break down, or death, of neurons and synapses in the brain. The pathology of the disease is complicated and involves many processes and enzymes.
Alzheimer’s disease is the cause of 60-70% of dementia cases.
Alzheimer’s disease is a neurodegenerative disease with a range of symptoms, including language problems, memory loss, disorientation and mood swings. Despite this, the cause of Alzheimer’s is very understood. The Alzheimer’s disease drug market is currently worth an estimated US$8bn.
The main current form of treatment is acetylcholinesterase inhibitors(AChEIs). Acetylcholine is a neurotransmitter that is mainly involved in motor function, particularly in muscles, and its production has been found to decrease in Alzheimer’s patients as they age. AChEIs inhibit the breakdown of acetylcholine, strengthening the brain’s responses.
Agroceutical Products: on the road to sustainable Alzheimer’s medication. Video: Innovate UK
Galanthamine is a natural product that is also an acetylcholinesterase inhibitor. It has been used in medicine since the 1950s and is commonly used for the treatment of Alzheimer’s disease. The drug can be isolated in small quantities from flowers such as Caucasian snowdrop, daffodils and red spider lilies, or produced synthetically at a high cost.
Of all places to have an injection, the eyeball is probably near the bottom of anybody’s list. Yet this is how macular degeneration – the leading cause of sight loss in the developed world – is commonly treated.
Individuals who have macular degeneration will have blurred or no vision in the center of their visual fields (as shown above).
In the UK, nearly 1.5m people are affected by macular disease, according to the Macular Society. In its commonest ‘wet’ form, macular degeneration is caused by the growth of rogue blood vessels at the back of the eye, due to over-production of a protein called vascular endothelial growth factor (VEGF).
The blood vessels leak, causing damage to the central part of the retina – the macula – and a loss of central vision. Regular injections of so-called anti-VEGF drugs help to alleviate the problem.
As well as being time-consuming, these injections can be stressful and upsetting for sufferers, many of whom are elderly. Because the condition is prevalent among older people, it is usually referred to as age-related macular degeneration, or AMD.
However, a number of emerging treatments – including eye drops, inserts and a modified ‘contact lens’ – could spell the end of regular injections, and treat the condition less invasively.
Anatomy of the eye. Video: Handwritten Tutorials
At the same time, emerging stem cell therapy, which has reversed sight loss for two patients with the ‘dry’ form of macular degeneration, could find wider use within a few years.
Organised by the National Human Genome Research Institute each year, National DNA Day in the US on 25 April celebrates the discovery of DNA’s double helix in 1953 and the completion of the Human Genome Project in 2003. Here, we explore the history of DNA and its discovery’s unparalleled effect on science, medicine and the way we now understand the human body.
Discovering DNA’s structure
Using the pictures that she had taken, Franklin was able to calculate the dimensions of the strands and found the phosphates were on the outside of the DNA helix.
Rosalind Franklin working in her lab. Image: Wikimedia Commons
Meanwhile, at the University of Cambridge, James Watson and Francis Crick deduced the double-helix structure of DNA, describing it as ‘two helical chains each coiled round the same axis’ following a right-handed helix containing phosphate diester groups joining β-D-deoxyribofuranose residues with 3’,5’ linkages.
The discoveries made by these scientists would propel the study of genetics into the modern science we know today. Crick and Watson were awarded the Nobel Prize for Physiology or Medicine alongside Maurice Wilkins, who worked with Rosalind Franklin, in 1962. You can read their original paper here.
Dolly the sheep
Dolly on display at the National Museum of Scotland, UK.
Dolly is arguably the most famous sheep in the world, having been the first mammal to be cloned from an adult cell. Born in 1996, Dolly was part of a series of experiments at the Roslin Institute in Edinburgh to create GM livestock that could be used in scientific experiments.
She was cloned using a technique called somatic cell nuclear transfer, where a cell nucleus from one adult is transferred into an unfertilised developing egg cell of another that has had its nucleus removed, which is then implanted into a surrogate mother.
The scientific legacy of Dolly the sheep. Video: Al Jazeera English
Dolly lived until 2003 when she was euthanised after contracting a form of lung cancer. Many speculated that Dolly’s early death was related to the cloning experiment but extensive health screening throughout Dolly’s life by the Roslin Institute suggest otherwise.
Her creation has led to further cloning projects and could be used in the future to preserve the populations of endangered or extinct species, and has led to significant developments in stem cell research.
In 2009, Spanish researchers announced the cloning of a Pyrenean ibex, which has been extinct since 2000, and was the first cloning of an extinct animal. Unfortunately, the ibex died shortly after birth but there have been a few successful stories since then.
The Human Genome Project
Beginning in 1990 and finishing in 2003, the Human Genome Project was an international research initiative that aimed to write the entire sequence of nucleotide base pairs that make up the human genome, including the mapping of all its genes that determine our physical and functional attributes.
The publicly funded $3bn project was able to map 99% of the human genome with 99.99% accuracy, which included its 3.2bn Mega-base pairs, 20,000 genes and 23 chromosome pairs, and has led to advancements in bioinformatics, personalised medicine and a deeper understanding of human evolution.
Scientists are closer to developing 3D printed artificial tissues that could help heal bones and cartilage, specifically those damaged in sports-related injuries. Scaffolds for the tissues have been successfully engineered.
Small injuries to osteochondral tissue – a hard bone that sits beneath a layer of cartilage that appears smooth – can be extremely painful and heal slowly. These injuries are very common in athletes and can stop their careers in their tracks. Osteochondral tissue can also lead to arthritis over time.
These types of injuries are commonly seen in athletes.
As osteochondral tissue is somewhere between bone and cartilage, and is quite porous and very difficult to reproduce. But now, bioengineering researchers at Rice University, Texas, US, have used 3D printing techniques to develop a material that may be be suitable in future for medical use.
A porous scaffold, with custom polymer mixes for cartilage and ceramic for bone, was engineered. The imbedded pores allow cells and blood vessels from the patient to infiltrate, integrating the scaffold into the natural bone and cartilage.
‘For the most part, the composition will be the same from patient to patient,’ said Sean Bittner, graduate student at Rice University and lead author of the study.
Cooking, cleaning and other routine household tasks generate significant quantities of volatile and particulate chemicals inside the average home, leading to indoor air quality levels on a par with a polluted major city, said a researcher from Colorado University Boulder, US.
Not only that but these chemicals, from products such as shampoo, perfume and cleaning solutions also find their way into the external environment, making up an even greater source of global atmospheric pollution than vehicles.
‘Homes have never been considered an important source of outdoor pollution and the moment is right to start exploring that,’ said Marina Vance, assistant professor of mechanical engineering at CU Boulder. ‘We wanted to know how do basic activities such as cooking and cleaning change the chemistry of a house?’
First Conclusions from the HOMEChem Experiment. Video: Home Performance
In 2018, Vance co-led the collaborative HOMEChem field campaign, which used advanced sensors and cameras to monitor the indoor air quality of a 112m2 manufactured home on the University of Texas Austin campus.
Over one month, Vance and her collaborators from a number of other US universities conducted a variety of activities, including cooking toast to a full thanksgiving dinner in the middle of the summer for 12 guests, as well as cleaning and similar tasks.
In honour of World Health Day, held on 7 April 2019 annually, we have collated the five most innovative healthcare projects we have featured on SCI’s website over the past year.
New cardiac MRI scan improves diagnostic accuracy
Using 2D imaging techniques to diagnose problems with the heart can be challenging due to the constant movement of the cardiac system. Currently, when a patient undergoes a cardiac MRI scan they have to hold their breath while the scan takes snapshots in time with their heartbeat.
Still images are difficult to obtain with this traditional technique as a beating heart and blood flow can blur the picture. This method becomes trickier if the individual has existing breathing problems or an irregular heartbeat.
3D cell aggregates could improve accuracy of drug screening
An innovative new screening method using cell aggregates shaped like spheres may lead to the discovery of smarter cancer drugs, a team from the Scripps Research Institute, California, US, has reported.
The 3D aggregates, called spheroids, can be used to obtain data from potentially thousands of compounds using high throughput screening (HTS). HTS can quickly identify active compounds and genes in a specific biomolecular pathway using robotics and data processing.
Antibiotic combinations could slow resistance
Several thousand antibiotic combinations have been found to be more effective in treating bacterial infections than first thought.
Antibiotic combination therapies are usually avoided when treating bacterial infections, with scientists believing combinations are likely to reduce the efficacy of the drugs used. Now, a group at UCLA, USA, have identified over 8,000 antibiotic combinations that work more effectively than predicted.
Mechanism that delays and repairs cancerous DNA damage discovered
Researchers at the University of Copenhagen, Denmark, have identified a mechanism that prevents natural DNA errors in our cells. These errors can lead to permanent damage to our genetic code and potentially diseases such as cancer.
Mutations occurring in human DNA can lead to fatal diseases like cancer. It is well documented that DNA-damaging processes, such as smoking tobacco or being exposed to high levels of ultraviolet (UV) light through sunburn, can lead to increased risk of developing certain forms of cancer.
Alzheimer’s drugs made from Welsh daffodils
Treatments for Alzheimer’s disease can be expensive to produce, but by using novel cultivation of daffodils one small Welsh company has managed to find a cost-effective production method of one pharmaceutical drug, galanthamine.
Alzheimer’s disease is a neurodegenerative disease with a range of symptoms, including language problems, memory loss, disorientation and mood swings. Despite this, the cause of Alzheimer’s is very understood. The Alzheimer’s disease drug market is currently worth an estimated US$8bn.
For British Science Week 2019, we are looking back at how Great Britain has shaped different scientific fields through its research and innovation. British scientists, engineers and inventors have played a significant role in developing engines and the automotive industry that stemmed from them.
Steam power
Before the internal combustion engine, steam power was revolutionary in progressing industry in Britain.
The first practical steam engine was designed by English inventor Thomas Newcomen in 1712 and was later adapted by Scotsman James Watt in 1765. Watt’s steam engine was the first to make use of steam at an above atmospheric pressure.
The Steam Engine - How Does It Work? Video: Real Engineering
In 1804, the first locomotive-hauled railway journey was made by a steam locomotive design by Richard Trevithick, an inventor and mining engineer from Cornwall, UK.
After this, steam trains took off and the steam engine was used in many ways such as powering the SS Great Britain, designed by Isambard Kingdom Brunel and launched in 1843.
The SS Great Britain in Bristol, UK, today.
Engines at the ready
The conception and refinement of the internal combustion engine involved many inventors from around the world, including British ones.
The automobile, using the internal combustion engine, was been invented in the United States, and Britain picked up on this emerging industry very quickly. These brands are among the most famous and abundant cars on the road today; Aston Martin, Mini, Jaguar, Land Rover and Rolls Royce may come to mind.
By the 1950s, the UK was the second-largest manufacturer of cars in the world (after the United States) and the largest exporter.
In 1930, the jet engine was patented by Sr Frank Whittle. He was an aviation engineer and pilot who started his career as an apprentice in the Royal Air Force (RAF). The jet engine became critical after the outbreak of World War II.
Great Britain are still major players in the aviation industry, and engineering innovations continue to be a major part of the British economy. British inventors have gone on to invent the hovercraft, hundreds of different jet designs and a variety of military vehicles.
Almost half of world’s adults aged 85 and over have Alzheimer’s Disease.
The amyloid-B precursor protein (APP) plays a key role in the development of the amyloid plaques that are the hallmark of Alzheimer’s disease. Now, researchers claim to have identified thousands of genetic variants of the APP gene that codes for the protein in the brains of patients with the most common form of Alzheimer’s disease, known as late-onset or sporadic AD (SAD).
The study reveals for the first time how this genetic variation occurs – by a mechanism involving the enzyme reverse transcriptase, the same type of enzyme used by HIV to infect cells.
APP forms plaques in the brain, as shown above in a light micrograph.
Our findings provide a scientific rationale for immediate clinical evaluations of HIV antiretroviral therapies in people with AD,’ says Jerold Chun, senior VP of Neuroscience Drug Discovery at Sanford Burnham Prebys Medical Discovery Unit (SBP), an idea that the researchers say is supported by the relative absence of proven AD in ageing HIV patients on antiretroviral medication.
The APP gene variants were created by reverse transcription, the researchers note, when RNA acts as a template to form complementary DNA sequences that are then reinserted back into the original genome.
Discovery of possible Alzheimer’s treatment. Video: Sanford Burnham Prebys Medical Discovery Institute
This process of gene recombination – which occurs each time cells divide to make new ones – has not previously been reported in nerve cells (neurons) in the brain but could also help to explain the complexity and diverse functions of our brain cells.
Coeliac disease is caused by an autoimmune response to gluten and affects approximately 1 in 100 people worldwide. Those affected must eat a gluten-free diet, or they may experience uncomfortable digestive symptoms, mouth ulcers, fatigue and anaemia.
What’s the big deal with gluten? Video: TED-Ed
Problems occur for coeliac disease patients when they are exposed to gluten – a protein found in wheat and other grains – and the immune system is triggered to attack the body. This results in inflammation, mainly in the intestines, and causes the subsequent acute symptoms related to the condition.
Over 90% of coeliac disease patients carry immune recognition genes known as HLA-DQ2.5. These genes are human leukocyte antigen (HLA) genes, which usually relate to specific diseases.
ImmusanT, a leader in the development of therapies for autoimmune disorders, has developed a vaccine that targets patients carrying the HLA-DQ2.5 genes. This novel therapeutic vaccine, known as Nexvax2, works by reprogramming specific T cells that are responsible for triggering an inflammatory response when gluten is consumed.
Called Philyra, after the Greek goddess of fragrance, the AI programme developed two new fragrances for Brazilian beauty company O Boticário.
‘What she did was super innovative. She had a sweet warm background, but added cardamom-like Indian cuisine scents and a milk that came from the flavour department,’ says David Apel, Senior Perfumer with Symrise. ‘From 1.7m formulas, it is amazing for her to find something that hadn’t been done before.’
Using AI to create new fragrances. Video: IBM Research
In a demonstration at IBM Research in Zurich, Switzerland, computational researcher Richard Goodwin demonstrated how Philyra is able to scan 1,000 different formulations, and over 60 raw materials, and compare them with fragrances currently on the marketplace. It is possible to request a certain type of perfume and adjust its novelty.
Mosquitoes are a vector of the malarial parasite. Image: Pixabay
There were 219m cases of malaria in 2017, up 2m on the previous year. Increasingly, the disease is drug-resistant and prevention methods are difficult both in non-immune travelers and in areas where the disease is endemic. Moreover, most malaria drugs are designed to reduce symptoms after infection rather than prevent infection or transmission.
New compounds have been discovered with the potential to be novel antimalarial drugs. Image: Pixabay
A team of scientists are working to change that, aiming to treat the malaria parasite at an earlier stage – when it affects the human liver – rather than waiting until the parasite is in the blood. If successful, their work could have a significant impact on global health.
Roughly 60% of the 12 million animal experiments in Europe each year involve mice. But despite their undoubted usefulness, mice haven’t been much help in getting successful drugs into patients with brain conditions such as autism, schizophrenia or Alzheimer’s disease. So too have researchers grown 2D human brain cells in a dish. However, human brain tissue comprises many cell types in complex 3D arrangements, necessary for true cell identity and function to emerge.
Researchers are hopeful that lab grown mini-brains – tiny 3D tissues resembling the early human brain – may offer a more promising approach. ‘We first published on them in 2013, but the number of brain organoid papers has since skyrocketed, with 300 just last year,’ says Madeline Lancaster at the Medical Research Council’s Laboratory of Molecular Biology lab in Cambridge, UK.
Lancaster was the first to grow mini-brains – or brain organoids – as a postdoc in the lab of Juergen Knoblich at the Institute of Molecular Biotechnology in Vienna, Austria. The miniature brains comprised parts of the cortex, hippocampus and even retinas, resembling a jumbled-up brain of a human foetus.
‘We were stunned by how similar the events in the organoids were to what happens in a human embryo,’ says Knoblich. To be clear, the brain tissue is not a downsized replicate. Lancaster compares the blobs of tissue to an aircraft disassembled and put back together, with the engine, cockpit and wings in the wrong place.
Growing mini brains to discover what makes us human | Madeline Lancaster. Video: TEDx Talks
‘The plane wouldn’t fly, but you can study each of those components and learn about them. This is the same with brain organoids. They develop features similar to the human brain,’ she explains.
The UK’s efforts to move towards clean energy can be seen around the UK, whether it’s the wind turbines across the hills of the countryside or solar panels on the roofs of city skyscrapers. There is, however, a technology that most people will never see, and it is set to be one of the biggest breakthroughs in a low-carbon economy yet.
Deep in the North Sea are miles of offshore pipelines, once used to transport natural gas to the UK. The pipelines all lead to a hub called the St Fergus Gas Terminal – a gas sweetening plant used by industry – that sits on the coast of north-east Scotland.
St Fergus Gas Terminal in North-East Scotland.
This network has now been reimagined as a low-cost, full-chain carbon capture, transport and offshore storage that will provide the UK will a viable solution to permanent carbon capture and storage (CCS) called the Acorn project.
CCS is a process that takes waste CO2 produced by large-scale, usually industrial, processes and transports it to a storage facility. The site, likely to be underground, stops the waste CO2 from being released into the atmosphere, storing it for later use for another purpose, such as the production of chemicals for coatings, adhesives or jet fuel.
Carbon Capture Explained | How It Happens. Video: The New York Times
High levels of CO2 in the atmosphere have been linked to global warming and the damaging effects of climate change, and CCS is one of the only proven solutions to decarbonisation that industry can currently access.
Taking advantage of existing infrastructure means that the Acorn project is running at a much lower cost and risk to comparable projects and is expected to be up and running by 2023. It is hoped the project will bring competitiveness and job retention and creation across the UK, particularly in the industrial centres of Scotland.
After eight months of operation in Antarctica, the EDEN ISS greenhouse has produced a ‘record harvest’ of fresh lettuce, cucumbers, tomatoes, and other herbs and vegetables to support the 10-member overwintering crew stationed at the German Neumayer Station III, the team reported in September 2018. Despite outdoor temperatures of -20°C and low levels of sunlight, the greenhouse yielded 75kg of lettuce, 51kg of cucumbers, 29kg of tomatoes, 12kg of kohlrabi, 5kg of radishes and 9kg of herbs – on a cultivation area of ca13m2.
The goal of the EDEN ISS is to demonstrate technologies that could be used by future astronauts to grow their own food on long distance missions to Mars and other more distant planets, explained NASA controlled environment technician Connor Kiselchuk, speaking at the Bayer Future of Farming Dialogue event in Monheim in September 2018. ‘Food determines how far from the Earth we can go and how long we can stay,’ he said.
How does the EDEN ISS greenhouse in Antarctica work? Video: German Aerospace Center, DLR
Even if astronauts took a year and a half’s supply of food with them on a mission to Mars, for example, he pointed out that the food would be ‘very deficient in B vitamins’ by the time they came to eat it.
Microscopic membranous vesicles floating outside of cells were first discovered 50 years ago; 30 years later, a subset of these was coined exosomes. At the time, these membrane bubbles were believed to be nothing more than a cellular waste disposal mechanism. But within the past decade, extracellular vesicles – and exosomes in particular – have piqued scientists’ interests, resulting in a research boom.
In 2006, there were just 115 publications referencing exosomes; by 2015, this number had mushroomed to 1010. Today, a PubMed search brings up more than 7500 publications. Consulting firm Grand View Research estimates that the global exosome market could reach $2.28bn by 2030.
Advancements in exosome research could lead to breakthroughs in prostate cancer treatment.
The interest in exosomes has been driven by the new finding that exosomes are more than just a waste disposal system – they are also a means of communication between cells and have the ability to carry cargos such as proteins and mRNA, suggesting there could be potential medical applications.
‘Currently, research into exosomes and other extracellular vesicles is very strong,’ says Jason Webber, Prostate Cancer UK research fellow in the Division of Cancer and Genetics at Cardiff University. ‘I think this field of research will continue to grow and I believe we’ll also see greater clinical application of exosomes and a drive towards research exploring the therapeutic potential of exosomes.’
Exosomes in Cancer Research. Video: Thermo Fisher Scientific
Exosomes are best described as extracellular vescles – essentially membrane sacs – formed by the inward budding of the membrane of intracellular compartments known as multivesicular bodies (MVBs) or multivesicular endosomes (MVEs). They are released from cells when MVBs fuse with the cell’s plasma membrane, releasing its contents outside the cell. These vesicles, made of a phospholipid bilayer and ranging between 40nm and 150nm in diameter, are found in all biological fluids including blood, urine, saliva, bile, semen and breast milk.
Biopharmaceuticals are sourced from living organisms.
Researchers at Massachusetts Institute of Technology (MIT), US, have developed a portable drug manufacturing system that can make several different biopharmaceuticals to be used in precision medicine or to treat outbreaks in developing countries.
Biopharmaceuticals are drugs made up of proteins such as antibodies and hormones, and are produced in bioreactors using bacteria, yeast or mammalian cells. They must be purified before use, so the process has dozens of steps and it can therefore take weeks or months to produce a batch.
The Challenges in Manufacturing Biologics. Video: Amgen
Due to the complex nature of the process and its time restrictions, biopharmaceuticals are usually produced at large factories dedicated to a single drug – often one that can treat a wide range of patients.
To help supply smaller, more specific groups of patients with drugs, a group of researchers at MIT have developed a system that can be easily configured to produce three different pharmaceuticals – human growth factor, interferon alpha 2b and granulocyte colony-stimulating factor – all of a comparable quality to commercially available counterparts.
Biopharmaceuticals can treat autoimmune diseases, such as arthritis. Image: Pixabay
‘Traditional biomanufacturing relies on unique processes for each new molecule that is produced,’ said J Christopher Love, a Chemical Engineering Professor at MIT’s Koch Institute for Integrative Cancer Research. ‘We’ve demonstrated a single hardware configuration that can produce different recombinant proteins in a fully automated, hands-free manner.’
Researchers have detected high levels of sunscreen chemicals in the waters of Shenzhen, China. These include beaches, a harbour, a reservoir, and even tap water. In tests on zebrafish, the team showed that several of these UV filters are being transmitted through the food chain, and can have adverse effects on developing offspring.
Organic UV filters found in sunscreens, skin lotions and make-up, as well as textiles, plastics, and paints, are endocrine disruptors.
The river and rice fields to the West of Shenzhen, China. Image: Wikimedia Commons
Risk assessments for single compounds have concluded that current levels of organic UV filters pose low risk, but they don’t account for interactions of mixtures and how these interactions develop over time.
Kelvin Sze-Yin Leung’s team at Hong Kong Baptist University analysed nine common organic UV filters in surface waters of Shenzhen, a city with more than 20 popular beaches. They found seven of the nine chemicals, including benzophenone derivatives BP-3, BP-8, and BP-1, as well as ethylhexyl methoxycinnamate (EHMC), at public beaches, a harbour, a reservoir, and in tap water.
Which sunscreen should you use? Video: Ted-Ed
Total concentrations of UV filters were relatively high at three popular public beaches – ranging from 192 to 645ngL-1 – in the summer as expected. Shenzhen Reservoir showed UV filter pollution in both seasons, while tap water was contaminated by BP-3.
If inefficient water treatment processes are to blame, then research is needed into other ways to remove these filters to protect human health, says Sze-Yin Leung.
The European Court of Justice (ECJ) ruled in July 2018 that onerous EU regulations for GMOs should also be applied to gene edited crops. The ECJ noted that older technologies to generate mutants, such as chemicals or radiation, were exempt from the 2001 GMO directive, but all other mutated crops should be regarded as GMOs. Since gene editing does not involve foreign DNA, most plant scientists had expected it to escape GMO regulations.
‘We didn’t expect the ruling to be so black and white and prescriptive,’ says Johnathan Napier, a crop scientist at Rothamsted Research. ‘If you introduce a mutant plant using chemical mutagenesis, you will likely introduce thousands if not millions of mutations. That is not a GMO. But if you introduce one mutation by gene editing, then that is a GMO.’
What is genetic modification? Video: The Royal Society
The ECJ ruling will have strong reverberations in academe and industry. The European Seed Association described the ruling as a watershed moment. ‘It is now likely that much of the potential benefits of these innovative methods will be lost for Europe – with significant economic and environmental consequences,’ said secretary general Garlich von Essen.
In 2012, BASF moved its plant research operations to North Carolina, US, because of European regulations. ‘If I was a company developing gene editing technologies, I’d think of moving out of Europe,’ says Napier.
‘The EU is shooting itself in the foot. Its ag economy has been declining since 2005 and it has moved from net self-sufficiency to requiring imports of major staples,’ says Maurice Moloney, CEO of the Global Institute for Food Security in Saskatchewan, Canada. ‘Paradoxically, it still imports massive quantities of GM soya beans and other crops to feed livestock.’
Interested in the pharmaceutical industry and research community? Take a look at this short video to see how we bring science and business together.
The field of regenerative medicine is at a ‘pivotal point’ in its development, according to a panel of experts speaking at the Bio meeting in Boston in June 2018.
The past six months alone saw four new product approvals, which could be the ‘beginning of a large number of successes’, said moderator Morrie Ruffin, Managing Director of the Alliance for Regenerative Medicine, which now has over 300 members.
Clinical results emerging from cell therapies over the next two years will be comparable with the successes seen with CAR-T cancer therapies, predicts Mike Scott, Vice-President of Product development at Toronto-based Blue Rock Therapeutics, whose lead product uses pluripotent stem cells to grow new neurons that restore the lost dopamine function in Parkinson’s patients.
‘The area of regenerative medicine allows us to do something audacious: to strive for cures. If you think of CAR-T and gene therapies, there’s every reason to say we can achieve the same with regenerative medicines,’ agreed Felicia Pagliuca, Co-Founder of Boston biotech company Semma Therapeutics.
Semma aims to replace the lost pancreatic beta cells of patients with Type 1 diabetes with its insulin producing equivalents grown in the lab. The technology is currently at preclinical stage.
Regenerative medicine could help to treat diseases like type 1 diabetes, in which pancreatic cells function abnormally. Image: Pixabay
Storing placental and cord blood cells at birth may no longer be necessary in the future, the researchers suggested. Traditional stem cell therapy approaches have used mesenchymal stem cells from these sources to regrow tissues and organs by differentiation into multiple cell types. However, newer technologies are increasingly making new cell types from pluripotent stem cells generated directly from adult cells such as skin.
The IHNV virus has spread worldwide and is fatal to salmon and rainbow trout – costing millions in sales of lost farmed fish. The current vaccination approach requires needle injection of fish, one by one. Now, however, Seattle-based Lumen Bioscience has come up with a new technology to make recombinant vaccines in a type of blue-green algae called Spirulina that costs pennies to produce and can be fed to fish in their feed.
To be effective, oral vaccines have not only to survive the gut environment intact but must also target the appropriate gut-associated immune cells. The approach developed by Lumen overcomes many of the problems with complex and expensive encapsulation strategies attempted in the past, according to CEO Brian Finrow.
‘[It] focuses on a new oral-vaccine platform [using] engineered Spirulina to express high amounts of target antigen in a form that is both provocative to the immune system – ie generates a desirable immune response that protects against future infection – and can be ingested orally without purification, in an organism that has been used as a safe food source for both humans and fish for decades.’
To produce the new oral vaccine, the Lumen researchers first developed a strain of Spirulina that manufactures recombinant proteins in its cell walls that the salmon immune system recognises as IHNV viruses. They then rapidly grew the strain in a large-scale indoor production system – requiring only light, water, salt and trace nutrients – and harvested and dried all the raw Spirulina biomass. This dried powder can then be fed to the fish.
Traditional electronics are made from rigid and brittle materials. However, a new ‘self-healing’ electronic material allows a soft robot to recover its circuits after it is punctured, torn or even slashed with a razor blade.
Made from liquid metal droplets suspended in a flexible silicone elastomer, it is softer than skin and can stretch about twice its length before springing back to its original size.
Soft Robotics & Biologically Inspired Robotics at Carnegie Mellon University. Video: Mouser Electronics
‘The material around the damaged area automatically creates new conductive pathways, which bypass the damage and restore connectivity in the circuit,’ explains first author Carmel Majidi at Carnegie Mellon University in Pittsburgh, Pennsylvania. The rubbery material could be used for wearable computing, electronic textiles, soft field robots or inflatable extra-terrestrial housing.
‘There is a sweet spot for the size of the droplets,’ says Majidi. ‘We had to get the size not so small that they never rupture and form electronic connections, but not so big they would rupture even under light pressure.’
The US Food and Drug Administration (FDA) has approved Lokelma (sodium zirconium cyclosilicate), formerly ZS-9 – AstraZeneca’s drug for the treatment of adults with hyperkalaemia.
A serious condition, hyperkalaemia is characterised by elevated potassium levels in the blood and can lead to cardiac arrest and death. It is associated with cardiovascular, renal, and metabolic diseases – the risk of hyperkalaemia increases significantly for patients with chronic kidney disease, and those who take common medications for heart failure, such as renin-angiotensin-aldosterone system (RAAS) inhibitors, which can increase potassium in the blood.
To help prevent the recurrence of hyperkalaemia, RAAS-inhibitor therapy is often modified or discontinued, which can compromise its effectiveness and increase the risk of death.
The announcement comes two months after the European Commission granted marketing authorisation for Lokelma in the EU.
AstraZeneca is a global, science-led biopharmaceutical company that focuses on the discovery, development and commercialisation of prescription medicines, primarily for the treatment of diseases in the fields of oncology, cardiovascular, renal and metabolism, and respiratory.
The eighth in its series, the Kinase 2018: towards new frontiers 8th RSC/SCI symposium on kinase design took place at the Babraham Institute, Cambridge – a world-leading biomedical science research hub.
The focus of the event was to provide a space for the discussion of the ever-evolving kinase inhibitor landscape, including current challenges, opportunities and the road ahead.
A kinase is an enzyme that transfers phosphate groups to other proteins (phosphorylation). Typically, kinase activity is perturbed in many diseases, resulting in abnormal phosphorylation, thus driving disease. Kinases inhibitors are a class of drug that act to inhibit aberrant kinases activity.
Cell signalling: kinases & phosphorylation. Image: Phospho Biomedical Animation
Over 100 delegates from across the world working in both academia and industry attended the event, including delegates from GlaxoSmithKline, AstraZeneca, Genentech, and Eli Lilly and Co.
The event boasted world-class speakers working on groundbreaking therapeutics involving kinase inhibitors, including designing drugs for the treatment of triple negative breast cancer, complications associated with diabetes, African sleeping sickness and more.
How can kinase inhibitors revolutionise cancer treatment?
Tsetse flies carry African sleeping sickness. Image: Oregon State University/Flickr
The keynote speaker, Prof Klaus Okkenhaug from Cambridge University, spoke about how the immune system can be manipulated to target and kill cancer cells by using kinase inhibitors.
Klaus is working on trying to better understand the effects of specific kinase inhibitors on the immune system in patients with blood cancer.
He also explored how his work can benefit those with APDS, a rare immunodeficiency disorder, which he helped to elucidate on a molecular level.
Solving graft rejection, one kinase at a time
Organ grafts are a surgical procedure where tissue is moved from one site in the body to another. Image: US Navy
Improving tolerance to organ grafts is at the forefront of transplantation medicine. James Reuberson from UCB Pharma UK, highlighted how kinase inhibitors can be utilised to improve graft tolerance.
James took the delegates on a journey, describing the plight of drug discovery and development, highlighting the challenges involved in creating a drug with high efficacy. While still in its infancy, James’ drug shows potential to prolong graft retention.
Nature is providing the inspiration for a range of novel self-repairing materials – by mimicking bone healing to fix ceramics, for instance, or using bacteria to heal a ‘wound’ in an undersea power cable.
Self-healing polymers are already well known. A familiar example is self-healing composite aircraft wings: if a crack appears, microcapsules in the composite matrix rupture, releasing ‘sealant’ into the crack to repair it. Recently, however, researchers have expanded the range of ‘repairable’ substances to include other promising materials – including rubber, ceramics and even electronic circuits.
Paul Race, senior lecturer in biochemistry at Bristol University, UK, heads a multi-disciplinary project to develop new types of self-healing materials. The three-year project, called Manufacturing Immortality, is in partnership with six other UK universities and involves biologists, chemists and engineers. ‘Our aim is to create new materials that can regenerate – or are very difficult to break – by combining biological and non-biological components – such as bacteria with ceramics, glass or electronics,’ says Race, whose own research interests include the stereochemistry of antibiotics, and the activities of enzymes.
The project’s approach is quite different to most polymer-based self-healing technologies, which typically rely on simple hydrogen bonds and reversible covalent bonds. ‘There are limits to the polymer chemistry approach,’ he says. ‘We’re trying to take inspiration from biology, which uses much more elaborate and powerful approaches to achieve more dramatic repair.’
Self-healing rubber links permanent covalent bonds (in red) with reversible hydrogen bonds (green). Image: Peter and Ryan Allen/ Harvard press
As an example, Race refers to what happens when we break or bone or receive a bad cut, which triggers a cascade of events in which the body detects the damage and responds appropriately. The team’s work is aimed at three broad application areas: safety critical systems; energy generation; and consumer electronics.
An innovative new screening method using cell aggregates shaped like spheres may lead to the discovery of smarter cancer drugs, a team from the Scripps Research Institute, California, US, has reported.
The 3D aggregates, called spheroids, can be used to obtain data from potentially thousands of compounds using high throughput screening (HTS). HTS can quickly identify active compounds and genes in a specific biomolecular pathway using robotics and data processing.
A spheroid under a confocal microscope. Image: Kota et al./The Scripps Research Institute
The spheroids – 100 to 600 microns thick in diameter – spread in a similar way to cancer cells in the body and are therefore more effective in identifying potential cancer drugs, the team hypothesises.
For this study, the team focused on KRAS – a gene belonging to the RAS family. It is estimated these genes account for one-third of all cancers.
Robots handle assays in a HTS system. Image: NIH/Flickr
DOI: 10.1038/s41388-018-0257-5
The world’s largest agriculture companies have joined forces to invest in new and innovative technologies that will hopefully eradicate malaria by 2040. The ‘Zero by 40’ campaign was launched at the annual Commonwealth Heads of Government meeting held in London last week.
The programme has the support of the Bill & Melinda Gates Foundation and the Innovative Vector Control Consortium, based in Liverpool, UK, as well as companies BASF, Bayer, and Syngenta – among others.
Mosquitos are known vectors of the malaria virus. Image: James Gathany/Centre for Disease Control
Malaria affects over 200 million people each year – most cases are found in Africa but the disease is still prevalent in South East Asia and in the Mediterranean. Although the number of cases has been slowly falling year-on-year, this progress is threatened by insecticide resistance.
It is estimated that four out of five malaria cases have been prevented through long-lasting insecticide-treated bed nets (LLINs) and indoor residual spraying (IRS) techniques. The campaign is a continued sign of commitment from the agriculture industry, with companies already having produced innovative solutions to tackle the global issue.
Both Syngenta and Bayer have introduced new IRS products – either in the final stages of development or already employed across Africa. BASF has developed a new generation mosquito net with an insecticide derived from crop use to deter resistant mosquitos.
Insecticides used in agriculture are used as control mechanisms for the mosquito population.
‘Our industry collaboration, supported by our funders including the Bill & Melinda Gates Foundation and the UK’s Department of International Development, is starting to bear fruit and is saving lives today,’ said Nick Hamon, CEO of IVCC.
‘But we still have a long way to go to achieve our ambition of ending the disease burden of malaria by 2040,’ Hamon said. ‘This new initiative will not only secure the current supply of solutions, but will pave the way for desperately needed new forms of chemistry and new vector control tools to reduce the disease burden of malaria which still affects millions of people.’
A shortage of donor organs for transplant surgery is fueling research to develop artificial livers and hearts, but how closely do they match up to the real thing?
Liver failure due to alcohol abuse, drug overdose and hepatitis is a growing problem. In 2016, 1220 Americans died waiting for a liver transplant, with the cost of treating cirrhosis – late stage liver scarring – is estimated at nearly $10bn/year.
‘In 2017, if you have liver failure, we don’t have a backup system,’ says Fontes. ‘But my group has a potential backup system. We are not ready for prime time yet, but we’ve some really good data.’
Liver failure can be hereditary or caused by excessive drinking. Image: Pixabay
Transplant surgeon Paulo Fontes at the University of Pittsburgh, US, regularly meets patients who ask what their options are aside from a liver transplant.
His group has attempted to build a new bioartificial liver, by seeding liver cells onto a liver scaffold. However, others working in this area have so far met with little success.
Now Fontes, working at the Starzl Transplantation Institute, has hit on a different strategy: to grow mini livers in living organisms. The work is in collaboration with Eric Lagasse, a stem cell biologist at the University of Pittsburgh, who showed lymph nodes are excellent ‘bioreactors’ for growing different types of cells, including liver cells.
The liver – made up of hepatocytes – has the capacity to regenerate after surgery. Image: Ed Uthman/Flickr
Lymph nodes filter damaged cells and foreign particles out of the body’s lymph system, which transports fluids around the body. When someone is ill, T cells from the immune system move to the lymph nodes to be cloned and released back to the bloodstream en masse to take on the microbe causing the illness.
For the past five years, Fontes and Legasse have been working with large animal models, infusing hepatocytes into the lymph nodes of pigs. ‘Within two months, it is amazing, but you have mini livers in the lymph nodes,’ he explains. ‘When you compare the mini liver with normal livers, they look very similar.’
Pigs are common animal models as they have similar organ systems to humans. Image: Pixabay
The mini livers weigh a few grams and would not offer a complete replacement for failed livers, but rather a supplement of liver tissue in patients with end stage liver disease who are too sick to undergo a transplant.
‘A lot of these patients have significant heart and lung problems, so would not sustain a full transplant,’ says Fontes. ‘The idea is to sustain their life by increasing their liver mass by creating new small ectopic livers within their lymph nodes.’
Compared with artificial livers, artificial heart technology is much further along the road to the clinic. To date, around 2000 artificial hearts have been implanted in patients, with demand driven similarly by an acute shortage of donors.
‘We wanted an artificial heart very similar to the natural human heart,’ explains Nicolas Cohrs at ETH Zurich in Switzerland. ‘Our hypothesis is that when you mimic the human heart in function and form you will have fewer side effects.’
Cohrs and his colleagues aim to print their artificial hearts so that they fit precisely into an individual patient. This is not yet close to clinic, but promises a tailored heart.
‘We take a CT scan of a patient, put it in a computer file and design an artificial heart around it, so it closely resembles the patient heart,’ says Cohrs. ‘We use these 3D printers and print a mould in ABS [acrylonitrile butadiene styrene], which is the plastic Lego is made of, fill it with silicone and then dissolve the mould with acetone to leave behind the silicone heart.’
Testing a soft artificial heart. Video: ETH Zurich
The plastic heart deflates and inflates with pressurised air. The first-generation device, made from silicone, has two chambers but survived for only 2000 beats. ‘This is only half an hour, so there is a lot of improvement needed,’ adds Cohrs.
A new prototype made from a more resistant [so far, undisclosed] polymer has managed more than a million beats, which is the equivalent of 10 days for a human heart. The goal is to develop a four-chamber heart that beats for 10 years, so a lot more work is still needed.
Using 2D imaging techniques to diagnose problems with the heart can be challenging due to the constant movement of the cardiac system. Currently, when a patient undergoes a cardiac MRI scan they have to hold their breath while the scan takes snapshots in time with their heartbeat.
Still images are difficult to obtain with this traditional technique as a beating heart and blood flow can blur the picture. This method becomes trickier if the individual has existing breathing problems or an irregular heartbeat.
These problems can lead to trouble in acquiring accurate diagnostics.
Now, a team based at the Cedars-Sinai Medical Center in California, US, have detailed a new technique – MR Multitasking – that can resolve these issues by improving patient comfort and shortening testing time.
‘It is challenging to obtain good cardiac magnetic resonance images because the heart is beating incessantly, and the patient is breathing, so the motion makes the test vulnerable to errors,’ said Shlomo Melmed, Dean of the Cedars-Sinai Center faculty.
An MRI Scanner. Image: Wikimedia Commons
‘By novel approaches to this longstanding problem, this research team has found a unique solution to improve cardiac care for patients around the world for years to come.’
By developing what the team consider a six-dimensional imaging technique, the Center has embraced the motion of a heartbeat by capturing image data continuously – creating a product similar to a video.
‘MR Multitasking continuously acquires image data and then, when the test is completed, the program separates out the overlapping sources of motion and other changes into multiple time dimensions,’ said Anthony Christodoulou, first author and PhD researcher at the Center’s Biomedical Imaging Research Institute.
‘If a picture is 2D, then a video is 3D because it adds the passage of time,’ said Christodoulou. ‘Our videos are 6D because we can play them back four different ways: We can playback cardiac motion, respiratory motion, and two different tissue processes that reveal cardiac health.’
Your guide to a cardiac MRI. Video: British Heart Foundation
Testing ten healthy volunteers and ten cardiac patients, the team said the group found that the method was more comfortable for patients and took just 90 seconds – significantly quicker than the conventional MRI scan used in hospitals. For each of the participants, the scan produced accurate results.
The team are now looking to extend its work into MR Multitasking by focusing on other disease areas, such as cancer.
Around 700,000 people worldwide die every year from bacteria that have developed resistance to antibiotics. In the UK alone, that figure is at least 12,000 – more deaths than from breast cancer. And those numbers look set to rise even higher.
‘It’s not just the fact that resistance is increasing – that’s inevitable,’ says Nick Brown, Director of advocacy group, Antibiotic Action. ‘The issue is more the rate of increase in resistance, which appears to be accelerating.’
The Infectious Diseases Society of America recently reported resistance to drugs within six months of antibiotics coming onto the market, and in some cases, even before the drug goes on the market. Many bacterial strains are increasingly displaying resistance to combinations of commonly used and last-resort antibiotics.
Of 33 antibiotics in development targeting priority pathogens, just nine belong to five new antibiotic classes. Image: Public Domain Pictures
‘The end of the antibiotic era isn’t on the horizon just yet,’ Brown says. ‘But we can see it wouldn’t take much to get that way.’
Failure to tackle antibiotic-resistant superbugs could result in 10m deaths a year by 2050, according to the UK government-commissioned Review on Antimicrobial Resistance. The UN and G20 have both made political commitments to combat the problem. Nevertheless, time is running out.
‘This is an urgent and rapidly rising global health problem,’ says Ghada Zoubiane, science lead for the Wellcome Trusts’ drug-resistant infections team. ‘We need greater investment in developing new ways to treat and protect people from these deadly infections and we need better understanding of how resistance spreads.’
What causes antibiotic resistance? Video: TED-Ed
Despite calls for increased R&D, no new classes of antibiotics have been approved since the early 1980s, apart from the approval of linezolid in 2000, and the last new class to treat Gram-negative bacteria was discovered in 1962, Zoubiane says.
Big pharma withdrew en masse from the antibiotic space in the 1990s, due to the low returns on the high level of investment required in antibiotic R&D. Recognising the urgency of the problem, however, in January 2016 more than 90 pharma and biotech companies committed to enhancing antibiotic discovery.
The move has been accompanied by more research into understanding resistance mechanisms, as well as a shift to more outside-of-the-box thinking about alternative treatments.
In 2016, over $500m was invested into research into antibiotic resistance. Image: PxHere
In February 2017, the World Health Organization (WHO) published its list of 12 antibiotic-resistant ‘priority pathogens’ that pose the greatest threat to human health. Most notable are the Gram-negative bacteria, which possess an additional outer cell membrane and are harder to treat with antibiotics than Gram-positive bacteria.
‘These bacteria have been assessed as the most critical priority for antibiotic R&D, as strains are emerging worldwide that cannot be treated with any of the antibiotics currently on the market,’ WHO says.
Despite the increased commitment to R&D, however, a WHO report in September 2017 lamented the ‘serious lack of new antibiotics under development’. Among the 33 new chemical entity antibiotics in development targeting priority pathogens, just nine belong to five new antibiotic classes.
There are 16 products, both antibiotics and biologics, with activity against one or more Gram-positive priority pathogens – although mostly targeting methicillin-resistant Staphylococcus aureus (MRSA) – including two new antibiotic classes.
Meanwhile, ‘the situation is worse for Gram-negative bacterial infections’, says WHO. Of ten products in Phase 1 trials, ‘almost all the agents are modifications of existing antibiotic classes […] active only against specific pathogens or a limited subset of resistant strains’.
The 2016 Lister Memorial Lecture: Dame Sally Davies on Global antiiotic resistance. Video: SCI
WHO warns that ‘more investment is needed in basic science, drug discovery and clinical development, especially for the critical priority Gram-negative carbapenem-resistant pathogens P. aeruginosa, A. baumannii, and Enterobacteriaceae.’
‘We need to find a strategy not to overcome resistance, but to be able to live with and manage it,’ Brown reflects. ‘I’m more optimistic than some. It’s important to remember that before antibiotics were discovered, the human race didn’t die out.’
Antimicrobial drug discovery
Register now!
Biocompatibility in the development of new medical treatments is becoming increasingly important. Implants are traditionally made of materials foreign to the human body – from titanium to silicone – that can cause issues with system toxicity that may lead the body to reject the implant.
Like the human body, a significant proportion of the make-up of hydrogels is water – 90% compared to the body’s 60% – making them a viable modern alternative to the current standard of implants.
At the moment, focus is on the development of hydrogels in drug delivery systems, although its potential stretches further.
Inspired by nature
One such example of hydrogel innovation was developed by researchers at the University of Michigan, US, and the University of Fribourg, Switzerland. Finding inspiration from the electric eel, the team created a flexible electrical device that could be used as a power source for implanted health monitors.
The electric eel generates power using transmembrane transport, whereby ion channels control the passage of cations and anions through the membrane in the eel’s electrocytes.
At rest, these ions cancel each other out. However, when triggered, the cation channels become more permeable, shifting the overall potential across the cell. In these instances, the eel can produce up to 600V of electricity.
‘The electric organs in eels are incredibly sophisticated; they’re far better at generating power than we are,’ said Michael Mayer, co-author and Biophysics Professor at the University of Fribourg. ‘But the important thing for us was to replicate the basics of what is happening.’
An electric eel. Image: Scott/Flickr
Firstly, the group dissolved sodium and chloride in the hydrogel and layers built by printing thousands of droplets of the salty gel these were alternated with hydrogel droplets of pure water. Each type of droplet could only conduct cations or anions.
Pressing cells together created a concentration gradient which is stimulated by an external electric current, creating a system similar to the electric eels.
By stacking 2,449 of these cells, Mayer says the hydrogel produced 100W, but the nature of the hydrogel’s internal resistance means the outputs of the cells is only 50µW. The team are now working to improve its efficiency.
‘Maybe the most obvious thing to think as a next step would be to try in some creative way to tap into the existing ionic gradients within the body. Much better of course would be a design where one could tap into metabolic energy to keep an artificial organ always charges,’ said Mayer.
‘That would be the ultimate achievement, but that’s very difficult to reach and we have not approached that part of the problem.’
Combatting malnutrition in all its forms – overweight and obesity as well as undernutrition and micronutrient deficiencies – is a global problem.
The European Academies Science Advisory Council (EASAC) recently published a report calling for urgent action on food and nutrition security: this action will need to include consideration of the options for changing European diets to mitigate climate change, conferring co-benefits for health.
The European Commission estimates 51.6% of the EU’s population is overweight. Image: Tony Alter/Flickr
EASAC brings together EU member states’ national science academies with the aim of offering evidence-based advice to European policy makers. EASAC provides a means for the collective voice of European science to be heard and its recent report is part of a global project led by the InterAcademy Partnership (IAP).
The analysis and recommendations for Europe are accompanied by parallel activities focusing on Africa, Asia and the Americas. The IAP report will be published later in 2018.
EASAC recommendations will incorporate global challenges and needs, not just those in Europe. Image: Pixabay
In the EASAC report we emphasise that research and innovation are central to finding solutions. We recommend being more ambitious in identifying and using scientific opportunities: How can the current evidence base shape understanding of both supply- and demand-side challenges? And how should the research agenda be defined, including basic research, to fill knowledge gaps?
Climate change will have negative impacts on food systems, necessitating the introduction of climate-smart agriculture such as the adoption of plant breeding innovations to cope with drought.
Climate-Smart Agriculture in Action. Video: Farming First
Agriculture and current diets also contribute significantly to climate change. Mitigating this contribution depends on land-sparing and agronomic management practices together with efforts to influence consumer behaviours associated with excessive greenhouse gas emissions from agriculture, including the over-consumption of calories and meat.
Among the core findings in our report is that food consumption will need to change to improve consumer health. It is important to explore individual responsiveness to nutrition and the links to health, and to consider the particular needs of vulnerable groups.
High meat production has been linked to increasing carbon emissions. Image: Pixabay
As part of the changes to food consumption patterns, a decrease in the consumption of animal protein could be important for both health and the environment but, globally, more research is needed to clarify these relationships and to measure sustainability related to consumption of healthy diets. We also call for policy makers to introduce incentives for affordable nutrition.
Agriculture has significant impacts on the environment. We call for the revamp of the Common Agricultural Policy to focus on innovation rather than subsidies, in order to play a key role in European competitiveness and the bioeconomy.
Alternatives to traditional forms of animal protein include food from the oceans, laboratory-grown meat and insects. Research is needed to understand and inform consumer attitudes to innovative food and diets.
Also, research objectives for the next generation of biofuels should include examining the potential of cellulosic raw materials. Further ahead, energy research must continue to explore how to engineer systems with improved photosynthesis.
Biofuels are derived from common crops, including wheat, corn and sugar. Image: Public Domain Pictures
Europe should not stall on opportunities for innovation coming within range. Breakthroughs in genome editing and other genetic research are crucial to the future of agriculture. European policy makers must capitalise on these scientific advances.
For improved plant and animal breeding, it is important to protect and characterise wild gene pools and to continue sequencing and functional assessment to unveil the potential of genetic resources. Precision agriculture offers many opportunities to improve productivity with reduced environmental impact. Large data sets are vital to support innovation and prepare for risk and uncertainty.
Open-source automated precision farming | Rory Aronson | TEDxUCLA. Video: TEDx Talks
Underpinning all our recommendations is the recognition that research and innovation must be better integrated, across disciplines and the public and private sectors, in order to better understand the interfaces between health, nutrition, food and other ecosystem services.
EASAC emphasises that efforts to increase food systems’ efficiency should not focus on increasing agricultural productivity by ignoring environmental costs.
Stem cells with shared genetic information aid in the study of human disease. Image: Kyoto University/Knut Woltjen
Single nucleotide polymorphisms (SNPs) are the most common form of genetic mutation, with more than ten million currently identified, and are often found in hereditary diseases – from Alzheimer’s to diabetes.Due to the precise nature of SNPs, researchers need to compare genetic differences with isogenic twins – two cells which differ in their makeup by only a single gene.
To do this, scientists in Japan have used induced pluripotent stem (iPS) cells to create a novel gene editing technique that can modify DNA to a single gene.
iPS cells are unique in that they retain the genetic makeup of a donor and can be converted into any cell type. These characteristics mean the cells are perfect for testing new treatments in a laboratory setting.
The team – led by Dr Knut Woltjen and based at the Centre for iPS cell Research and Application at Kyoto University, Japan – use the method to insert an SNP modification along with a fluorescent report gene as a marker for the modified cells.
As adding the reporter gene is another modification to the genome, the researchers created a duplicated DNA sequence that flanks the gene in order to remove it.
These strands hang over the sequence of the reporter gene so that once the latter is removed, the two resulting strands can join together – a method known as microhomology-mediated end joining.
In the Alzheimer’s affected brain, abnormal levels of the beta-amyloid protein clump together to form plaques (seen in brown) that collect between neurons and disrupt cell function. Image:NIH Image Gallery
Unique target sites were also added to remove the gene using the enzyme CRISPR, which cuts DNA. As a result, only the modified SNP is left in the genome of the cell.
One of the isogenic twins receives the mutant SNP and the other receives the normal SNP, allowing for a comparison to be made.
Dr Woltjen calls the new technique Microhology-Assisted eXcision, or MhAX. ‘To make MhAX work, we duplicate DNA sequences which are already present in the genome. We then let the cell resolve this duplication. At the same time, the cells decide which SNPs will remain after repair,’ said Woltjen. ‘One experiment results in the full spectrum of possible SNP genotypes.’
The team have already collaborated with other Japanese universities on the application of their novel method, using the HPRT gene – a mutation that can lead to gout – as the first example of its potential use in therapy.
Their work shows that cells with the HPRT mutant SNP had similar issues with metabolism associated with gout patients, while the isogenic control cells had no problems.
Following on from this success, Woltjen and his team are now applying the technique to different diseases associated with SNPs, including diabetes.
Tweaking the chemical structure of the antibiotic vancomycin may offer a new route to tackle the burgeoning problem of antibiotic-resistant bacteria, researchers in Australia have discovered.
Vancomycin has been used since the late 1950s to treat life-threatening infections caused by Gram-positive bacteria, including methicillin-resistant S. aureus (MRSA). The antibiotic works by binding to a precursor of the cell wall component, peptidoglycan, Lipid II, thus inhibiting bacterial growth.
Lipid II is present in both Gram-positive and Gram-negative bacteria. However, in Gram-negative bacteria it is protected by an outer membrane. In Gram-positive bacteria, Lipid II is embedded in the cell membrane but part of the molecule – a pentapeptide component – sticks out, which is what vancomycin binds to.
The researchers at the University of Queensland’s Institute for Molecular Biology (IMB), led by director of superbug solutions Matt Cooper, reasoned that if they could increase the ability of vancomycin to bind to the bacterial membrane, this would make it more difficult for bacteria to develop resistance to it.
‘Our strategy was to add components to vancomycin so that the new derivatives – which we call “vancapticins” – could target more widely the membrane surface,’ explains Mark Blaskovich, senior research chemist at IMB. ‘By providing two binding sites – the membrane surface and the membrane-embedded Lipid II - this allows binding to resistant strains in which the Lipid II has mutated to reduce interactions with vancomycin.’
In addition, the researchers say that the vancapticins have been designed to take advantage of compositional differences between mammalian and bacteria cell membranes – ie bacterial cells have a greater negative charge. The vancapticins have greater selectivity for bacterial cells over mammalian cells, potentially reducing off-target effects and giving a better safety profile. A series of structure–activity studies showed that some of the vancapticins were more than 100 times more active than vancomycin.
Hospital-Associated Methicillin-resistant Staphylococcus aureus (MRSA) Bacteria. Image: NIAID
This membrane-targeting strategy, the researchers say, has the potential to ‘revitalise’ antibiotics that have lost their effectiveness against recalcitrant bacteria as well as enhance the activity of other intravenous-administered drugs that target membrane associated receptors.
John Mann, emeritus professor of chemistry at Queen’s University Belfast, UK, comments: ‘Bacteria have developed numerous strategies to modify the binding, uptake and expulsion of antibiotics, and thus develop resistance. So, it is especially exciting to see the development of these new vancomycin derivatives that enhance the membrane binding properties of the antibiotic, thus enhancing its efficacy and beating the bacteria at their own game.’
Antibiotics are often given to hospital patients, even following the most routine operations, to counter the risk of bacterial infections and viruses.
Now, materials scientists at the University of Manchester have developed a ‘durable and washable, concrete-link’ composite material that boasts antibacterial properties, with the aim of binding the material to doctors’, nurses’ and healthcare professionals’ uniforms.
Bacterial infection is a major issue in hospitals across the UK, and is known to spread via surfaces and clothing. E. coli infections alone killed more than 5,500 NHS patients in 2015, and the UK government estimates the cost of such infections to the NHS at £2.3 billion this year alone.
But doctors, nurses and healthcare professionals could soon be wearing uniforms brushed with tiny copper nanoparticles to reduce the spread of bacterial infections and viruses. Working in collaboration with universities in China, the Manchester team created the composite material using antibacterial copper nanoparticles.
They have also developed a way to bind the composite to wearable materials such as cotton and polyester - a stumbling block for scientists in the past.
Precious metals, such as gold and silver, have excellent antibacterial and antimicrobial properties, but their commercial use in textiles is prohibitive due to extremely high costs. That means copper is the material of choice for researchers, as it has very similar antibacterial properties to gold and silver but is much cheaper.
Using a process called polymer surface grafting, the research team tethered copper nanoparticles to cotton and polyester using a polymer brush, creating a strong chemical bond. The researchers claim this bond creates excellent washable properties and , and could see copper-covered uniforms and textiles commercialised in the future.
'Now that our composite materials present excellent antibacterial properties and durability, it has huge potential for modern medical and healthcare applications,’ Lead author, Dr Xuqing Liu, said.
The researchers tested their copper nanoparticles on cotton as it is used more widely than any other natural fibre and polyester as it is a typical polymeric, manmade material. Each material was brushed with the tiny copper nanoparticles, which measure between 1-100 nanometres (nm). 100nm is the equivalent to just 0.0001 millimetres (mm) - a human hair is approximately 90,000nm wide.
The team found their cotton and polyester coated-copper fabrics showed excellent antibacterial resistance against Staphylococcus aureus (S. aureus) and E. coli, even after being washed 30 times.
A new type of wheat, chock full of healthy fibre, has been launched by an international team of plant geneticists. The first crop of this super wheat was recently harvested on farms in Idaho, Oregon, and Washington state in the US, ready for testing by various food companies.
Food products are expected to hit the US market in 2019. They will be marketed for their high content of ‘resistant starch’, known to improve digestive health, be protective against the genetic damage that precedes bowel cancer, and help protect against Type 2 diabetes.
How do carbohydrates impact your health? Video: TED-Ed
‘The wheat plant and the grain look like any other wheat. The main difference is the grain composition: the GM Arista wheat contains more than ten times the level of resistant starch and three to four times the level of total dietary fibre, so it is much better for your health, compared with regular wheat,’ says Ahmed Regina, plant scientist at Australian science agency CSIRO.
Starch is made up of two types of polymers of glucose – amylopectin and amylose. Amylopectin, the main starch type in cereals, is easily digested because it has a highly branched chemical structure, whereas amylose has a mainly linear structure and is more resistant.
Bread and potatoes are foods also high in starch. Image: Pixabay
Breeders drastically reduced easily digested amylopectin starch by downregulating the activity of two enzymes, so increasing the amount of amylose in the grain from 20 to 30% to an impressive 85%.
The non-GM breeding approach works because the building blocks for both amylopectin and amylose starch synthesis are the same. With the enzymes involved in making amylopectin not working, more blocks are then available for amylose synthesis.
‘Resistant starch is starch that is not digested and reaches the large intestines where it can be fermented by bacteria. Usually amylose is what is resistant to digestion,’ comments Mike Keenan, food and nutrition scientist at Louisiana State University, US. ‘Most people consume far too little fibre, so consuming products higher in resistant starch would be beneficial.’
He notes that fermentation of starch in the gut causes the production of short-chain fatty acids such as butyrate that ‘have effects throughout the body, even the mental health of humans’.
The GM wheat will hit US supermarkets in 2019. Image: Pxhere
The super-fibre wheat stems from a collaboration begun in 2006 between French firm Limagrain Céréales Ingrédients, Australian science agency CSIRO, and the Grains Research and Development Corporation, an Australian government agency.
This resulted in a spin out company, Arista Cereal Technologies. After the US, Arista reports that the next markets will be in Australia and Japan.
Blue dye, in this cross-section of a maize cob, highlights the rice gene that controls T6P in the kernels’ phloem. Image: Rothamsted Research
Through the introduction of a rice gene, scientists have produced a maize plant that harvests more kernels per plant – even in periods of drought.
The rice gene expressed depresses levels of a natural chemical, trehalose 6 -phosphate (T6P), in the phloem of the transgenic maize plant. T6P is responsible for the distribution of sucrose in the plant.
Lowering levels of T6P in the phloem, an essential track in the plant’s transportation system, allows more sucrose to be channelled to the developing kernels of the plant. As a result of increased levels of sucrose in this area of the maize plant, more kernels are produced.
Drought is an increasing problem in countries such as Uganda. Image: Hannah Longhole
‘These structures are particularly sensitive to drought – female kernels will abort,’ said Matthew Paul, team leader and plant biochemist at Rothamsted Research, UK. ‘Keeping sucrose flowing within the structures prevents this abortion.’
The transatlantic team, from Rothamsted and biotechnology company Syngenta in the US, built on field tests published three years ago that demonstrated increased productivity of the same genetically-modified maize.
‘This is a first-in-its-kind study that shows the technology operating effectively both in the field and in the laboratory,’ said Paul.
Maize growing on world’s oldest experiment, Broadbalk field at Rothamsted Research. Image: Rothamsted Research
Drought is becoming an increasing problem for developing countries, where the economic and social impacts are most evident.
Maize, also known as corn, and other cereals are relied on heavily across these nations due to their low cost and high nutritional value, with rice, maize, and wheat used for 60% of the global food energy intake.
The results of these trials are promising, and the team believe this work could be transferred to wheat and rice plants, as well as other cereals, said Paul.
A new drug developed by Eli Lilly to combat the symptoms of psoriatic arthritis (PsA) – including severe joint pain and swelling – has been approved for market by the European Commission.
Ixekizumab, or Taltz®, can be used to treat patients with PsA who have not responded to, or are intolerant to, traditional anti-rheumatic drug therapies, such as methotrexate, which act to treat the underlying cause of arthritis to slow disease progression, rather than the symptoms.
PsA is caused by a fault in a person’s immune system, when the body sends out signals for inflammation even when damage has not occurred., causing swollen, stiff, and painful joints. It is a chronic and progressive disease with no known cure.
Vaccines are much debated these days, but before starting a discussion about them, let’s see how a vaccine is defined.
The World Health Organisation defines a vaccine as:
‘a biological preparation that improves immunity to a particular disease. A vaccine typically contains an agent that resembles a disease-causing microorganism, and is often made from weakened or killed forms of the microbe, its toxins or one of its surface proteins. The agent stimulates the body’s immune system to recognize the agent as foreign, destroy it, and “remember” it, so that the immune system can more easily recognize and destroy any of these microorganisms that it later encounters.’
We put in our bodies something that looks like or has a tiny part of the ‘microbe’ that produces the disease so that our body can produce the right agents to fight it in case we actually contract the real illness.
A vaccine is comprised of an active ingredient and other added ingredients. Like any other drug, the active ingredient is the key component that triggers the immune response. Beside this, the added ingredients have different roles, such as improving the immune response, or acting as a preservative, stabiliser, or suspending fluid.
These added ingredients are the ones that are sometimes contested due to their toxicity. But when speaking about toxicity, there is a very important point to make. Everything is toxic.
It all comes down to the dose you eat, drink, or otherwise insert into your body. An important indicator of toxicity is LD50 (lethal dose 50), which is the dose at which 50% of individuals die. Sodium chloride, also known as table salt, has a LD50 of 12,400mg/kg (868g of salt for a 70kg individual) for humans. The lower the LD50 indicator is, the more toxic a compound is.
Table salt can also be toxic.
Aluminium salts are used in many vaccines as adjuvants. This means that they help by stimulating the immune response and by a slow release of the active ingredient.
The most used salts are aluminium hydroxide, aluminium phosphate and potassium aluminium sulphate. Data about these compounds are freely accessible by searching for their material safety data sheets (MSDS) on the big chemical suppliers’ websites. The 11th section of an MSDS file is the toxicological information section, which contains the LD50 value, carcinogenicity information, and others.
Section 11 of the aluminium phosphate MSDS Sigma-Aldrich
None of the salts above are reported as carcinogenic, and the LD50 of aluminium phosphate is more than 5,000mg/kg for mice. The total quantity of the aluminium in a vaccine is less 1mg (0.001g), which is a very low quantity. In the normal European diet the amount of aluminium we intake from food varies between 3–10mg a day.
Vaccine composition lists also include compounds and products used in the manufacturing process – even though at the end of manufacture they are present only in trace amounts, if at all.
One of the chemicals on this list that scares people is formaldehyde, which is indeed carcinogenic with and LD50 of 42mg/kg for mice. Nevertheless, the quantity present in a vaccine dose is less 0.1 mg. One 200g pear contains 12mg of formaldehyde. We should always remember ‘the dose makes the poison’, as compound interest illustrates below.
The does makes the poison – ‘toxic’ chemicals in food. Compound Interest
Vaccination is a personal decision. Nevertheless, it should be based on information from multiple verified sources. Easily accessible and clear information can be found on the Vaccine Knowledge Project website designed by the Vaccine Research Group from the University of Oxford.
Psilocybin mushrooms have psychedelic properties. Image: Wikimedia Commons
The psychoactive compound in psychedelic ‘magic mushrooms’ could pave the way for new drugs to treat depression, according to a new study. Patients in the study reported that their mood had lifted, they felt less depressed and were less stressed immediately after taking psilocybin. Nearly half (47%) were still benefiting five weeks after discontinuing treatment.
Robin Carhart-Harris and his team at Imperial College London, UK – the Psychedelic Research Group – gave psilocybin to 19 patients suffering from ‘treatment resistant’ depression, who had failed to benefit from other depression therapies. They were given 10mg initially and 25mg one week later.
The Psychedelic Research Group is the first in 40 years to use LSD in research in the UK since the Misuse of Drugs Act 1971. Image: Pixabay
‘Several of our patients described feeling “reset” after the treatment and often used computer analogies,’ said Carhart-Harris. ’Psilocybin may be giving these individuals the temporary kick start they need to break out of their depressive states.’
Functional MRI scans measuring activity and blood flow in the brain showed marked differences after the treatment. There was reduced blood flow to areas of the brain, including the amygdala, which processes emotional responses, such as stress and fear. Another brain network appeared to ‘stabilise’ after treatment.
‘fMRI scans indicate that the communication within a certain prefronto-limbic circuit known to regulate affective responsiveness, is normalised one day after psilocybin treatment,’ said Imperial College psychologist Tobias Buchborn. ‘This normalisation seems specifically related to the feeling of unity experienced during the psilocybin session.’
The trial didn’t include a control/placebo group for comparison. However, the team plans to compare the effects of psilocybin against a leading antidepressant in a six-week trial in 2018.
Scientists used neuroimaging to track the effectiveness of the treatment.
‘These are exciting, but preliminary findings,’ said Mitul Mehta, professor of neuroimaging & psychopharmacology at King’s College London. ‘It is only a single dose of psilocybin, but this was able to reduce symptoms and produce changes in the same brain networks we know are involved in depression. This impressive study provides a clear rationale for longer-term, controlled studies.’
‘Some of the next challenges are to see if the therapeutic effects hold up in larger groups,’ commented Anil Seth, professor of cognitive and computational neuroscience at Sussex University, UK: ‘And to understand more about how the changes in brain activity elicited by psilocybin underpin both the transient changes in conscious experience the drug produces, as well as the more long-lasting effects on depression.’
Psychedelics: Lifting the veil | Robin Carhart-Harris | TEDxWarwick Video: TEDx Talks
The trial also backs up the results of an earlier study by Robin Carhart-Harris and coworkers in 2016, which found that psilocybin reduced symptoms in 12 treatment resistant patients, five of whom were no longer classed as depressed three months later. Also in 2016, a trial by other researchers in the US demonstrated that a single dose could alleviate the anxiety and depression of people with advanced cancer for six months or longer.
The US is in the midst of a healthcare epidemic. Tens of thousands of people are dying each year from opioid drugs, including overdoses from prescription painkillers such as OxiContin (oxycodone) and the illicit street drug heroin, and each year the numbers rise.
The opioid epidemic is currently killing almost twice as many people as shootings or motor vehicle accidents, with overdoses quadrupling since 1999. According to Gary Franklin, medical director of the Washington State Department of Labour and Industries and a professor of health at the University of Washington, the opioid epidemic is ‘the worst man-made epidemic in modern medical history in the US’.
Montgomery, Ohio, is at the centre of the epidemic, with the most opioid-related deaths per capita this year. Image: Wikimedia Commons
Incredibly, an influx of synthetic opioids is making the problem worse. Fentanyl, a licensed drug to treat severe pain, is increasingly turning up on the street as illicit fentanyl, often mixed with heroin. According to the NCHS, fentanyl and synthetic opioids are blamed for 20,145 of the 64,070 overdose deaths in 2016. Heroin contributed to 15,446 deaths, while prescription opioids caused 14,427.
Potent opioid
Fentanyl (C22H28N20), a lipophilic phenylpiperidine opioid agonist, is generally formulated as a transdermal patch, lollipop and dissolving tablet. Like the opioids derived from opium poppies, such as morphine, fentanyl binds to opioid receptors in the brain and other organs of the body, specifically the mu-receptor.
Heroin and other opioids come from the opium poppy. Image: Max Pixel
Such binding mimics the effects of endogenous opiates (endorphins), creating an analgesic effect, as well as a sense of well-being when the chemical binds to receptors in the rewards region in the brain. Drowsiness and respiratory depression are other effects, which can lead to death from an overdose.
Rise of illicit fentanyl
The opioid epidemic can be traced back to the 1990s when pharmaceutical companies began producing a new range of opioid painkillers, including oxycodone, touting them as less prone to abuse. In addition, prescribing rules were relaxed, while advocates championed the right to freedom from pain. Soon, opioids were being prescribed at alarming rates and increasing numbers of patients were becoming hooked.
Why is there an opioid crisis? Video: SciShow
Franklin, who was the first person to report in 2006 on the growing death rate from prescribed opioids, says: ‘OxyContin is only a few atoms different to heroin – I call it pharmaceutical heroin.’
A crackdown on prescribing was inevitable. But then, with a shortage of prescription opioids, addicts turned to illicit – and cheaper – heroin. According to Franklin, 60% of heroin users became addicted via a prescribed opioid. ‘You don’t have to take these drugs for very long before it’s very hard to get off,’ he says: ‘Just days to weeks.’ Heroin use soared and with it increased tolerance, leading users to seek out more potent highs. By 2013, there were almost 2m Americans struggling with an opioid-use disorder.
Drugs to fight drugs
President Trump declared the opioid crisis a public health emergency in October. Image: Pixabay
Attention is finally being given to the epidemic. US president Donald Trump recently declared a public health emergency, although no new funds will be assigned to deal with the crisis.
There is particular interest around research into a vaccine against fentanyl. Developed by Kim Janda at The Scripps Research Institute, California, US, the vaccine, which has only been tested in rodents, can protect against six different fentanyl analogues, even at lethal doses. ‘What we see with the epidemic, is the need to find alternatives that can work in conjunction with what is used right now,’ he says.
This vaccine could treat heroin addiction. Video: Seeker
The vaccine works by taking advantage of the body’s immune system to block fentanyl from reaching the brain. Its magic ingredient is a molecule that mimics fentanyl’s core structure, meaning the vaccine trains the immune system to recognise the drug and produce antibodies in its presence. These antibodies bind to fentanyl when someone takes the drug, which stops it from reaching the brain and creating the ‘high’.
Precision medicine is often described as a new or emerging approach that will revolutionise healthcare, but it might be more accurate to describe it as an advancement on existing practice: after all, health treatment is already, where possible, personalised – according to environment, genes, and lifestyle – to maximise each patient’s outcome.
It is, however, a significant advancement. Considering a patient’s family history or diet is not the same as tailoring a treatment approach exactly to the patient’s genetic makeup and disease type, and the successes can be remarkable: ivacaftor, for instance, developed by Vertex Pharmaceuticals, treats the underlying causes of cystic fibrosis in patients with G551D mutations in the CFTR gene (around 5% of cases). It is considerably more effective and convenient than conventional approaches that focus on symptoms.
A lung cancer cell during cell division. Image: National Institutes of Health
Serious support
The successes of precision medicine have led to widespread enthusiasm and investment. When President Obama announced the USA’s precision medicine initiative in 2015, he claimed that it ‘gives us one of the greatest opportunities for new medical breakthroughs that we have ever seen’.
President Obama speaks at the launch of the Precision Medicine Initiative in 2015. Video: Cystic Fibrosis Foundation
The UK government is also investing. Six regional centres of excellence for precision medicine were established by Innovate UK in 2015 to develop innovative technologies for healthcare, in Belfast, Cardiff, Glasgow, Leeds, Manchester, and Oxford, in addition to the Cambridge-based Precision Medicine Catapult technology and innovation centre. It has also been highlighted as an area of focus for the Industrial Strategy, with an extra £210m of funding announced as part of the 2017 white paper. The UK’s research strength, combined with NHS evidence, is seen as a major opportunity in this area.
Pushing the boundaries
Precision medicine is perhaps most common in oncology, where it is considered a leading innovation in treatment. Drugs designed to focus on specific tumours and molecules are regularly used to treat cancer patients. Radiomics, the practice of assessing tumour phenotypes through the analysis of quantitative features from medical images, is considered a crucial step forward in the field, as it enables doctors to better guide therapies and predict responses.
A collaborative project between the Moffitt Cancer Center and Dana-Farber Cancer Institute is using radiomics to non-invasively assess the molecular and clinical characteristics of lung tumours. Dr Robert Gillies, Chair of Moffitt’s Department of Cancer Imaging and Metabolism, explains the approach, ‘The core belief of radiomics is that images aren’t pictures, they’re data. We have to treat them as data. Right now, we extract about 1,300 different quantitative features from any volume of interest’. More information on this development is available here.
Another complex disease that could be revolutionised by precision medicine is diabetes, one of the fastest growing global health challenges. Researchers from the University of Sydney’s Charles Perkins Centre have identified three specific molecules that accurately indicate insulin resistance, or pre-diabetes, particularly when present together. Professor James, the senior author, believes that, ‘Once we can identify the molecules and other factors that contribute to pre-diabetes, we can customise treatments to suit patients’ specific make up and needs’. The study is available in the Journal of Biological Chemistry.
A note of caution
There are, however, concerns about the approach. Precision medicine can be extremely expensive – ivacaftor, for example, costs US$300,000 per year, per patient. Moreover, it only works on the 5% of patients with G551D mutations in the CFTR gene.
Another major concern is about the data on which precision medicine research applies. A study led by the Translational Genomics Research Institute, USA, suggests that the current approach in oncology is ‘more precise for those of European decent, and less precise for those whose ancestry is from Latin America, Africa and Asia’. Patients from underrepresented backgrounds risk being misdiagnosed and provided with inappropriate therapies, say the team. This study is available in BMC Medical Genomics.
A huge challenge faced in the pursuit of a mission to Mars is space radiation, which is known to cause several damaging diseases – from Alzheimer’s disease to cancer.
And soon, these problems will not just be exclusive to astronauts. Speculation over whether space tourism is viable is becoming a reality, with Virgin Galactic and SpaceX flights already planned for the near future. The former reportedly sold tickets for US$250,000.
But could questions over the health risks posed hinder these plans?
What is space radiation?
In space, particle radiation includes all the elements on the periodic table, each travelling at the speed of light, leading to a high impact and violent collisions with the nuclei of human tissues.
The type of radiation you would endure in space is also is different to that you would experience terrestrially. On Earth, radiation from the sun and space is absorbed by the atmosphere, but there is no similar protection for astronauts in orbit. In fact, the most common form of radiation here is electrochemical – think of the X-rays used in hospitals.
The sun is just one source of radiation astronauts face in space. Image: Pixabay
On the space station – situated within the Earth’s magnetic field – astronauts experience ten times the radiation that naturally occurs on Earth. The station’s position in the protective atmosphere means that astronauts are in far less danger compared with those travelling to the Moon, or even Mars.
Currently, NASA’s Human Research Program is looking at the consequences of an astronaut’s exposure to space radiation, as data on the effects is limited by the few subjects over a short timeline of travel.
Radiation poses one of the biggest problems for space exploration. Video: NASA
However, lining the spacecraft with heavy materials to reduce the amount of radiation reaching the body isn’t as easy as a solution as it is seems.
‘NASA doesn’t want to use heavy materials like lead for shielding spacecraft because the incoming space radiation will suffer many nuclear collisions with the shielding, leading to the production of additional secondary radiation,’ says Tony Slaba, a research physicist at NASA. ‘The combination of the incoming space radiation and secondary radiation can make the exposure worse for astronauts.’
Finding solutions
As heavy materials cannot hamper the effects of radiation, researchers have turned to a more light-weight solution: plastics. One element – hydrogen – is well recognised for its ability to block radiation, and is present in polyethylene, the most common type of plastic.
A thick dust cloud called the Dark Rift blocks the view of the Milky Way. Image: NASA
Engineers have developed plastic-filled tiles, that can be made using astronauts rubbish, to create an extra layer of radiation protection. Water, which is already an essential for space flight, can be stored alongside these tiles to create a ‘radiation storm shelter’ in the spacecraft.
But research is still required. Plastic is not a strong material and cannot be used as a building component of spacecrafts.
Around 10 million medical devices are implanted each year into patients, while one-third of patients suffer some complication as a result. Now, researchers in Switzerland have developed a way to protect implants by dressing them in a surgical membrane of cellulose hydrogel to make them more biocompatible with patients’ own tissues and body fluids.
‘It is more than 60 years since the first medical implant was implanted in humans and no matter how hard we have tried to imitate nature, the body recognises the implant as foreign and tends to initiate a foreign body reaction, which tries to isolate and kill the implant,’ says Simone Bottan at, who leads ETH Zurich spin-off company Hylomorph.
Hylomorph is a spin-off company of ETH Zurich, Switzerland. Image: ETH-Bibliothek@Wikimedia Commons
Up to one-fifth of all implanted patients require corrective intervention or implant replacement due toan immune response that wraps the implant in connective tissue (fibrosis), which is also linked with infections and can cause patients pain. Revision surgeries are costly and require lengthy recovery times.
The new membrane is made by growing bacteria in a bioreactor on micro-engineered silicone surfaces, pitted with a hexagonal arrangement of microwells. When imprinted onto the membrane, the microwells impede the formation of layers of fibroblasts and other cells involved in fibrosis.
25,000 people in the UK have a pacemaker fitted each year. Image: Science Photo Library
The researchers ‘tuned’ the bacteria, Acetobacter xylinum, to produce ca 800 micron-thick membranes of cellulose nanofibrils that surgeons can wrap snuggly around implants. The cellulose membranes led to an 80% reduction of fibrotic tissue thickness in a pig model after six weeks, according to a study currently in press. Results after three and 12 months should be released in January 2018.
It is hoped the technology will receive its first product market authorisation by 2020. First-in-man trials will focus on pacemakers and defibrillators and will be followed by breast reconstruction implants. The strategy will be to coat the implant with a soft cellulose hydrogel, consisting of 98% water and 2% cellulose fibres.
The membrane will improve the biocompatibility of implants. Video: Wyss Zurich
‘Fibrosis of implantables is a major medical problem,’ notes biomolecular engineer Joshua Doloff at Massachusetts Institute of Technology, adding that many coating technologies are under development.
‘[The claim] that no revision surgery due to fibrosis will be needed is quite a strong claim to make,’ says Doloff, who would also like to see data on the coating’s robustness and longevity.
The silicone topography is designed using standard microfabrication techniques used in the electronics industry, assisted by IBM Research Labs.
English wine is on the rise. In 50 years, production has increased by more than three orders of magnitude, from a negligible 1,500 bottles/year to a respectable 5.3 million.
Meanwhile, on the other side of the English Channel, grapes are harvested around two weeks before the traditional dates. In the Champagne region, harvest kicked off on 26 August 2017, while the average date for previous years was 10 September. In Burgoyne, home of Beaujolais wines, harvest began on 23 August, also two weeks ahead of schedule. Harvest workers in that area are also doing night shifts to reduce heat stress for the sensitive grapes.
French vineyards are struggling with the changes to traditional harvests. Image: Max Pixel
Both phenomena – the success of English wine and the earlier harvests in France – are linked to climate change. In a few decades, the favourable wine-growing conditions historically enjoyed by the Champagne region may have migrated to England.
As the life cycle of the grapevine – and therefore quality and quantity of the wine obtained – is extremely sensitive to temperature and weather extremes, wine growers have already been noticing the effects of climate change for years. Researchers have detailed how conditions have changed, how they are likely to change further, and what vineyards can do to adapt.
High-value product
All agricultural products are likely to be affected by climate change at some point, but wine occupies a special position due to its high value. Therefore, wine growers have always watched the weather and its effects on their vineyards very closely, and recorded their observations.
Climate scientist Benjamin Cook from Columbia University at New York and ecologist Elizabeth Wolkovich from Harvard University, have analysed harvest data spanning more than 400 years, from 1600 to 2007, from European regions, together with the weather data.
While many studies have covered the last few decades, this one reaches back to the time before the Industrial Revolution.
Higher temperatures in spring and summer generally speed the whole process and lead to earlier harvests, like the one in 2017, while cool and rainy summers can delay the phrenology and thus the harvest time. Traditionally, the observation was that a warm summer and a period of drought just before grape picking is the best recipe for an early harvest.
Grape picking is easiest after a warm summer. Image: Pixabay
‘Our research, and other work, has clearly and unequivocally demonstrated that climate change is already affecting viticulture worldwide,’ explains Cook, adding that: ‘There are lots of opportunities for adaptation in various locations, such as planting different varieties, but the most important thing is for people to starting planning for the next several decades, when conditions are likely to get even warmer still.’
Adapt or move?
So, what could be changed? Short of pulling up Pinot Noir vines in Champagne and replanting them in Dorset, there are some steps wine-makers can take to ensure a good harvest.
The Chemistry of Wine. Video: Reactions
For instance, growers could add a few days to the ripening cycle by delaying the spring pruning, or by allowing the vines to grow higher above the ground, where the air is slightly cooler than just above the soil. While these changes are benign, other measures, such as reducing the leaf area, may have complex consequences that could interfere with the quality of the wine.
In selecting the plant material, growers could reverse the trends of the 20th Century, when it made sense to select rapidly ripening varieties. Simply by adapting the choice of variety from among the range of varieties already used in a given region to the changing climate, growers can to some extent mitigate the anticipated effects.
Alternatively, wine production could migrate closer to the poles. Wines now coming from California may be produced in Washington State, and the premium fizz we now call Champagne may one day be known as Devon or Kent.
Some could argue the greatest threat to life as we know it is the slow, invisible war being fought against antibiotic resistant bacteria. The accidental discovery of penicillin by Fleming in the late 1920s revolutionised modern medicine, beginning with their use in the Second World War.
Over-prescription of these wonder drugs has allowed bacteria, which multiply exponentially, the ability to pick up on deadly cues in their environment at a phenomenal rate. They’re adapting their defence mechanisms so they’re less susceptible to attack. In theory, with an endless supply of different drugs, this would be no big deal.
Alexander Fleming, who discovered penicillin. Image: Wikimedia Commons
Unfortunately, the drug pipeline seems to have run dry, whilst the incidence of resistance continues to climb. For the gnarliest of infections, there’s a list of ‘drugs of last resort’, but resistance even to some of these has recently been observed. A report published by the World Health Organisation echoes these warnings – of the 51 new drugs in clinical development, almost 85% can be considered an ‘upgraded’ version of ones on the market right now. These drugs are a band aid on a snowballing problem.
Are viruses the answer?
Bacteriophages, or phages for short, are viruses that infect only bacteria, wreaking havoc by hijacking cellular machinery for their growth and development.
A bacteriophage. Image: Vimeo
Phages can find themselves in one of two different life cycles: virulent and temperate. The first involves constant viral replication, killing bacteria by turning them inside out (a process known as lysis). The second life cycle allows the phage in question to hitch a ride in the cell it infects, integrating its genetic material into the host’s and in doing so, propagating without causing immediate destruction. It’s the former that is of value in phage therapy.
Long before Fleming’s discovery, phages were employed successfully to treat bacterial infections. In areas of Eastern Europe, phages have been in continuous clinical use since the early part of the 20th century.
Why did their use not take off like that of penicillin’s in the West? ‘Bad science’ that couldn’t be validated in the early days proved to be disheartening, and phages were pushed to the wayside. Renewed interest in the field has come about due to an improvement in our understanding of molecular genetics and cell biology.
Phages are highly specific and, unlike antibiotics, they don’t tamper with the colonies of bacteria that line our airways and make up a healthy gut microbiome. As they exploit an entirely different mode of action, phages can be used as a treatment against multiple drug-resistant bacteria.
Repeated dosing may not even be necessary – following initial treatment and replication of the phage within infected cells, cell lysis releases ever more phages. Once the infection is cleared, they’re excreted from the body with other waste products.
What is holding it back?
A number of key issues must be ironed out if phage therapy is to be adopted to fight infection as antibiotics have. High phage specificity means different phage concoctions might be needed to treat the same illness in two different people. Vast libraries must be created, updated and maintained. Internationally, who will be responsible for maintenance, and will there be implications for access?
Scientists are looking at new ways to tackle antibiotic resistance. Video: TEDx Talks
Despite proving a promising avenue for (re)exploration, under-investment in the field has hindered progress. Bacteriophage products prove hard to patent, impacting the willingness of pharmaceutical companies investing capital. AmpliPhi Biosciences, a San Diego-based biotech company that focuses on the ‘development and commercialization of novel bacteriophage-based antibacterial therapeutic,’ was granted a number of patents in 2016, showing it is possible. This holds some promise – viruses might not save us yet, but they could be well on their way to.
Large-scale industrial mining of asbestos began towards the end of the 19th Century; predominantly in Russia, China, Kazakhstan, and Brazil.
This relatively cheap material with excellent fire and heat resistance, good electrical insulating properties, and high-tensile strength was used widely in the construction industry and in many other products, including brake pads, hair dryers, and industrial filters for wine, beer and pharmaceuticals. Worldwide, an estimated two million tons of asbestos is used annually.
Health risks
But asbestos exposure can be deadly. Anyone who handles the material or breathes in its fibres puts themselves at risk of lung diseases, such as asbestosis or cancer. The World Health Organization estimates that in a single year over 100,000 deaths are due to asbestos-related diseases.
Lung asbestos bodies after chemical digestion of lung tissue. Image: Wikimedia Commons
‘The truth is that it is a nasty, hazardous, toxic, carcinogenic material that has made millions and millions of people sick,’ says Arthur Frank, Professor of Environmental and Occupational Health at Drexel University, Philadelphia, US. Frank is a longtime advocate for banning the mineral.
To date, around 60 countries have banned the use of asbestos, including the UK. Russia, India, and China, however, still use asbestos in a range of products. The US is the last among developed countries not to ban asbestos entirely. More significant for Western countries are the millions of tonnes of asbestos left in buildings – asbestos becomes a problem if disturbed, especially if the fibres go undetected.
Asbestos is a health risk to construction workers. Image: Pixabay
Traditionally, those who work in the building trade are most at risk, though workers can bring home fibres on their clothes, which poses a risk to anyone they come into contact with.
‘There is a significant amount of data that points to as little as one day of exposure being sufficient to give rise to malignancy in humans and animals,’ says Frank. It’s unclear precisely the cellular mechanism, he says, but health experts agree that asbestos poses a severe public health risk. In the UK, asbestos is responsible for half of work-related cancer deaths.
The European Parliament was one of the first to ban all future asbestos use. Image: European Parliament@Flickr
The European Parliament has pushed for the removal of asbestos from all public buildings by 2028. The asbestos industry, however, argues that it is wrong to say that any exposure to asbestos can kill and believes there is a permissible level of exposure.
Rising litigation
In the US, asbestos-related litigation is increasingly common. ‘The companies put up a fight in most cases, delaying settlement until practically the eve of trial and disputing everything they can as to medical diagnosis and causation, and evidence of the plaintiffs’ exposure histories,’ says Barry Castleman, an environmental consultant who has spent 40 years working on asbestos as a public health problem.
However, man-made substitutes for asbestos-based construction materials are available. For over 50 years, asbestos was combined with cement in Europe because its fibres are mechanically strong and durable, says Eshmaeil Ganjian, Professor of Civil Engineering Materials at Coventry University, UK.
PVA is also widely used in glue. Image: Pixabay
These boards were used for internal and external walls as well as for roofs. Europe now uses polyvinyl alcohol – widely known as PVA - in its cement boards, Ganjian says, but this is more expensive than asbestos, which has come down in price over the past 20 years.
Waste not, want not
Ganjian is currently working on a project aimed at replacing asbestos in cement boards in Iran with waste plant fibres, such as Kraft pulp, and polymeric fibres such as acrylic and polypropylene fibres. ‘The idea is to use locally available fibres, so we use cheap acrylic fibres available from petrochemical companies in the region. The strength of cellulose fibres is lower than asbestos fibres, but when we add polypropylene or acrylic or other synthetic fibres then this increases the mechanical strength,’ he explains.
Shiraz, Iran. Image: Wikimedia Commons
The Iranian government subsequently stopped importing asbestos from Russia and banned its use in cement board factories, switching to local alternatives. ‘This was a win-win situation. It saves lives and uses a waste material,’ says Ganjian.
Often, the pharmaceutical industry is characterised as the ‘bad guy’ of equality in healthcare. This is particularly evident in the United States, with cases such as Martin Shkreli, whose company Turing Pharmaceuticals infamously increased its leading HIV and malaria drug by over 50 times its value overnight, and a lack of regulation in advertising. The latter is accused of influencing prescriptions of certain brands based on consumer demand, which could lead to unnecessary treatment and addiction.
With stories like these dominating the media, it is no wonder the public if often found to harbour a negative view towards ‘Big Pharma’. However, the actions and motives of this industry are rarely fully understood. Here are five facts about pharmaceutical manufacturing you might not know:
1. Out of 5,000-10,000 compounds tested at the pre-clinical stages, only one drug will make it to market
The drug discovery and development process explained. Video: Novartis
This may seem like slim odds, but there are many stages that come before drug approval to make sure the most effective and reliable product can be used to treat patients.
There are four major phases: discovery and development; pre-clinical research, including mandatory animal testing; clinical research on people/patients to ensure safety; and review, where all submitted evidence is analysed by the appropriate body in hopes of approval.
2. If discovered today, aspirin might not pass current FDA or EMA rules
Some older drugs on the market would not get approval due to safety issues. Image: Public Domain Pictures
Problems with side effects – aspirin is known to cause painful gastrointestinal problems with daily use – mean that some older drugs that remain available might not have gained approval for widespread use today. Both the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) run programmes that monitor adverse side effects in users to keep consumers up-to-date.
Tighter regulation and increased competition mean that the medicines we take today are arguably more effective and safer than ever.
3. The average cost of drug development has increased by a factor of 15 in 40 years
Back in the 1970s, the cost to produce a drug from discovery to market was $179 million. Today, drug companies shell out $2.6 billion for the same process – a 1,352% increase! Even considering inflation rates, this number is significantly higher.
With the average length of time needed to develop a drug now 12 years, time is an obvious reason for the high costs. However, the difficulty of finding suitable candidates at the discovery stage is also to blame. Pre-clinical stages can be resource-intensive and time-consuming, making pharmaceutical companies look towards other methods, such as the use of big data.
4. The US accounts for nearly half of pharmaceutical sales
The Statue of Liberty. Over 40% of worldwide medicines sales are made by US companies. Image: Wikimedia Commons
The US is the world-leader in pharmaceutical sales, adding $1.2 trillion to the economic output of the US in 2014 and supporting 4.7 million jobs. The country is also home to the top 10 performing pharmaceutical companies, which include Merck, Pfizer, and Johnson & Johnson.
While the EU’s current share is worth 13.5%, this is expected to fall by 2020 with emerging research countries, such as China, projected to edge closer to the US with a share of 25%.
5. Income from blockbuster drugs drives research into rare diseases
Rare diseases are less likely to receive investment for pharmaceutical research. Image: Pixabay
Diseases that affect a large proportion of the worldwide population, such as cancer, diabetes, or depression, are able to produce the biggest revenue for pharmaceutical companies due to the sheer volume of demand. But rarer diseases are not forgotten, as research into these illnesses is likely funded by income from widespread use of the aforementioned medicines.
Rare – or ‘orphan’ – diseases are those that affect a small number of the population, or diseases that are more prevalent in the developing world. With the increasing cost of producing a drug, it becomes risky for pharmaceutical companies to create a fairly-priced drug for a small fraction of patients.
However, this seems to be changing. Researchers from Bangor University, UK, found that pharmaceutical companies that market rare disease medicines are five times more profitable than those who do not, and have up to 15% higher market value, which could finally provide a financial incentive for necessary research.
What is paralysis? Video: Doctors’ Circle
Patients suffering from paralysis can at last look forward to a time when their condition is cured, and they can walk, run or move their damaged limbs again, as recent advancements show the possibility of reversal.
‘The environment has never been better for exploring ways to restore neurological function, including paralysis – in fact, there has been a dramatic escalation of the entire research spectrum aimed at functional neurorestoration,’ says Charles Liu, Director of the University of Southern California Neurorestoration Center.
Paralysis comes in many forms: the paralysis of one limb (monoplegia), one side of the body (hemiplegia), below the waist (paraplegia), and all four limbs below the neck (tetraplegia, or also referred to as quadriplegia).
There are many classifications of paralysis. It can be localised or generalised, and can affect most areas of the body. Image: Pixabay
In an able-bodied person, the brain sends a signal as an electrical impulse, known as an action potential, down the spinal cord to the peripheral nerves, which instruct the muscles to contract and move, whereupon sensors in the muscles and skin send signals back to the brain.
In most paralysis cases, the condition occurs as a result of damage to nerves rather than an injury to the affected area. Strokes are the most common cause of paralysis, followed by spinal cord injuries. Multiple sclerosis, cerebral palsy, polio, head injuries and several other rare diseases can also cause paralysis.
Regenerating neurons
‘Long term, we hope to cure paralysis and make the injured walk,’ explains William Sikkema, a graduate student at Rice University, Houston. The challenge is not only to repair cells but to restore connectivity, too. In collaboration with researchers at Konkuk University in South Korea, the team has already made a paralysed rat walk again.
The addition of graphene nanoribbons restored motor and sensory neuronal signals across the previous nerve gap after 24 hours, with almost perfect motor control recovery after a period of healing. ‘Two weeks later, the rat could walk without losing balance, stand up on his hind limbs and use his forelimbs to feed himself with pellets. No recovery was observed in controls,’ the team reported.
‘After a neuron is cut, it doesn’t know where to grow. So, it either doesn’t grow, or grows in the wrong direction,’ says Sikkema. ‘Our graphene nanoribbons act as a scaffolding track, and it tells the neurons where to grow.’
Rats are a common animal model in paralysis studies, as they share similar structure and functions with humans. Image: Pexels
Spinal cord stimulation
Electrical stimulation of the spinal cord could also provide a big breakthrough, says Chet Moritz, Co-Director of the Center for Sensorimotor Neural Engineering at the University of Washington, US.
‘We’re seeing some really impressive results with spinal cord stimulation where people with complete paralysis, who have been unable to function, have regained control of their limbs. We didn’t expect this. It’s the most exciting thing we’ve seen in the last 20 years,’ he says.
Last year, a team led by Grégoire Courtine at the Swiss Federal Institute of Technology inserted an implant in the brains of paralysed monkeys and another over the spinal cord below the injury. The brain-spine interface worked by capturing leg-moving brain signals, decoded by a computer and sent – bypassing the damaged region – to the second implant, which delivered the signals as electrical impulses to the nerves, causing the leg to move.
Grégoire Courtine talks about his pioneering work on paralysis using electrical stimulation. Video: TED
Within six days, the monkeys had regained the use of their lower limbs and improved even more over time. The success of the experiment has led Courtine to launch a human trial of a spinal implant system.
We may be a long way still from restoring full function, as prior to paralysis, but Moritz is optimistic. Even a modest change, such as the movement of a single finger, can have a dramatic effect on quality of life and independence. ‘In five years, we’ve had dramatic improvement in function,’ he says. ‘It’s an exciting trajectory with tremendous potential.’
In recent years, novel innovation in healthcare and pharmaceuticals have hit the headlines with increasing regularity. Each story promises a better quality of life for patients and a product that will ‘revolutionise’ healthcare as we know it.
However, many of these innovations fail to materialise due to the complexity of the system. Problems with regulation, intellectual property agreements, and manufacturing are just some of the many issues that industry faces when integrating a new product into hospitals and treatment centres.
Stephen Dorrell. Image: NHS Confederation@Flickr
So, do we need rethink our expectations of innovation? Speaking at New Scientist Live in September, Stephen Dorrell, Chair of NHS Confederation and a former Health Secretary, said that as an innate characteristic of humans, innovation will not stop. However, we should be more concerned about the difficulty of making good innovation available everywhere and rethinking what we consider the most efficient way of treating patients, he said.
As the most common type of dementia – affecting one in six over the age of 80 – Alzheimer’s disease needs good innovation. With no known cure, current efforts rely heavily on having a care plan once symptoms appear and medications can only slightly improve symptoms for a time as well as slow down the progression of the disease.
Progress in pharmaceuticals
The Alzheimer’s research community are well versed in the known causes of the disease, with amyloid plaques and tau tangles the most widely accepted causes of the neurodegeneration that leads to Alzheimer’s. As a result, the majority of research and investment in the field is centred around this theory.
Neuro-Bio is a biotechnology start-up that is taking a different approach to making medicines for Alzheimer’s patients. The company is focused on a ‘previously unidentified mechanism’ of the disease that is linked to the development stages of the brain and cell death, and is working on new drug candidates that can stop the peptide involved in this mechanism from functioning improperly in adults.
After a series of setbacks in Alzheimer’s drug development, Prof Margaret Esiri, a neuropathologist at the Nuffield Department of Clinical Sciences, Oxford, said: ‘Neuro-Bio’s approach to the problem of Alzheimer’s disease is novel and scientifically well-founded. It is a good example of the new thinking that is urgently needed in this field’.
Timing it right
However, with an uncertainty for future success in Alzheimer’s pharmaceuticals, researchers interested in the genetic make-up of neurodegenerative diseases are focusing on how early diagnosis can be beneficial to patients.
Alzheimer’s can cause a significant loss of brain matter (right) compared to a healthy brain (left). Image: National Institutes of Health
According to UCL geneticist John Hardy, a loss in brain matter and amyloid build-up begins 15 to 20 years before symptoms start to appear, highlighting the need for preventative measures. This need is not consistent with what is currently available to patients in the UK however, as to qualify for a clinical trial, patients must be in the advanced stages of Alzheimer’s – often exhibiting severe symptoms that can, quite drastically, negatively affect quality of life for the individual.
Scientists at Case Western Reserve University, Ohio, US, may have solved this issue of early diagnosis after developing a machine learning program that outperforms other methods for diagnosing Alzheimer’s disease. The program integrates known disease indicators and symptoms to predict the likelihood of Alzheimer’s onset. Multiple stage comparisons, which includes associated symptoms that are not always present in Alzheimer’s, allow the program to make a more accurate prediction of who is most vulnerable.
Development of such programs could help initiatives such as the 100,000 Genomes Project which aims to provide the NHS with a new genomic medicine service that can offer better diagnosis and more personalised treatments.
Baroness Susan Greenfield. Image: National Assembly for Wales
SCI is running a Public Evening Lecture in London on Wednesday 28 February – The 21st Century mind: Blowing it, expanding it, losing it. The talk will be given by Baroness Susan Greenfield, neuroscientist and CEO of Neuro-bio. It is free to attend, but spaces are limited. Don’t miss out – booking opening soon.
The next five years will be the most promising in the fight against cancer with immunotherapies – such as CAR-T and moderating T-Cell approaches, and innate immunity therapies – delivering far better patient outcomes.
In the last five years, the industry has rapidly advanced its understanding of the body’s immune response and genetic markers. As a result, combination therapies – chemotherapies will continue to play an important role – are forecast to become an increasingly standardised treatment, with pharma keen to invest.
These newer options are bringing in transformative remission rates, and check-point inhibitors have already been seen to elicit long-term cures in patients, with success rates two-to-three times higher than standard chemotherapy approaches.
Over the next ten years, we will see significant breakthroughs as the industry’s understanding of the immune system improves. There are currently more than 130 biotechs – in addition to 20 big pharma companies – working on new therapies and it is believed the smaller companies are more aggressively bringing newer innovations to market. In the long run, pharma will undoubtedly absorb the most promising players in an effort to become leaders in combination therapy approaches, which many argue will deliver the best outcomes.
The current investor frenzy is comparable to that of the genomics industry at the turn of the century. Experts argue that a more complete understanding of the genome and promise of clinical data of these transformative modalities will create a golden age for cancer therapy over the next few years.
There are, however, a number of immediate challenges. For example, CAR-T, although demonstrating good efficacy in blood cancers, has yet to show enough efficacy in solid tumours. Another challenge is how far towards cures for all patients we can get, particularly for patients with late stage metastatic cancer.
Immunotherapies are moving cancer from treatment options that simply extend life or improve experience to more effective cures. The cost of newer therapies is also coming into focus; however, this is a positive pressure on companies to produce significant, not just incremental, outcomes for patients.
Cellular agriculture involves making food from cell cultures in bioreactors. The products are chemically identical to meat and dairy products, and it’s claimed they have the same taste and texture.
The technology is an attractive option because it would reduce the world’s reliance on livestock, which is unsustainable, and would have potential knock-on benefits of lower greenhouse gas emissions, and reduced water, land, and energy usage than traditional farming.
IndieBio helps biotechnology start-ups. Since 2014, it has funded several new US-based businesses in cellular agriculture: Perfect Day, formerly Muufri, makes milk from cell culture; Clara Foods is developing a way to make egg whites from cell culture; and Memphis Meats is focusing on animal-free meat using tissue engineering.
Growth is driven by the clear benefits this technology can offer, says Ron Sigeta, IndieBio’s Chief Scientific Officer. ‘It takes 144 gallons of water to make a gallon of milk or 53 gallons of water to make an egg. Cellular agriculture products don’t require such large water supplies, or large tracts of land, or produce the same level of greenhouse gas emissions.’
Salmonella bacteria are not present in cell-cultured milk so there is no risk of infection. Image: Wikimedia Commons
Food safety is also a significant issue. ‘Cellular agriculture makes products in an entirely controlled environment so it’s a source of food we can understand with a transparency that is simply not possible now,’ says Sigeta. For example, raw, unpasteurised milk can carry bacteria, such as salmonella, which is not a problem for Perfect Day’s milk as there are no bacteria-carrying animals are involved.
So how does it work?
Cellular agriculture products can be acellular – made of organic molecules like proteins and fats – or cellular – made of living or once-living cells.
Meat industry critics argue that it is not sustainable and lab-grown meat is the future. Video: Eater
Acellular products are made without using microbes like yeast or similar bacteria. Scientists alter the yeast by inserting the gene responsible for making the desired protein. Since all cells read the same genetic code, the yeast, now carrying recombinant DNA, makes the protein molecularly identical to the protein an animal makes.
Other products like meat and leather are produced by a cellular approach. Using tissue engineering techniques muscle, fat or skin cells can be assembled on a scaffold with nutrients. The cells can be grown in large quantities and then combined to make the product.
The first cultured beef patty was made in 2013. Image: Public Domain Pictures
Mark Post at Maastricht University, the Netherlands, made the first cultured beef hamburger in 2013 using established tissue engineering methods to grow cow muscle cells. The process, however, was expensive and time-consuming, but his team has been working on improvements.
‘We are focusing on hamburgers because our process results in small tissues that are large enough for minced meat applications, which accounts for half of the meat market. To make a steak, one would need to impose a larger 3D structure to the cells to grow in.
‘It is very important that such a structure contains a channel system to perfuse the nutrients and oxygen through to the developing tissue and to remove waste as a result of metabolic activity. This technology is being developed, but is not yet ready for large scale production.’
Surveys have shown that the public are behind genetically engineered meat alternatives. Image: Ben Amstutz@Flickr
Future outlook
Commercial challenges include finding a cost-effective medium for cell nutrition developing a bioreactor for industrial scale production. Public perception may also be a challenge: Will people buy synthetically engineered food?
A recent crowdfunding campaign shows the global massive support for the idea of clean meat, says Koby Barak, SuperMeat’s chief operating officer and co-founder. However, he believes these will be overcome shortly, and it will not be long before companies see ‘massive funding’ in this field and the creation of clean meat factories worldwide.
CRISPR/Cas9 is a gene editing tool that is swiftly becoming a revolutionary new technology. It allows researchers to edit the genome of a species by removing, adding or modifying parts of the DNA sequence.
To alter DNA using CRISPR, a pre-designed sequence is added to the DNA using a RNA scaffold (gRNA) that guides the enzyme Cas9 to the section of DNA that scientists want to alter. Cas9 ‘snips’ the selected sequence.
At this point, the cell identifies the DNA as damage and tries to repair it. Using this information, researchers can use repair technology to introduce changes to the genes of the cell, which will lead to a change in a genetic trait, such as the colour of your eyes or the size of a plants leaf.
Cas9 unzips the selected DNA sequence as the latter forms bonds to a new genetic code. Adapted from: McGovern Institute for Brain Research at MIT
Public approval of genetic modification is at an all-time high, with a recent YouGov survey finding only 7% of people in the UK oppose gene editing, although there is still a way to go. Lighter regulation in recent years has allowed smaller companies and academic institutions to undertake research.
The future of farming
One of the industries that has benefited from CRISPR is agriculture. The ongoing GM debate is an example of controversial use of transgenesis, the process of inserting DNA from one species into another, spawning fears of ‘Frankenstein foods’.
Instead of creating mega-crops that out-compete all conventional plants, gene editing provides resistance to harsh environments and infections; particularly significant in the context of global food security.
Disease breakthroughs
Although gene-editing has been a staple of new agriculture technology for many years now, it is only recently that CRISPR has seen successful use in human disease research and resulting clinical trials.
Scientists at the Salk Institute, California, successfully removed the MYBPC3 gene, linked to a common form of heart disease, from a human embryo. The correction was made at the earliest stage of human development, meaning that the condition could not be passed to future generations.
CRISPR is also being used to study embryo development. Recently, scientists at the Francis Crick Institute, London, discovered that the gene OCT4 was vital in these early stages, although its purpose is still not fully understood. Researchers involved believe that more research into OCT4 could help us improve success rates of IVF and understand why some women miscarry.
A human embryo at day four, taken by a Scanning Electron Microscope. Image: Yorgos Nikas, Wellcome Images
CRISPR is still in the early stages and we are far from editing embryos that can be implanted for pregnancy. Many more safety tests are required before proceeding with any clinical trials, with the next step perhaps replicating the experiment on other mutations such as BRCA1 and BRCA2, the genes responsible for an increased risk of breast cancer.
Experts are confident, however, that this technique could be applied to thousands of other diseases caused by a single mutation, such as cystic fibrosis and ovarian cancers.
The benefits of gene editing are abundant. For example, we may be able to turn the tables on antibiotic-resistant bacteria or ‘super-bugs’ by engineering bacteriophages - viruses that infect bacteria - to target antibiotic resistance genes, knocking them out and allowing conventional antibiotics to work once again. Elsewhere, CRISPR could be used to modify metabolic pathways within algae or corn to produce sustainable and cost-effective ethanol for the biofuel market.
Originally posted by urbaneway
Is CRISPR ethical?
CRISPR and gene editing will revolutionise many industries, but the fear remains in many that we will slip into a society where ‘designer babies’ become the norm, and individuality will be lost.
Marcy Darnovsky, Executive Director of the Centre for Genetics and Society, said in a statement: ‘We could all too easily find ourselves in a world where some people’s children are considered biologically superior to the rest of us.’
Could CRISPR lead to a new generation of superheros? Image: Cia Gould
Dr Lovell-Badge, from the Francis Crick Institute, disagrees. ‘I personally feel we are duty bound to explore what the technology can do in a safe, reliable manner to help people. If you have a way to help families not have a diseased child, then it would be unethical not to do it,’ he said.
Genetic engineering does not have to have an all-or-nothing approach. There is a middle ground that will benefit everyone with correct regulation and oversight. With its globally renowned research base, the UK government has a great opportunity to encourage genetic experiments and further cement Britain’s place as the genetic research hub of the future.