Blog search results

Agrifood

Thinking of popping to your nearest specialist store for some sesame oil, turmeric, or soy? Some things haven't changed in 3,700 years, it turns out...

At least, that's what a growing new field of research, palaeoproteomics, suggests. Human mouths are full of bacteria, which continually petrify and form dental calculus — which can entrap and preserve tiny food particles. These remnants can be accessed and analysed thousands of years later, providing remarkable insight into the dietary habits of our ancestors.

Philip Stockhammer, an archaeologist at the Ludwig Maximilian University of Munich (LMU), has worked with Christina Warinner, a molecular archaeologist at Harvard University and the Max Planck Institute for the Science of Human History, and a team of researchers to apply this new method to the eastern Mediterranean, including the Bronze Age site of Megiddo and the Early Iron Age site of Tel Erani.

“Our high-resolution study of ancient proteins and plant residues from human dental calculus is the first of its kind to study the cuisines of the ancient Near East,” said Warinner, explaining its significance. “Our research demonstrates the great potential of these methods to detect foods that otherwise leave few archaeological traces. Dental calculus is such a valuable source of information about the lives of ancient peoples.”

SCIblog - 1 March 2021 - A trip to the Bronze Age dentist - image of woman's smile with perfect teeth

High-resolution analyses of ancient dental calculus have given us a whole new perspective on the diets of Bronze Age people.

The research team took samples from a range of individuals and analysed which food proteins and plant residues were preserved in their teeth. “This enables us to find traces of what a person ate,” said Stockhammer. “Anyone who does not practice good dental hygiene will still be telling us archaeologists what they have been eating thousands of years from now!”

Of course, it's not quite as simple as looking at the teeth of those who didn't thoroughly clean them nearly four millennia ago and hoping the proteins survived. “Interestingly, we find that allergy-associated proteins appear to be the most stable in human calculus”, remarked Ashley Scott, LMU biochemist and lead author. That might be because of the known thermostability of many allergens. For instance, the researchers were able to detect wheat via wheat gluten proteins, which they independently confirmed with a different method using a type of plant microfossil known as phytoliths.

This substance has previously been used to identify millet and date palm in the same area during the Bronze and Iron Ages but phytoliths are not plentiful or even present in many foods, which is why this research is so exciting — palaeoproteomics means foods that have left few other traces, such as sesame, can now be identified.

SCIblog - 1 March 2021 - A trip to the Bronze Age dentist - image of a pile of bananas

Research suggests that the humble banana was eaten throughout the Mediterranean far earlier than first thought.

The method has allowed the team to identify that people at these sites ate, among other things, sesame, turmeric, soy, and bananas far earlier than anyone had realised. “Exotic spices, fruits and oils from Asia had thus reached the Mediterranean several centuries, in some cases even millennia, earlier than had been previously thought,” explained Stockhammer.

The finds mean that we have direct evidence for a flourishing long-distance trade in fruits, spices, and oils, from East and South Asia to the Levant via Mesopotamia or Egypt as early as the second millennium BCE.

More than that, the analyses "provide crucial information on the spread of the banana around the world. No archaeological or written evidence had previously suggested such an early spread into the Mediterranean region,” according to Stockhammer (although the sudden appearance of bananas in West Africa a few centuries later has previously led archaeologists to believe that such a trade might have existed, this is the first evidence).

The team acknowledged that other explanations are possible, including that the individuals concerned had travelled to East or South Asia at some point but there is evidence for other trade in food and spices in the Eastern Mediterranean — for instance, we know Pharaoh Ramses II was buried with peppercorns from India in 1213 BCE.

But it certainly seems like some foods might have been popular in the Mediterranean for much longer than we realised, which might be an interesting thought to accompany you next time you add some spices or bananas to your shopping basket.

Sustainability & Environment

The Organisation for Economic Cooperation and Development (OECD) defines the Blue Economy as ‘all economic sectors that have a direct or indirect link to the oceans, such as marine energy, coastal tourism and marine biotechnology.’ Other organisations have their own definitions, but they all stress the economic and environmental importance of seas and oceans.

Header image: Our oceans are of economic and environmental importance

To this end there are a growing number of initiatives focused on not only protecting the world’s seas but promoting economic growth. At the start of 2021 the Asian Development Bank (ADB) and the European Investment Bank (EIB) joined forces to support clean and sustainable ocean initiatives in the Asia-Pacific region, and ultimately contribute to achieving Sustainable Development Goals and the climate goals of the Paris Agreement.

Both institutions will finance activities aimed at promoting cleaner oceans ‘through the reduction of land-based plastics and other pollutants discharged into the ocean,’ as well as projects which improve the sustainability of all socioeconomic activities that take place in oceans, or that use ocean-based resources.

ADB Vice-President for Knowledge Management and Sustainable Development, Bambang Susantono, said ‘Healthy oceans are critical to life across Asia and the Pacific, providing food security and climate resilience for hundreds of millions of people. This Memorandum of Understanding between the ADB and EIB will launch a framework for cooperation on clean and sustainable oceans, helping us expand our pipeline of ocean projects in the region and widen their impacts’.

SCIblog - 23rd February 2021 - Blue Economy - image of trade port at sunrise

The blue economy is linked to green recovery

In the European Union the blue economy is strongly linked to the bloc’s green recovery initiatives. The EU Blue Economy Report, released during June 2020, indicated that the ‘EU blue economy is in good health.’ With five million people working in the blue economy sector during 2018, an increase of 11.6% on the previous year, ‘the blue economy as a whole presents a huge potential in terms of its contribution to a green recovery,’ the EU noted. As the report was launched, Mariya Gabriel, Commissioner for Innovation, Research, Culture, Education and Youth, responsible for the Joint Research Committee said; ‘We will make sure that research, innovation and education contribute to the transition towards a European Blue Economy.’

The impact of plastics in oceans is well known and many global initiatives are actively tackling the problem. At the end of 2020 the World Economic Forum and Vietnam announced a partnership to tackle plastic pollution and marine plastic debris. The initiative aims to help Vietnam ‘dramatically reduce its flow of plastic waste into the ocean and eliminate single-use plastics from coastal tourist destinations and protected areas.’ Meanwhile young people from across Africa were congratulated for taking leadership roles in their communities as part of the Tide Turners Plastic Challenge. Participants in the challenge have raised awareness of the impact of plastic pollution in general.

But it isn’t just the health of our oceans that governments and scientists are looking at. There is growing interest in the minerals and ore that could potentially be extracted via sea-bed mining. The European Commission says that the quantity of minerals occupying the ocean floor is potentially large, and while the sector is small, the activity has been identified as having the potential to generate sustainable growth and jobs for future generations. But adding a note of caution, the Commission says, ‘Our lack of knowledge of the deep-sea environment necessitates a careful approach.’ Work aimed at shedding light on the benefits, drawbacks and knowledge gaps associated with this type of mining is being undertaken.

With the push for cleaner energy and the use of batteries, demand for cobalt will rise, and the sea-bed looks to have a ready supply of the element. But, the World Economic Forum points out that the ethical dimensions of deep-sea cobalt have the potential to become contentious and pose legal and reputational risks for mining companies and those using cobalt sourced from the sea-bed.

SCIblog - 23rd February 2021 - Blue Economy - image of aerial view tidal power plant

Energy will continue to be harnessed from the sea.

But apart from its minerals, the ocean’s ability to supply energy will continue to be harnessed through avenues such as tidal and wind energy. During the final quarter of 2020, the UK Hydrographic Office launched an Admiralty Marine Innovation Programme. Led by the UK Hydrographic Office, the programme gives innovators and start-ups a chance to develop new solutions that solve some of the world’s most pressing challenges as related to our oceans.

The UK’s Blue Economy is estimated to be worth £3.2 trillion by the year 2030. Marine geospatial data will be important in supporting this growth by enabling the identification of new areas for tidal and wind energy generation, supporting safe navigation for larger autonomous ships, which will play a vital role in mitigating climate change, and more.

Energy

Where once a country might have wanted to strike gold, now hitting upon a hydrocarbon find feels like a prize. But finding a hydrocarbon is only the beginning of the process and might not be worth it — as Lebanon is discovering.

First, a little background: for some time, Lebanon has been experiencing an energy crisis. Without resources of their own, the industry (which is government-owned) is reliant on foreign imports, which are expensive. Electricity in early 2020 was responsible for almost 50% of Lebanon's national debt. Major blackouts were common.

This contributed to a spiralling financial crisis, prompting public protests and riots as the middle class disappeared and even wealthier citizens struggled. Before Covid-19 and the devastating August 2020 blast in Beirut, Lebanon was in crisis.

The idea that the country might be able to switch from foreign oil to local gas was understandably appealing, especially when a major find was literally right there on the Lebanese shore. In 2019, a consortium of Israeli and US firms discovered more than 8tcm of natural gas in several offshore fields in the Eastern Mediterranean, much of it in Lebanese waters.

SCIblog 22 February 2021 - Hydrocarbon resources - image of pigeon rocks raouche beirut lebanon

A hydrocarbon find off the Beirut coast has failed to live up to its early promise.

But a find is only the beginning. With trust in Lebanese politicians low (the country ranks highly in most government corruption indexes) and a system that has repeatedly struggled to deliver a stable government, there are additional difficulties, not least a delay in the licensing rounds and a lack of trust — both internally, from citizens, and externally, from potential bidders. Meanwhile, Lebanon's neighbours race ahead to exploit their own finds, which ratchets up tensions.

Amid all that, a drilling exploration managed to go ahead last summer. But the joint venture between Total, ENI, and Novatek, which operated a well 30km offshore Beirut and drilled to approximately 1,500 metres, did not bring back the hoped-for results. The results confirmed the presence of a hydrocarbon system generally but did not encounter any reservoirs of the Tamar formation, which was the target.

Offshore exploration is a long process, with a lot of challenges and uncertainties and Ricardo Darré, Managing Director of Total E&P Liban, said afterwards, "Despite the negative result, this well has provided valuable data and learnings that will be integrated into our evaluation of the area". But the faith national politicians have long put in the hydrocarbon find, selling it as an answer to all Lebanon's problems, seems to have only worsened the domestic situation since.

And domestic politics is just the start of the problems…

SCIblog 22 February 2021 - Hydrocarbon resources - image of oil pipeline desert qatar middle east

Unlike other countries in the Middle East, Lebanon has no pipeline infrastructure of its own.

Israel, Egypt, and Jordan already have pipelines, which go to Italy. Turkey is working with Libya on a pipeline. Lebanon has no pipeline infrastructure of its own yet, although Russia has storage facilities and pipelines in the country and an eye on possible competition in the gas market.

None of that is an issue if the supply is intended for domestic use but that might not be profitable enough for investors and the Lebanese government would struggle to underwrite production on its own. Cyprus has encountered similar issues exploiting its share of the find.

Lebanon has also set an ambitious goal of having 30% of domestic energy mix sourced from renewable energy by 2030. The hoped-for gas was intended to support the renewable energy mix but, with the clock ticking, it might be that priorities shift to focusing on renewables. The Covid-19 pandemic will significantly impact the budgets of drilling companies and the push for renewable energy, both from governments and investors, seems to be growing as a way to boost economic recovery.

It may be that, after all the excitement around the hydrocarbon find, Lebanon starts to look elsewhere for its energy provision.

Sustainability & Environment

The world’s biggest ever survey of public opinion on climate change was published on 27th January, covering 50 countries with over half of the world’s population, by the United Nations Development Programme (UNDP) and the University of Oxford. Of the respondents, 64% believe climate change is a global emergency, despite the ongoing Covid-19 pandemic, and sought broader action to combat it. Earlier in the month, US President Joe Biden reaffirmed the country's commitment to the Paris Agreement on Climate Change.

It is possible that the momentum, combined with the difficulties many countries currently face, may make many look again to geoengineering as an approach. Is it likely that large scale engineering techniques could mitigate the damage of carbon emissions? And is it safe to do so or could we be exacerbating the problem?

The term has long been controversial, as have many of the suggested techniques. But it would seem that some approaches are gaining more mainstream interest, particularly Carbon Dioxide Removal (CDR) and Solar Radiation Modification (SRM), which the 2018 Intergovernmental Panel on Climate Change (IPCC) report for the UN suggested were worth further investigation (significantly, it did not use the term "geoengineering" and distinguished these two methods from others).

One of the most covered CDR techniques is Carbon Capture and Storage (CCS) or Carbon Capture, Utilisation, and Storage (CCUS), the process of capturing waste carbon dioxide, usually from carbon intensive industries, and storing (or first re-using) it so it will not enter the atmosphere. Since 2017, after a period of declining investment, more than 30 new integrated CCUS facilities have been announced. However, there is concern among many that it will encourage further carbon emissions when the goal should be to reduce and use CCS to buy time to do so.

CDR techniques that utilise existing natural processes of natural repair, such as reforestation, agricultural practices that absorb carbon in soils, and ocean fertilisation are areas that many feel could and should be pursued on a large scale and would come with ecological and biodiversity benefits, as well as fostering a different, more beneficial relationship with local environments.

SCIblog - Geoengineering: how much can technology help us combat climate change? - image of a school of fish

A controversial iron compound deposition approach has been trialled to boost salmon numbers and biodiversity in the Pacific Ocean.

The ocean is a mostly untapped area with huge potential and iron fertilisation is one very promising area. The controversial Haida Salmon Corporation trial in 2012 is perhaps the most well-known example and brings together a lot of the pros and cons frequently discussed in geoengineering — in many ways, we can see it as a microcosm of the bigger issue.

The trial deposited 120 tonnes of iron compound in the migration routes of pink and sockeye salmon in the Pacific Ocean 300k west of Haida Gwaii over a period of 30 days, which resulted in a 35,000km2, several month long phytoplankton bloom that was confirmed by NASA satellite imagery. That phytoplankton bloom fed the local salmon population, revitalising it — the following year, the number of salmon caught in the northeast Pacific went from 50 million to 226 million. The local economy benefited, as did the biodiversity of the area, and the increased iron in the sea captured carbon (as did the biomass of fish, for their lifetimes).

SCIblog - Geoengineering: how much can technology help us combat climate change? - image of phytonplankton

Small but mighty, phytoplankton are the laborers of the ocean. They serve as the base of the food web.

But Environment Canada believes the corporation violated national environmental laws by depositing iron without a permit. Much of the fear around geoengineering is how much might be possible by rogue states or even rogue individuals, taking large scale action with global consequences without global consent.

The conversation around SRM has many similarities — who decides that the pros are worth the cons, when the people most likely to suffer the negative effects, with or without action, are already the most vulnerable? This is a concern of some of the leading experts in the field. Professor David Keith, an expert in the field, has publicly spoken about his concern around climate change and inequality, adding after the latest study that, "the poorest people tend to suffer most from climate change because they’re the most vulnerable. Reducing extreme weather benefits the most vulnerable the most. The only reason I’m interested in this is because of that."

But he doesn't believe anywhere near sufficient research has been done into the viability of the approach or the possible consequences and cautions that there is a need for "an adequate governance system in place".

There is no doubt that the research in this field is exciting but there are serious ethical and governance problems to be dealt with before it can be considered a serious component of an emissions reduction strategy.

Energy

We are increasingly conscious of the need to recycle waste products, but it is never quite so easy as rinsing and sorting your waste into the appropriate bins, especially when it comes to plastic.

Despite our best intentions, only around 16% of plastic is recycled into new products — and, worse, plastics tend to be recycled into low quality materials because transformation into high-value chemicals requires substantial amounts of energy, meaning the choices are either downcycling or prohibitively difficult. The majority of single-use plastics end up in landfills or abandoned in the environment.

This is a particular problem when it comes to polyolefins such as polyethylene (PE) and polypropylene (PP), which use cheap and readily available raw materials. Approximately 380 million tonnes of plastics are generated annually around the world and it is estimated that, by 2050, that figure will be 1.1 billion tonnes. Currently, 57% of this total are polyolefins.

Why are polyolefins an issue? The strong sp3 carbon–carbon bonds (essentially long, straight chains of carbon and hydrogen atoms) that make them useful as a material also make them particularly difficult to degrade and reuse without intensive, high energy procedures or strong chemicals. More than most plastics, downcycling or landfill disposal tend to be the main end-of-life options for polyolefins.

SCIblog 11 February 2021 - image of plastic waste in nature

Polyethylene is used to make plastic bags and packaging.

Now, however, a team of scientists from MIT, led by Yuriy Román-Leshkov, believe they may have made a significant step towards solving this problem.

Previous research has demonstrated that noble metals, such as zirconium, platinum, and ruthenium can help split apart short, simple hydrocarbon chains as well as more complicated, but plant-based lignin molecules, in processes with much lower temperatures and energy.

So the team looked at using the same approach for the long hydrocarbon chains in polyolefins, aiming to disintegrate the plastics into usable chemicals and natural gas. It worked.

First, they used ruthenium-carbon nanoparticles to convert more than 90% of the hydrocarbons into shorter compounds at 200 Celsius (previously, temperatures of 430–760 Celsius were required).

Next, they tested their new method on commercially available, more complex polyolefins without pre-treatment (an energy intensive requirement). Not only were the samples completely broken down into gaseous and liquid products, the end product could be selected by tuning the reaction, yielding either natural gas or a combination of natural gas and liquid alkanes (both highly desirable) as preferred.

SCIblog 11 February 2021 - image of plastic bottles on a beach

Polypropylene is used in bottle caps, houseware, and other packaging and consumer products.

The researchers believe that an industrial scale use of their method could eventually help reduce the volume of post-consumer waste in landfills by recycling plastics to desirable, highly valuable alkanes — but, of course, it's not that simple. The team says that more research into the effects of moisture and contaminants in the process is required, as well as product removal strategies to decrease the formation of light alkanes which will be critical for the industrialisation of this reaction.

However, they believe the path they're on could lead to affordable upcycling technology that would better integrate polyolefins into the global economy and incentivise the removal of waste plastics from landfill and the environment.

More about the study can be read here:
https://pubs.acs.org/doi/full/10.1021/jacsau.0c00041

Policy

The theme of the 2021 World Economic Forum’s Davos Agenda was ‘The Great Reset’ and how the world might recover from the effects of Covid-19. Because of the current circumstances, the forum was split into two parts, with a virtual meeting held January 25-29 and an in-person gathering planned for May 13-16, in Singapore.

Each day of the January summit was dedicated to discussing a key area for recovery. On Monday, January 25, the focus was on designing cohesive, sustainable and resilient economic systems. On Tuesday, delegates discussed how to drive responsible industry transformation and growth, while on Wednesday they spoke about enhancing the stewardship of our global commons. Thursday's talks centred on harnessing the technologies of the Fourth Industrial Revolution, and on Friday attendees discussed ways to advance global and regional cooperation.

With the International Labor Organization jobs report, published at the start of the week, stating that at least 225 million jobs vanished worldwide over the past year (four times more than the 2008 global financial crisis) and concerns that vaccine nationalism will see the pandemic continue to ravage many less wealthy nations, much of the talk was around equality and unity.

Christine Lagarde, President of the European Central Bank, spoke in Monday's meeting. ‘Once we’re through to the "second phase" of the 2021 Covid-19 recovery,’ Lagarde said, ‘it is most likely going to be a new economy, which will be associated with positive developments and also with challenges.’ Many advanced economies, she noted, particularly in Europe, have jumped forward in terms of digitalisation, some by up to seven years.

SCIblog 9 February 2021 - Davos 2021 - image of Christine Lagarde

Christine Lagarde, President of the European Central Bank, has called for continued support for the digital-centred, post-pandemic economy. | Credit: Alexandros Michailidis / Shutterstock.com

She added that it is likely that there will be a 20% increase in the amount of people working from home post-pandemic, which will have an impact on many economies, and claimed that technological changes are already having positive effects. She said that it is critical to continue ‘favouring and supporting investment into this new economy’ and that on the fiscal and monetary policy front, authorities will have to stay the course and continue to support. At the same time, investment will have to be focused on laying the ground for a new economy.

Ursula von der Leyen, President of the European Commission (EC), agreed about the increase in digitalisation, and reported that the EU hopes ‘the 2020s can finally be Europe’s Digital Decade’, highlighting a number of investments to boost this process, including the startup scenes in cities such as Sofia and Lisbon.

However, she warned that there is a ‘darker side of the digital world,’ noting the assault on Capitol Hill in the US and making clear that ‘The immense power of the big digital companies must be contained. She spoke of the EC's plans ‘to make internet companies take responsibility for content, from dissemination to promotion and removal, and highlighted the Commission’s new rulebooks, the Digital Services Act and the Digital Markets Act.

SCIblog 9 February 2021 - Davos 2021 - image of Ursula von der Leyen

Ursula von der Leyen, President of the European Commission, believes the 2020s can be Europe’s ‘Digital Decade’. | Credit: John Smith Williams / Shutterstock.com

She invited the US to work together to: ‘Create a digital economy rulebook that is valid worldwide: it goes from data protection and privacy to the security of critical infrastructure. A body of rules based on our values: Human rights and pluralism, inclusion and the protection of privacy.’

Marc Benioff, Salesforce CEO, made a noteworthy intervention in his panel discussion, claiming, ‘There has been a mantra for too long that the business of business is business, but today the business of business is improving the state of the world.’ He added that, while there were many CEOs who had been ‘bad actors,’ others had used their considerable resources to help fight the pandemic.

Many speakers noted a shift towards sustainability in investments, with others demanding more change and faster. Of the latter, Mark Carney, Special Envoy for Climate Action and Finance to the UN, said bluntly, ‘if you are part of the private financial sector and you are not part of the solution […] you will have made the conscious decision not to be aligned to net zero […] if you’re not in, you’re out because you chose to be out.’

It could be concluded that there was a great deal to feel positive about, but the circumstances are difficult. Now we will see whether the attendees of the World Economic Forum can deliver on their inspiring rhetoric.

Science & Innovation

The Organisation for Economic Cooperation and Development (OECD) has published its Science Technology and Innovation Outlook 2021: Time of Crises and Opportunity report.

Published at the beginning of 2021, the report focuses on the ‘unparalleled mobilisation of the scientific and innovation community’ in response to the covid-19 pandemic. The report indicates that newly funded research initiatives have been established by public research agencies and organisations, private foundations and charities, while the health sector has similarly invested in an array of research programmes worth billions of dollars in record time.

SCIblog 4th January 2021 - image of double exposure, medical professional concept

The pandemic has led an unprecedented mobilisation of the scientific and innovation community

However, the report also exposes gaps in overall system resilience to future crises. ‘It’s a wake-up call that highlights the need to recalibrate science, technology and innovation (STI) policies, so that they better orient research and innovation efforts towards sustainability, inclusivity and resiliency goals,’ the report asserts.

Highlighting the rapid response by governments around the world, the report indicates that in the first few months of the pandemic, national research funding bodies spent around $5 billion on emergency financial support. This includes $300 million in Asia-Pacific, excluding China, over $850 million in Europe and more than $3.5 billion in North America. At the same time, research efforts led to around 75,000 scientific publications on covid-19 being released between January and November 2020, the report says. The largest share came from the US, followed by China and the UK. Research databases and scientific publishers removed paywalls so that covid-19 related information could be quickly shared.

SCIblog 4th January 2021 - image of a pencil on a pack of notes

Research efforts led to around 75,000 scientific publications on covid-19 being released between January and November 2020

‘These developments mark important changes that could accelerate the transition to a more open science in the longer run,’ the report says. It is also noted that not only have researchers continued their work with more than three quarters of scientists indicating that they had shifted to working from home at some point in 2020, but almost two thirds experienced, or expected to see, an increase in the use of digital tools for research as a consequence of the crisis. The report also mentions the contribution of the general public, with so called ‘frugal innovations’ in response to shortages of medical equipment and emergency supplies.

Looking to the future of the research community, the report says that postgraduate training regimes require reform to support a diversity of career paths. ‘The crisis has shown that the need for STI expertise is not limited to the public laboratory; it is also important for business, government and NGOs […] Reforming PhD and post-doctoral training to support a diversity of career paths is essential for improving societies’ ability to react to crises like covid-19 and to deal with long-term challenges like climate change that demand science-based responses […] There has been a 25% increase in the number of people with PhDs in OECD countries over the past decade with no corresponding increase in academic posts. The pandemic is expected to make matters worse, more than half of the scientists participating in the OECD Science Flash Survey expect the crisis to negatively affect their job security and career opportunities,’ the report says.

SCIblog 4th January 2021 - image of young scientists in a laboratory

Post-graduate training regimes require reform to support a diversity of career paths

While still in the midst of the pandemic, the report stresses that STI policies now need to be reoriented to tackle the challenges of sustainability, inclusivity and resiliency. ‘In the short-term governments should continue their support for science and innovation activities that aim to develop solutions to the pandemic and mitigate its negative impacts, while paying attention to its uneven distributional effects. Science for policy will remain in the spotlight as governments seek to strike the right balance in their response to covid-19. This will effect public perceptions of science that could have long term implications for science-society relations.’

The report concludes that governments now have the task of developing public sector capabilities to deliver more ambitious STI policy. This will require engagement from stakeholders and citizens in order to capture a diversity of knowledge and values.

DOI:10.1787/75f79015-en

Science & Innovation

Galen (129-216 CE) is one of the most famous and influential medical practitioners in history but he was also a scientist, an author, a philosopher, and a celebrity. He wrote hundreds of treatises, travelled and studied widely, was the physician to three emperors, and left a legacy of scientific thought that lasted for fifteen hundred years — even today, his work has an influence.

Header image Editorial credit: Eray Adiguzel / Shutterstock.com

He grew up in Pergamum, an intellectual centre of the Mediterranean world, in a wealthy family that encouraged him to pursue academia and funded his travels to learn in the best environments available, acquiring the latest techniques in medicine and healing.

He understood that diet, exercise, and hygiene were essential for good health and put that into practice in the four years he spent working for the High Priest of Pergamum's Gladiator School. This was a high profile and high pressure role and we know he reduced the death rate dramatically in his four years there. The recommendation he got helped secure him a position in Rome, capital of the empire.

He was not popular in the city — at one point, he seems to have been chased out by the local physicians, who strenuously disagreed with his methods — but he was eventually summoned by the emperor Marcus Aurelius to be his personal physician. He was described by the emperor as, “First among doctors and unique among philosophers".

SCIblog 2nd February 2021 - Galen - line drawing image of Galen

Galen; Line engraving | Credit: Wellcome Images, Wikimedia Commons

Galen continued to navigate the difficult political environment of the imperial capital and was personal physician to two more emperors, while publishing prolifically and becoming one of the most well-known figures in the Roman Empire. Much of his work is lost to us but we still know a great deal about him, including that he had a flair for showmanship and controversy.

In the Greek world where he grew up, dissections had been common — of animals and humans. In Rome, this was not the case. In fact, human dissections were banned across the empire shortly before Galen arrived in the city. Undaunted, he gave a number of public anatomical demonstrations using pigs, monkeys, sheep, and goats to show his new city what they were missing (this was one of many incidents that contributed to local dislike of his methods as well as his increasing fame).

His legacy was huge, both because he recorded and critiqued the work of others in his field and because of the huge volumes of his own observations and theories. His texts were the foundation for much of medical education in the Islamic, Byzantine, and European worlds until the 17th Century.

The ban on human dissection likely limited his progress in some areas and many of his theories have (eventually) been disproved, such as the theory of the four humours — blood, black bile, yellow bile, and phlegm — based on Hippocrates' system and elaborated, as well as the efficacy of bloodletting.

SCIblog 2nd February 2021 - Galen - image of an eye close-up

Galen observed that cataracts could be removed.

In other areas, however, he was remarkably successful. He observed that the heart has four valves that allow blood to flow in only one direction, that a patient's pulse or urine held clues to their disease, that urine forms in kidneys (previously thought to be the bladder), that arteries carry liquid blood (previously thought to be air), that cataracts could be removed from patients' eyes, among others. He also identified seven of the 12 cranial nerves, including the optic and acoustic nerves.

His focus on practical methods such as direct observation, dissection, and vivisection is obviously still relevant to modern medical research. Indeed, scientists who disproved his theories, such as Andreas Vesalius and Michael Servetus in the 16th century, did so using Galen's own methods.

The study of his work remains hugely important to the history and understanding of medicine and science, as well as the ancient world. The Galenic formulation, which deals with the principles of preparing and compounding medicines in order to optimise their absorption, is named after him.

Agrifood

More people are looking at their nutritional intake, not only to improve wellbeing but also reduce their environmental impact. With this, comes a move to include foods that are not traditionally cultivated or consumed in Europe.

Assessing whether this growing volume of so called ‘novel foods’ are safe for human consumption is the task of the European Food Safety Authority. The EFSA points out, ‘The notion of novel food is not new. Throughout history new types of food and food ingredients have found their way to Europe from all corners of the globe. Bananas, tomatoes, tropical fruit, maize, rice, a wide range of spices – all originally came to Europe as novel foods. Among the most recent arrivals are chia seeds, algae-based foods, baobab fruit and physalis.’

Under EU regulations any food not consumed ‘significantly’ prior to May 1997 is considered to be a ‘novel food’. The category covers new foods, food from new sources, new substances used in food as well as new ways and technologies for producing food. Examples include oils rich in omega-3 fatty acids from krill as a new source of food, phytosterols as a new substance, or nanotechnology as a new way of producing food.

Providing a final assessment on safety and efficacy of a novel food is a time consuming process. At the start of 2021 the EFSA gave its first completed assessment of a proposed insect-derived food product. The panel on Nutrition, Novel Foods and Food Allergens concluded that the novel food dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption.

SCIblog 28 January 2021 - Novel Foods - image of mealworms

Dried yellow meal worm (Tenebrio molitor larva) is safe for human consumption, according to the EFSA.

Commenting in a press statement, as the opinion on insect novel food was released, Ermolaos Ververis, a chemist and food scientist at EFSA who coordinated the assessment said that evaluating the safety of insects for human consumption has its challenges. ‘Insects are complex organisms which makes characterising the composition of insect-derived products a challenge. Understanding their microbiology is paramount, considering also that the entire insect is consumed,’

Ververis added, ‘Formulations from insects may be high in protein, although the true protein levels can be overestimated when the substance chitin, a major component of insects’ exoskeleton, is present. Critically, many food allergies are linked to proteins so we assess whether the consumption of insects could trigger any allergic reactions. These can be caused by an individual’s sensitivity to insect proteins, cross-reactivity with other allergens or residual allergens from insect feed, e.g. gluten.’

SCIblog 28 January 2021 - Novel Foods - image of a German supermarket selection

EFSA research could lead to increased choice for consumers | Editorial credit: Raf Quintero / Shutterstock.com

The EFSA has an extensive list of novel foods to assess. These include dried crickets (Gryllodes sigillatus), olive leaf extract, and vitamin D2 mushroom powder. With the increasing desire to find alternatives to the many foods that we consume on a regular basis, particularly meat, it is likely that the EFSA will be busy for some time to come.

Sustainability & Environment

Gardens and parks provide visual evidence of climate change. Regular observation shows us that our flowering bulbous plants are emerging, growing and flowering. Great Britain is particularly rich in long term recordings of dates of budbreak, growth and flowering of trees, shrubs and perennial herbaceous plants. Until recently, this was dismissed as ‘stamp collecting by Victorian ladies and clerics’.

The science of phenology now provides vital evidence that quantifies the scale and rapidity of climate change. Serious scientific evidence of the impact of climate change comes, for example, from an analysis of 29,500 phenological datasets. This research shows that plants and animals are responding consistently to temperature change with earlier blooming, leaf unfurling, flowering and migration. This scale of change has not been seen on Earth for the past three quarters of a million years. And this time it is happening with increased rapidity and is caused by the activities of a single species – US – humans!

 2 iris

Iris unguicularis (stylosa). 

Changing seasonal cycles seriously affects our gardens. Fruit trees bloom earlier than previously and are potentially out of synchrony with pollinators. That results in irregular, poor fruit set and low yields. Climate change is causing increased variability in weather events. This is particularly damaging when short, very sharp periods of freezing weather coincide with precious bud bursts and shoot growth. Many early flowering trees and shrubs are incapable of replacing damaged buds, as a result a whole season’s worth of growth is lost. Damaged buds and shoots are more easily invaded by fungi which cause diseases such as dieback and rotting. Eventually valuable feature plants fail, damaging the garden’s benefits for enjoyment and relaxation. 

Plant diseases caused by fungi and bacteria benefit from our increasingly milder, damper winters. Previously, cooling temperatures in the autumn and winter frosts prevented these microbes from over-wintering. Now they are surviving and thriving in the warmer conditions. This is especially the case with soil borne microbes such as those which cause clubroot of brassicas and white rot, which affects a wide range of garden crops.

 3 Hazel

Hazel (Coryllus spp.) typical wind-pollinated yellow male catkins, which produce pollen.

Can gardeners help mitigate climate change? Of course! Grow flowering plants which are bee friendly; minimise using chemical controls; ban bonfires – which are excellent sources of CO2; establish wildlife-friendly areas filled with native plants and pieces of rotting wood, and it is amazing how quickly beneficial insects, slow worms and voles will populate your garden.

Professor Geoff Dixon is the author of Garden Practices and their Science, published by Routledge 2019.

Health & Wellbeing

A year after the world was put on alert about the rapidly spreading covid-19 virus, mass vaccination programmes are providing a welcome light at the end of the tunnel.

However, for many people vaccination remains a concern. A World Economic Forum – Ipsos survey: Global Attitudes on a Covid-19 Vaccine, indicates that while an increasing number of people in the US and UK plan to get vaccinated, the intent has dropped in South Africa, France, Japan and South Korea. The survey was conducted in December 2020, following the first vaccinations in the US and the UK.

This study shows that overall vaccination intent is below 50% in France and Russia. ‘Strong intent’ is below 15% in Japan, France and Russia.

SCIblog 19 January 2021 - image of London in lockdown

Many cities are still in lockdown

Between 57% and 80% of those surveyed cited concerns over side effects as a reason for not getting a covid-19 vaccination. Doubts over the effectiveness of a vaccine was the second most common reason cited in many countries, while opposition to vaccines in general was mentioned by around 25% those who will refuse a vaccination.

The survey was conducted among 13,542 adults aged 18–74 in Canada, South Africa, and the US, while those surveyed in Australia, Brazil, China, France, Germany, Italy, Japan, Mexico, Russia, South Korea, Spain and the UK were aged 16–74.

A previous survey, Global Attitudes on a Covid-19 Vaccine carried out in July and August 2020, indicated that 74% of those surveyed intended to get vaccinated. At that time the World Economic Forum said that this majority could still fall short of the number required to ‘beat covid-19.’

Commenting on the newest data Arnaud Bernaert, Head of Health and Healthcare at the World Economic Forum said; ‘As vaccinations roll out, it is encouraging to see confidence improve most in countries where vaccines are already made available. It is critical that governments and the private sector come together to build confidence and ensure that manufacturing capacity meets the global demand.’

SCIblog 19 January 2021 - image of and elderly woman receiving a vaccine 

World Economic Forum-Ipsos Survey indicates a rise in number of people in US and UK intending to get vaccinated.

With the imperative now to move towards some sort of ‘normality’, as well as getting economies moving, fears over vaccination need to be allayed. However, what also needs to be considered is what underlies those fears. Misinformation, no doubt, has a part to play. This highlights a lack of trust in governments and a sector that has worked tirelessly to develop vaccines in record time.

As different companies bring their vaccines to the market, care now needs to be taken to reassure people around the world that whichever manufacturer’s vaccine they are given, they are in safe hands. As any adverse reactions occur – an inevitability with any vaccine rollout – these ought to be made known to the wider public by companies and governments as soon as it is feasible, preventing space for the spread of rumour and misinformation, which could undo the hard work of the scientists, businesses and governments bringing vaccines to the public.

SCIblog 19 January 2021 - image of scientists working 

Researchers have worked tirelessly to bring vaccines to the market

Policy

Waking up after a night of overindulgence on food and wine and realising you don’t have a headache is very satisfying. But realising, soon afterwards, you have heartburn can bring your mood down rapidly.

After years of discussion and argument around Brexit, the UK woke up to find that a Trade and Cooperation Agreement between the UK and the EU been reached. A major headache had been avoided.

SCIblog - 14 January 2021 - 2021: ‘A year to look forward to.’ - image of a woman from the back, she is looking out over landscape 

UK Businesses have a new trading landscape

However, the UK chemicals sector soon realised that after pulling back the curtains and taking a look at the new trading landscape, a feeling of heartburn was rising. The chemical sector’s regulatory obligation now requires that it establishes a UK-REACH system. The deal negotiated means that the UK has no access to the data it submitted to the EU’s REACH database.

In effect, the UK chemical sector has to populate the UK-REACH system from scratch. This will require an array of steps possibly including testing and renegotiating data sharing with other companies. According to the Chief Executive of the Chemical Industries Association (CIA), Steve Elliot, this is set to burn a £1 billion hole in the UK chemical sector’s pocket.

‘Failure to secure access to what has been a decade’s worth of investment by UK chemical businesses in data for EU REACH will leave the industry facing a bill of more than £1 billion in unnecessarily duplicating that work for a new UK regime,’ said Elliot in a statement on 24 December 2020, the day that the UK government excitedly announced the new trade deal.

SCIblog - 14 January 2021 - 2021: ‘A year to look forward to.’ - image of a scattered pound sterling 

UK-REACH could cost more than £1 billion

As a slightly belated Christmas gift, and perhaps just taking the edge off the heartburn, the UK government’s Environment Minister, Rebecca Pow announced, on 31 December, that the UK-REACH IT system was up and running. Pow said that the government had worked closely with partners, industry and stakeholders developing the IT system to manage the UK’s chemicals industry.

‘Having our own independent chemicals regulatory framework will ensure that we make decisions that best reflect the UK’s needs while maintaining some of the highest chemical standards in the world,’ she said.

But will these high standards do what REACH was set up for in the first place, and protect human health and the environment? According to CHEM Trust, a UK-German charity focused on preventing man-made chemicals from causing long term damage to wildlife or humans, the deal does not go far enough.

Critiquing the outcome, Michael Warhurst, Executive Director of CHEM Trust said, ‘CHEM Trust’s initial assessment is that this agreement does not adequately protect human health and the environment in the UK from hazardous chemicals. This is because it doesn’t retain UK access to the EU’s chemicals regulation system REACH. The agreement includes an annex on chemicals, but does not facilitate the type of close cooperation with the EU post-Brexit that civil society groups such as CHEM Trust, and also the chemicals and other industries are seeking.’

But on a positive note, Warhurst added; ‘The deal […] commits the UK to not regress from current levels of protection, includes a rebalancing procedure which could increase protection on both sides and offers a platform on which a closer partnership could be negotiated in the future.’

No one doubts that there is still much to be digested, along with those left over Christmas chocolates that nobody really likes, regarding the UK-EU Free Trade Agreement. ‘Although this Free Trade Agreement represents a mixed bag for our industry,’ said the CIA’s Elliot, ‘we shouldn’t underestimate the huge value that a deal brings in terms of certainty.’

SCIblog - 14 January 2021 - 2021: ‘A year to look forward to.’ - image of a plant with a sign saying 'Growth 2021' 

2021: A year to look forward to

As people return to their desks after the Christmas break, one might dare to hope that the heartburn can be quelled with a dose of optimism after the challenging year that has just passed. With this as a basis, along with eventually emerging from the global pandemic, Elliot believes 2021 should be ‘a year to look forward to’.

Agrifood

Today we chat to Joe Oddy about his life as a Plant Sciences PhD Student at Rothamsted Research.  

Joe Oddy 

Give us a summary of your research, Joe!

I study how levels of the amino acid asparagine in wheat are controlled by genetics and the environment. Asparagine levels in wheat grain determine the levels of acrylamide, a probable carcinogen, in certain foods. We are hoping to better understand the biology of asparagine to mitigate this risk.

What does a day in the life of a Plant Sciences PhD Student look like?

My schedule is quite variable depending on what analysis I am doing. I could have whole days in the lab doing molecular work or whole days at the computer analysing and writing up data. Most of the time it is probably somewhere in between!

via GIPHY

How did your education prepare you for this experience?  

I think I had a good grounding in basic principles from my undergraduate degree, but the training they gave in R stands out as being particularly useful. In my degree program I also worked for a year in research, which really helped prepare me for this kind of project work.

What are some of the highlights so far?

Being able to go outside to check plants in the field or in the glasshouse makes a nice break if you have been doing computer work all day! Finishing up some analysis after a lot of data collection is also quite cathartic, as long as it works…

What is one of the biggest challenges faced in a PhD?

In my project so far, the biggest challenge has just been trying to decide what research questions to focus on since there are so many interesting options available. I realise I am probably quite fortunate to have this be my biggest challenge!

What advice would you give to someone considering a PhD?

My undergraduate university actually gave me this advice. They said that the most important part of choosing a project was not the university or the project itself, but the supervisor. I think this is true in a lot of cases, and at least for me.

via GIPHY

How have things been different for you because of the global pandemic?

I wasn’t able to go into the labs for a while but thankfully my plants in the field and glasshouse were maintained. By the time they finished growing the lockdown had been partially eased. At last, a long growing season has helped rather than hindered a PhD project.

What are you hoping to do after your research?

I’d like to go into research either in academia or industry, but beyond that I’m not sure. The landscape is always changing and I would probably be open to anything that seems interesting!

Joe Oddy is a PhD Student at Rothamsted Research and a member of SCI’s Agri-Food Early Career Committee and SCI’s Agriscences Committee

Agrifood

Understanding organisms’ capabilities of sensing environmental changes such as increasing or declining temperature is becomes ever more important. Deciduous woody trees and shrubs growing in cool temperate and sub-arctic regions enter quiescent or dormant states as protection against freezing temperatures.

These plants pass through a two-stage process. Firstly, they gradually acclimatise (or 'acclimate', in the USA) where lowering temperatures encourage capacities for withstanding cold. This is a reversible process and if there is a spell of milder weather the acclimatisation state is lost. This can happen, for instance, with a fine spell of 'Indian summer' in October or even early November.

winter weather and dormant trees

Winter weather and dormant trees. All images by Geoff Dixon

Where acclimation is broken, plants become susceptible to cold-induced damage again. If acclimation continues, however, plants eventually become fully dormant. This is not a reversible state and only ends after substantial periods of warming weather and increasing day-length. Some plants will require an accumulation of 'cold-units' – ie, temperatures below a specific level before dormancy is broken.

Detailed research information is accumulating to describe how acclimatisation develops. Changes take place that strengthen cell membranes, possibly by increasing the bonding in lipid molecules, and causing alterations in respiration rates, enzyme activities and hormone levels.

non-acclimatised azalea (front), acclimatised azalea (back) 

Non-acclimatised azalea (front), acclimatised azalea (back).

Leaves in a non-acclimated state will leak cellular fluids when they are chilled, whereas acclimated leaves are undamaged. These processes result from an interaction between genotype and the environment. Cascades of genes come into play during acclimation and dormancy. 

The genus Rhododendron offers a model for studies of these states. Some species originate from alpine environments, such as R. hirsutum coming from the European Alps and one of the first English garden 'rhodos'. By contrast, plants of R. vireya come from tropical areas such as the East Indies.        

comparing the leakage of cellular fluids in acclimatised and non-acclimatised rhododendron leaves subjected to -7oC 

Comparing the leakage of cellular fluids in acclimatised and non-acclimatised rhododendron leaves subjected to -7°C

Practical outcomes from studies of acclimation and dormancy are twofold. Firstly, are there substances that could be sprayed onto cold susceptible crops, eg potatoes or cauliflowers, that prevent damage? This is so-called 'anti-freeze chemistry'. Some studies suggest that spraying seaweed extracts will dimmish damage. The downside of this approach is that rain washes off the application. Secondly, identifying genes which increase cold hardiness offers possibilities for their transfer into susceptible crops. Gene-editing techniques may offer means of tweaking existing cold-hardiness genes in susceptible crops. 

Professor Geoff Dixon is the author of Garden Practices and their Science, published by Routledge 2019.

Agrifood

Fertile soils teem with life of all shapes and sizes, from badgers and moles to insects and the most minute microbes, forming an intricate web of life. Each plays its part – earthworms, for example, burrow through soils opening out channels that improve aeration and water percolation. They are, in Charles Darwin’s words, ‘nature’s ploughs’. 

Microbes are quite probably the largest biomass, certainly numerically. The great majority form beneficial relationships with plants, relatively few are pathogens capable of causing crop diseases. Some of the most beneficial are nitrogen-fixing bacteria, which form symbiotic associations with the roots of legumes (clovers, peas and beans). 

Their nitrogenase enzymes are capable of combining atmospheric nitrogen with hydrogen-forming ammonia. Followed by conversion into nitrites and nitrates which are made available for the host plant in exchange for carbohydrates, sources of energy for the microbes. The presence of these bacteria is indicated by white nodules on the roots of legumes.

 Another picture of soil for the SCI blog

The white nodules on the roots of legumes indicate the presence of nitrogen-fixing bacteria, which provide nourishment to microbes in the soil.

The fungi mycorrhizae also form associations with plant roots. These may form sheaths wrapping round the root, ecto-mycorhizea, or penetrate into the root cortex as endo-mycorrhizea, working in close association with host cells. Mycorrhizae solubilise soil deposits of phosphates and other minerals, making them available for the host. They also provide protection from root-invading plant pathogens. 

These fungi utilise carbohydrates supplied by their hosts as energy sources in a similar manner to nitrogen fixing bacteria. Mutualistic mycorrhizal associations are found across most higher plant families with the key exception of the brassicas. This exception quite probably relates to production of the iso-thiocyanate mustard oil, which is fungi-toxic, in brassica roots.

A picture of soil for the SCI blog

Farmyard manure and compost stimulate soil health by introducing beneficial microbes.

Benefits from nitrogen-fixing bacteria and mycorrhizal fungi were recognised by 19th century agronomists. Much more recently, science has begun uncovering the biological capital of myriad microbes present in healthy soils. Research is being stimulated by recognition of the need for sustainable forms of crop husbandry that utilise ecologically sound techniques in integrated management. 

Soil health can be stimulated by incorporation of farmyard manure or well composted green wastes, both containing huge populations of beneficial microbes. The critical importance of building and maintaining healthy soils cannot be over-emphasised. Quite simply, our food supplies depend upon it.

Interested in soil health? Why not register for free to attend the 2020 Bright SCIdea Challenge final? One of the teams in this year’s final are pitching their method to restore the fertility of heavy metal ion rich farmland and increase crop yields.









Agrifood

The conference ‘Feeding the future: can we protect crops sustainably?’ was a tremendous success from the point of view of the technical content. The outcomes have been summarised in a series of articles here. How did such an event come about and what can we learn about putting on an event like this in a world of Covid?

This event was born from two parents. The first was a vision and the second was collaboration.

The vision began in the SCI Agrisciences committee. We had organised a series of events in the previous few years, all linking to the general theme of challenges to overcome in food sustainability. Our events had dealt with the use of data, the challenge of climate change and the future of livestock production. Our intention was to build on this legacy using the International Year of Plant Health as inspiration and provide a comprehensive event, at the SCI headquarters in London, covering every element of crop protection and what it will look like in the future. We wanted to make a networking hub, a place to share ideas and make connections, where new lines of research and development would be sparked into life. Well, then came Covid…

 international year of plant health 2020

 

2020 is the International Year of Plant Health.

From the start, we knew in the Agrisciences group that this was going to be too much for us alone. Our first collaboration was within the SCI, the Horticulture Group and the Food Group. Outside of the SCI, we wanted collaborators who are research-active, with wide capabilities and people who really care about the future of crop protection. Having discussed a few options, we approached the Institute of Agriculture and Food Research and Innovation, IAFRI and later Crop Health and Protection, CHAP.

By February 2020, we had our full team of organisers and about half of our agenda all arranged. By March we didn’t know what to do, delay or virtualise? The debate went back and forth for several weeks as we all got to grips with the true meaning of lockdown. When we chose to virtualise, suddenly we had to relearn all we knew about organising events. Both CHAP and SCI started running other events and building up their experience. With this experience came sound advice on what makes a good event: Don’t let it drag; Keep everything snappy; Make sure that your speakers are the very best; Firm and direct chairing. We created a whole new agenda, based around these ideas.

 A picture of people networking 

How do you replicate those chance meetings facilitated by face-to-face events?

That still left one problem: how do you reproduce those extra bits that you get in a real conference? Those times in the coffee queue when you happen across your future collaborator? Maybe your future business partner is looking at the same poster as you are? It is a bit like luck, but facilitated.

We resolved this conundrum with four informal parallel sessions. So we still had student posters but in the form of micro-presentations. We engineered discussions between students and senior members of our industry. We tried to recreate a commercial exhibition where you watched as top companies showed off their latest inventions. For those who would love to go on a field trip, we offered virtual guided tours of some of the research facilities operated by CHAP.

Can virtual conferences take the place of real ones? They are clearly not the same, as nothing beats looking directly into someone’s eyes. But on the plus side, they are cheaper to put on and present a lower barrier for delegates to get involved. I am looking forward to a post-Covid world when we can all meet again, but in the meantime we can put on engaging and exciting events that deliver a lot of learning and opportunity in a virtual space.

Feeding the Future was organised by:

James Garratt, SCI Agrisciences

John Points, SCI Food

Liliya Serazetdinoza, SCI Agrisciences

Robin Blake, SCI Agrisciences

Bruce Knight, SCI Agrisciences

Sebastian Eves-van den Acker, SCI Horticulture

Neil Boonham, IAFRI Newcastle University

Katherine Wotherspoon, IAFRI FERA

Darren Hassall, CHAP

Technical and administrative support was provided by:

JacquI Maguire, SCI

Shadé Bull, SCI

Theo Echarte, SCI

Sandy Sevenne, CHAP

Claire Boston-Smithson, IAFRI FERA

Guest chairs and moderators were:

Rob Edwards, Newcastle University

Ruth Bastow, CHAP

Richard Glass, CHAP



Careers

My research aims to help farmers in the tropics whilst discovering how plants, pests and microbes interact. Brambles, biological control organisms, bananas and now, sweet potatoes.

I joined SCI after receiving the David Miller Travel Bursary to attend the International Banana Congress in Miami in 2019. Now, I am the new Secretary of the Horticulture committee and I am part of the Agri-Food Early Careers  Committee.

Undergraduate Beginnings

started my undergraduate studies in Marine Biology as a bit of rebellion against my plant pathologist father. After living with Nepalese farmers in 2017, I switched universities to study Plant Biology. Last year, I started an PhD to work with a banana disease in Costa Rica, but I decided to exit the Doctoral Training Program with an MRes due to concerns about the lab environment. Next week, I will (re)start my PhD at the University of Southampton which will involve working with subsistence farmers in Papua New Guinea.

It sounds like my life is a bit of a roller-coaster. It is. I love it.

 

 Juniper with other students

 

In 2017, another scholarship took Juniper to Nepal to visit plant clinics and live with farmers.

Whilst I received “Top Student” awards for graduating with a high average – I never really studied from textbooks. I worked as a technician in labs and attended as many conferences as I could with scholarships. Often, I was the only undergraduate at international conferences or symposiums but that is where I learnt the behind-the-scenes stories of how scientists question how the world works.

Moments of random kindness, spare-of-the-moment dancing at conferences, and ridiculous situations I put myself in are the highlights of my scientific career – so far.

PhD Tips and Reflections

Personally, the workload of a PhD is not that scary, and I find it exciting to lead my own project. The biggest challenge of my PhD last year was to put my foot down and say that I did not feel comfortable around some colleagues. My pre-PhD advice would be to choose people over projects, be honest with yourself why you would like to do a PhD to begin with, and what skills you need to gain for post-PhD jobs.

 

 a student working

 

“The workload of a PhD isn’t that scary”

The COVID-19 pandemic put a halt on my rotation project at the Eden Project (Cornwall) in March and it is hard to predict when I will be able to travel to Papua New Guinea. I have been attending online events, panel discussions and conferences every week spring lockdown which have been a fantastic way to keep feeling engaged with the scientific community.

Whilst starting a PhD in a pandemic is strange – I am very excited about my project. I will be exploring options for working with local technicians remotely. I am planning on studying nutritional and social aspects of food security which has been inspired by an interview with an ethnobotanist and virtual conferences.

If there is one opportunity in this pandemic, it is to reflect on our behaviour, choices, and responsibility to live in harmony with nature and bring each other along. 

Juniper Kiss is a NERC INSPIRE DTP student at the University of Southampton, and a member of SCI’s Agri-Food Early Career Committee and SCI’s Horticulture Group

Health & Wellbeing

Chemists have created a new type of artificial cell that can communicate with other parts of the body. A study, published in Science Advances this month, describes a new type of artificial cell that can communicate with living cells.

“This work begins to bridge the divide between more theoretical ‘what is cellular life’ type of work and applicative, useful technologies,” said Sheref Mansy, Chemistry Professor at the University of Alberta and co-author of the study.

The artificial cells are made using an oil-water emulsion, and they can detect changes within their environments and respond by releasing protein signals to influence surrounding cells. This work is the first that can chemically communicate with and influence natural living cells. They started with bacteria, later moving to multicellular organisms.

“In the future, artificial cells like this one could be engineered to synthesizes and deliver specific therapeutic molecules tailored to distinct physiological conditions or illnesses–all while inside the body,” explained Sheref Mansy, professor in the University of Alberta’s Department of Chemistry,

Though the initial study was undertaken using a specific signalling system, the cells have applications in therapeutic use, going beyond traditional smart-drug delivery systems and allowing for an adaptable therapeutic.

Careers

Today we chat to SCI member Luca Steel about her life as a plant pathology PhD student in 2020.

Can you please provide a brief summary of your research?

Zymoseptoria tritici is a fungal pathogen of wheat which can cause yield losses of up to 50%. We’re investigating an effector protein secreted by Z. tritici which acts as a ‘mask’, hiding the pathogen from host immune receptors and avoiding immune response.

What does a day in the life of a plant pathology PhD Student look like?

My days are very varied – from sowing wheat seeds to swabbing pathogenic spores onto their leaves, imaging symptoms, discussing results with my supervisor and lab team, and of course lots of reading. It doesn’t always go to plan - I recently attempted to make some wheat leaf broth, which involved lots of messy blending and ended up turning into a swampy mess in the autoclave!

 plants growing

Wheat in the incubator!

How did your education prepare you for this experience?  

The most valuable preparation was my placement year at GSK and my final year project at university. Being in the lab and having my own project to work on made me confident that I wanted to do a PhD – even if it was a totally different research area (I studied epigenetics/immunoinflammation at GSK!).

What are some of the highlights so far?

My highlight was probably attending the European Conference on Fungal Genetics in Rome earlier this year. It was great to hear about so much exciting work going on – and it was an added bonus that we got to explore Rome. I’ve also loved getting to know my colleagues and being able to do science every day.

What is one of the biggest challenges faced in a PhD?

My biggest challenge so far has probably been working from home during lockdown. Although I am very privileged to have a distraction-free space and good internet connection, it was difficult to adjust to working from my kitchen! It was sad abandoning unfinished experiments, and I missed being in the lab – so I’m glad to be back now.

 working on a laptop

Pandemic Workstations

What advice would you give to someone considering a PhD?

If you’re sure you want to do one, then absolutely go for it and don’t be afraid to sell yourself! If not, I’d recommend spending some time working in a lab before you apply and chatting to any prospective labs. If you don’t get a reply from the PI, existing students/post-docs in the group are often very happy to talk and give honest opinions.

How have things been different for you because of the global pandemic?

I was lucky that the pandemic came early on in my PhD, so I had a lot of flexibility to change what I was working on. I switched from lab work involving lots of bioimaging, towards a more bioinformatic approach. My poor laptop will be glad when I’m back to using my computer at work!



Policy

At this month’s Vitae Connections Week Event, Amanda Solloway, Member of Parliament and Minister for Science, Research and Innovation, spoke about the promoting a culture of wellbeing for researchers and improving the way we evaluate research success.

Academia has long had cultural issues, including harassment, inequality and the overall high-pressure environment. Though there are great examples of effective career mentorship and support by many senior academics, often early career researchers, particularly those from underrepresented groups, are exposed to the dark side of academia.

In her speech, Amanda Solloway speaks of the ‘Publish or Perish’ mantra that penetrates academic culture; the pressure to publish research and win grants in order to be successful in scientific research. Amanda also spoke on the short term and casual contract culture, something most early career academics are all too familiar with, and the harassment and bullying that takes place in academia, with around half of researchers having experienced bullying or harassment in the workplace.

So what can be done? These problems are not new, or surprising, to anyone who has worked in academia. The perfect world solution involves a vast systemic change, an uprising of equality within academic departments across the world. This can only happen if, as Amanda rightfully suggests, there is an increase in diverse and sustainable funding. Consistently, large grants, which allow researchers to develop independent research careers, hire new talent and maintain stable job roles within their institutions, are disproportionately awarded to those who fit a certain mould, with underrepresented groups constantly underfunded. This creates an ongoing system of inequality, and a review of how these grants are awarded is essential for academic culture to evolve.

 a stressed student

Stress, high-pressure working and elitism are common in academia.

In addition to large scale systemic changes, more needs to be done to help the wellbeing of researchers and crush the culture of high academic expectations. Stable, long-term job roles form one part of this, and the pressure to publish research is a huge part of academic life. However, the wellbeing of early career researchers is often affected by a culture of harassment, discrimination and elitism. For example, the #MeToo movement shook the world, with the exposure of sexual harassment in academia being no exception to this. The recent increase in online events from Black Scientists is empowering, but also highlights the struggles of being a minority group in science and academia in 2020. Every day, the academic Twitter space is filled with early career researchers speaking of their ongoing problems getting through a career in academic research.

The assessment and valuation of researchers based on metrics needs to be switched up. Often, the value placed on outputs like scientific publications disadvantages those who do not fall into a particular group, those who do not have to take on extra responsibilities, something which disproportionately affects women for example. It gives an advantage to those who have support, both through finances and mentorship. It is a self-perpetuating cycle of exclusion, where success is not measured on the individuals work. Amanda Solloway is right, that many researchers are passionate, driven, love their research, and it isn’t reflected in the outputs. Many of those researchers leave academia to seek a happier and more stable existence elsewhere when we should be fighting to keep them.

 a mental health infographic

Mental health and wellbeing often suffers in academia. Inforgraphic by Zoe Ayres.

As a young woman starting out on an academic career, I have experienced my fair share of these problem, including sexism, high-pressure working and mental health problems. It fills me with fear to see how things never appear to get better as you move through the ranks. I am extremely passionate about my research, but I cannot disagree with the sentiment of the PhD student Amanda spoke to: “I just can’t see myself having a future in research”. Personally, I will keep trying, but the idea of being a successful academic, within the culture of academia we sit in right now, feels like a pipe dream.

This motion from Amanda Solloway to “create a culture that welcomes the widest range of viewpoints, experiences and approaches” and “provide funding… properly and sustainably” is hopeful. A systemic change to academic culture is needed, and this can be fuelled by diversifying funding, providing more stable career progressions for early career academics and creating a workplace that is a supportive, encouraging and safe place to be.


Sustainability & Environment

All organisms are fitted for the habitat in which they live. Some are sufficiently flexible in their requirements that they can withstand small shifts in their environment. Others are so well fitted that they cannot withstand habitat change and will eventually fail. The extent of seasonal changes varies with latitude. Plants in temperate and sub-arctic are fitted for changing weather patterns from hot and dry to cold and wet as the calendar moves from summer into winter. Deciduous plants start growing in spring with varying degrees of rapidity and move through flowering and fruiting in summer and early autumn. Finally, some produce a magnificent display of autumn colour, but all senesce and shut down with the return of winter. Evergreen plants frequently inhabit the higher latitudes and retain their foliage. This is an energy conservation measure as they can respond more quickly when winter ends and growth restarts. 

Plants respond to seasonal change by sensing alterations in daylength, spectral composition and most importantly temperature. It is known as acclimatisation (acclimation in the American literature). Falling temperatures are the most potent triggers in preparation for winter dormancy. Cold and ultimately freezing weather will seriously damage plant growth where acclimatisation has not been completed. Without preparation freezing ruptures cell membranes in leaves and stems disrupting their normal functions. These effects are measurable and used as means of quantifying plant hardiness. Membrane leakiness correlates with increased ionic concentrations when damaged leaves are placed in water and the resultant pC measured. Changes in chlorophyll fluorescent indicated damaged photosynthetic apparatus and measurable. Similarly, in some species bonding in lipid molecules alters and can be traced by mass spectroscopy. Understanding these processes and their ultimate goal which is protective dormancy underpins more accurate understanding of the natural world. It also provides information useful for breeding cold tolerant crops and garden plants.

 cold-damaged-plants

Cold Damaged Plant

The rapidity of climate change is such that the protective mechanisms of plants and other organisms cannot respond with sufficient speed. Autumn in cool temperate regions, for example, is now extending as an increasingly warm period. This means that plants are not receiving the triggers necessary for acclimatisation in preparation for severe cold. Buds are commencing growth earlier in spring and now frequently are badly damaged by short bursts of deep cold. These buds cannot be replaced and as a consequence deciduous trees and shrubs in particular are losing capacities for survival.

 cold damaged buds

Severe Cold


Agrifood

Recently, our Agri-Food Early Career Committee ran the third #agrifoodbecause Twitter competition. Today we are looking back over the best photos of the 2020 competition, including our winner and runner-up. Entrants were asked to take photos and explain why they loved their work, using the hashtag #agrifoodbecause on Twitter.

Our 2020 winner, Jordan Cuff, Cardiff University, won first prize for his fantastic shot of a ladybird. He received a free SCI student membership and an Amazon voucher.

 ladybug on a flower

#agrifoodbecause insect pests ravage agriculture through disease and damage. Naturally-occurring predators offer sustainable biocontrol, but their dynamics must be better understood for optimal crop protection. @SCIupdate @SCI_AgriFood #conservationbiocontrol🐞🌾🕷️🍽️ pic.twitter.com/ss4WjdB8ky

For the first-time ever we also awarded a runner-up prize to Lauren Hibbert, University of Southampton, for her beautiful root photography. She also received a free SCI student membership and Amazon voucher.

 root phenotyping

#agrifoodbecause developing more environmentally friendly crops will help ensure the sustainability of future farming.
Photo illustrating the dawn 🌅 of root phenotyping… or some very hairy (phosphate hungry) watercress roots! @SCI_AgriFood pic.twitter.com/29u533Xyow

There were also many other fantastic entries!

 parasitic wasps

#AgrifoodBecause My research looks at the potential biocontrol of parasitic wasps on #CSFB, major pest of #OSR! Combining field and lab work to work towards #IPM strategies 👩🏻‍🔬👩🏻‍🌾 pic.twitter.com/YqJnBM4CVf

 damaging fungi

#AgrifoodBecause we need to work out which tools fungi use to damage our crops. Sometimes crops are tricky to work with so models have to do pic.twitter.com/mrdk2tRgC6

 protect the crops

#agrifoodbecause we need to protect the crops to feed the world while repairing and protecting a highly damaged ecosystem. There is no delete option! #foodsecurity #noplanetb #organic #earth #wildlife #insectpests #beneficialinsects pic.twitter.com/JXfycRc0tx

Once again, it was an incredibly successful online event, with fascinating topics covered.

To find out more about the Twitter competition, follow our SCI Agri-Food Early Careers Committee Twitter @SCI_AgriFood and look out for #agrifoodbecause.


image
image
image
image

Agrifood

This year’s wheat harvest is currently underway across the country after a difficult growing season, with harvest itself being delayed due to intermittent stormy weather. The high levels of rainfall at the start of the growing season meant that less winter wheat could be planted and dry weather in April and May caused difficulties for spring wheat as well. This decline in the wheat growing area has caused many news outlets to proclaim the worst wheat harvest in 40 years and potential bread price rises.

 wheat harvest

Difficult weather during this year’s growing season. Photo: Joe Oddy

This is also the first wheat harvest in which I have a more personal stake, namely the first field trial of my PhD project; looking at how asparagine levels are controlled in wheat. It seemed like a bad omen that my first field trial should coincide with such a poor year for wheat farming, but it is also an opportunity to look at how environmental stress is likely to influence the nutritional quality of wheat, particularly in relation to asparagine.

The levels of asparagine, a nitrogen-rich amino acid, in wheat grain have become an important quality parameter in recent years because it is the major determinant and precursor of acrylamide, a processing contaminant that forms during certain cooking processes. The carcinogenic risk associated with dietary acrylamide intake has sparked attempts to reduce consumption as much as possible, and reducing asparagine levels in wheat is a promising way of achieving part of this goal.

 asparagus

Asparagus, from which asparagine was first discovered and named.

Previous work on this issue has shown that some types of plant stress, such as sulphur deficiency, disease, and drought, increase asparagine levels in wheat, so managing these stresses with sufficient nutrient supply, disease control, and irrigation can help to prevent unwanted asparagine accumulation. Stress can be difficult to prevent even with such crop management strategies though, especially with environmental variables as uncontrollable as the weather, so it is tempting to speculate that the difficulties experienced this growing season will be reflected in higher asparagine levels; but we will have to wait and see.


Sustainability & Environment

This tobacco (Nicotiana tabacum) relative was first planted in the SCIence Garden in the summer of 2018. It was grown from seed by Peter Grimbly, SCI Horticulture Group member. Although normally grown as an annual, some of the SCIence Garden plants have proven to be perennial. It is also gently self-seeding across the garden. It is native to the south and southeast of Brazil and the northeast of Argentina but both the species and many cultivars of it are now grown ornamentally across Europe. Flower colour is normally white, but variants with lime green and pink through to darker red flowers are available.

Like many Nicotiana this species has an attractive floral scent in the evening and through the night. The major component of the scent is 1.8-cineole. This constituent has been shown to be a chemical synapomorphy for the particular section of the genus Nicotiana that this species sits within (Raguso et al, Phytochemistry 67 (2006) 1931-1942). A synapomorphy is a shared derived character – one that all descendants and the shared single ancestor will have.

 cineole

1,8-cineole

This ornamentally and olfactorily attractive plant was chosen for the SCIence Garden to represent two other (arguably less attractive) Nicotiana species.

 Nicotiana solanaceae

Nicotiana solanaceae

Firstly, Nicotiana benthamiana, a tobacco species from northern Western Australia. It is widely used as a model organism in research and also for the “pharming” of monoclonal antibodies and other recombinant proteins.

In a very topical example of this technology, the North American biopharmaceutical company Medicago is currently undertaking Phase 1 clinical trials of a Covid-19 vaccine produced using their plant-based transient expression and manufacturing technology.

Secondly, Nicotiana tabacum, the cultivated tobacco which contains nicotine. This alkaloid is a potent insecticide and tobacco was formerly widely used as a pesticide.

This vivid extract from William Dallimore’s memoirs of working at Royal Botanic Gardens, Kew illustrate how tobacco was used in the late Victorian era.

“Real tobacco was used at Kew for fumigating plant houses. It was a very mixed lot that had been confiscated by excise officers, and it was said that it had been treated in some way to make it unfit for ordinary use before being issued to Kew. With the men working in the house ten men were employed on the job. After the first hour the atmosphere became unpleasant and after 1 ½ hours the first casualties occurred, some of the young gardeners had to leave the house. At the conclusion there were only the two labourers the stoker and one young gardener to leave the house, I was still about but very unhappy. Each man employed at the work, with the exception of the foreman, received one shilling extra on his week’s pay.“

After a second such fumigation event it was reported that there was a great reduction in insect pests, particularly of mealy bug and thrips, with a “good deal of mealy bug” falling to the ground dead.

Health and safety protocols have improved since the Victorian era, but the effectiveness of nicotine as an insecticide remains. From the 1980’s through the 1990’s a range of neo-nicotinoid plant protection agents were developed, with structures based on nicotine.  Although extremely effective, these substances have also been shown to be harmful to beneficial insects and honey bees. Concerns over these adverse effects have led to the withdrawal of approval of outdoor use in the EU.

 Imidacloprid

Imidacloprid – the first neo-nicotinoid developed

In early 2020, the European commission decided not to renew the European license for the use of Thiacloprid in plant protection, making it the fourth neo-nicotinoid excluded for use in Europe.

 Thiacloprid

Thiacloprid

Where the next generation of pest control agents will come from is of vital importance to the horticulture and agriculture industries in the UK and beyond and the presence of these plants in the garden serves to highlight this.


Materials

Dinosaurs were some of the largest creatures to ever roam the Earth, but the mystery of how they supported their great weight remains. A new study published in PLOS ONE now indicates that the answer may lie in their unique bone structure, which differs from mammals and birds.

The bone is made up of different layers of different consistency, including the spongy interior, or trabecular. This part of the bone is formed of porous, honeycomb like structures.

A group of inter-disciplinary researchers, including palaeontologists, mechanical engineers, and biomedical engineers, analysed trabecular bone structure in a range of dinosaur samples, ranging from only 23 kg to 8000 kg in body mass. Their study found that the structure of dinosaur bones possessed unique properties allowing them to support large weights.

‘The structure of the trabecular, or spongy bone that forms in the interior of bones we studied is unique within dinosaurs,’ said Tony Fiorillo, palaeontologist and one of the study authors. ‘Unlike in mammals and birds, the trabecular bone does not increase in thickness as the body size of dinosaurs increase, instead it increases in density of the occurrence of spongy bone. Without this weight-saving adaptation, the skeletal structure needed to support the hadrosaurs would be so heavy, the dinosaurs would have had great difficulty moving.’

Their analysis included scanning the distal femur and proximal tibia bones from dinosaur fossils, and modelling how mechanical behaviour may have occurred. The research team also used allometry scaling – a method of understanding how physical characteristics change with physical size. They then compared the architecture of the bones to scans of both living and extinct large animals, such as Asian elephants and mammoths.

a walking cartoon dinosaur gif

Originally posted by manucalavera

Researchers hope that they can apply their findings to design other lightweight structures such as those used in aerospace, construction, or vehicles.

‘Understanding the mechanics of the trabecular architecture of dinosaurs may help us better understand the design of other lightweight and dense structures,’ said Trevor Aguirre, mechanical engineer and lead author of the paper.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237042


Careers

On the week of 10th-16th August, 2020, scientists across Twitter came together to celebrate the Black scientists working in Chemistry. The community event included a range of chemistry themes, from Organic to Physical Chemistry, showcasing a diverse range of research, and even garnered support from celebrities such as MC Hammer and Michael B. Jordan.

#BlackinChem was started by a group of early career researchers, following on from other successful weeks, who wanted to highlight the incredible range of science that Black chemists do.

 #BlackInChem group organisers

#BlackinChem wouldn’t be what it is without these amazing people!@That_Astro_Chic @onlyayanna_ @KathinatedDrink @NatRodLopes1 @blackinthelab @hi_d_nq 🧪❤️ pic.twitter.com/4A7qztEsT2

The main tweets of he week were by Black chemists highlighting their research interests.

 sonja the electrochemist

Hi everyone! #BlackinChemRollCall I’m Sonja, an Electrochemist, and a Chem lecturer at Princeton U. I worked on bimetallic/alloy electrocatalysts for fuel cells and CO2 reduction and now interested in academic support interventions. Looking forward to to #BlackInChem week! pic.twitter.com/GpTNpFnIaK

 Kelly from Aakeroy lab

#BlackinChem Kelly here 🇿🇼. I’m a grad student @KStateChemistry in the Aakeroy lab. My work focuses on crystal engineering and inorganic chemistry to modify properties of agrochemicals, fragrances and energetics :from fundamentals to applications.Cobalt girl…#BlackinInorganic pic.twitter.com/8OQM40zVgm

The week also included online events, panels and socials throughout the week.

Issues surrounding diversity in science, particularly representation of Black scientists, was discussed.

 #BlackInChem stats

1,656 U.S. citizens and permanent residents received a Master’s degree in chemistry in 2016.
Only 89 were Black. That’s less than 5.4%. #BlackinChem #BlackinChemRepresentation #BlackinChemGradStudent (Source: NSF NCSES) pic.twitter.com/7vd4GZBRJZ

There were even a few celebrity shout outs! Yes, this is MC Hammer tweeting about MOFs!

 Mesoporous stilbene

Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics - Dalton Transactions (RSC Publishing) #BlackinOrganic #BlackinChemRollCall https://t.co/qhlMLv9Dod

Overall, it was an incredibly successful week. A massive congratulations to everyone involved, and especially to the organisers.

Find out more about #BlackInChem here.

 a chemistry gif

Careers

Since the start of 2020 the world has been a different place. During March the UK Government instigated a lock down, with those who could required to work from home, this included scientists. Completing my PhD studying insect olfaction during a global pandemic was not something I expected, but how did I spend my days?

Computational Working

As a scientist I spend a portion, if not the majority of my time in a lab doing experiments. Pausing this work created several challenges, and as a final year student induced a serious amount of panic! To adapt, I focused more on computational experiments and extensive data analysis. Thankfully, I had some small computational projects already, which could be extended and explored further. This also included attending online courses and webinars to develop new skills – I really enjoyed SCI’s webinar series on computational chemistry and found it useful when completing my protein docking experiments!

 A phd student working

Writing, Writing, Writing

As a final year PhD student, there was one task at the beginning of this year that was high on the agenda – writing my thesis. Many past PhD students will tell horror stories about how they were rushing to finish lab work and writing up in a mad dash at the end. Being forced to give up lab work, and having no social activities, meant a lot more focus was put on writing during this time. Personally, I have been privileged to be in a house with other final year PhD students, creating a distraction free zone, and managed to crack down on thesis writing!

 A phd student working

Online Events

Despite in-person events, including many large international conferences, being cancelled, many organisers were quick to move meetings online. This made so many events more accessible. Though I am sad to have missed out on a trip to San Francisco, during lockdown I have attended numerous webinars, online seminars, two international conferences and even given outreach talks to the public and school children.

 People on a remote video call

Getting back to ‘normal’

It is safe to say the world, and the way science works, is never going to be the same. But scientists are slowly migrating back to the lab, adorned with a new item of PPE. On top of our lab coats, goggles and gloves we can add…a mask. Despite the stressful time,  I managed to get my thesis finished handing it in with a lot more computational work included than I had initially planned!

 

Sustainability & Environment

Soil is a very precious asset whether it be in your garden or an allotment. Soil has physical and chemical properties that support its biological life. Like any asset understanding its properties is fundamental for its effective use and conservation. 

Soils will contain, depending on their origin four constituents: sand, clay, silt and organic matter. Mineral soils, those derived by the weathering of rocks contain varying proportions of all four. But their organic matter content will be less than 5 percent. Above that figure and the soil is classed as organic and is derived from the deposition of decaying plants under very wet conditions forming bogs. 

Essentially this anaerobic deposition produces peat which if drained yields highly fertile soils such as the Fenlands of East Anglia. Peat’s disadvantage is oxidation, steadily the organic matter breaks down, releases carbon dioxide and is lost revealing the subsoil which is probably a layer of clay. 

 cracked-clay-soil

Cracked clay soil

Mineral soils with a high sand content are free draining, warm quickly in spring and are ‘light’ land. This latter term originates from the small number of horses required for their cultivation. Consequently, sandy soils encourage early spring growth and the first crops. Their disadvantage is limited water retention and hence crops need regular watering in warm weather.

Clay soils are water retentive to the extent that they will become waterlogged during rainy periods. They are ‘heavy’ soils meaning that large teams of horses were required for their cultivation. These soils produce main season crops, especially those which are deeply rooting such as maize. But in dry weather they crack open rupturing root systems and reducing yields. 

Silt soils contain very fine particles and may have originated in geological time by sedimentation in lakes and river systems. They can be highly fertile and are particularly useful for high quality field vegetable and salad crops. Because of their preponderance of fine particles silt soils ‘cap’ easily in dry weather. The sealed surface is not easily penetrated by germinating seedlings causing erratic and patchy emergence.

 soil finger test

Soil finger test

Soil composition can be determined by two very simple tests. A finger test will identify the relative content of sand, clay and silt. Roll a small sample of moist soil between your thumb and fingers and feel the sharpness of sand particles and the relative slipperiness of clay or the very fine almost imperceptible particles of silt. For a floatation test, place a small soil sample onto the top of a jam jar filled with water. Over 24 to 48 hours the particles will sediment with the heavier sand forming the lower layer with clay and silt deposited on top. Organic matter will float on the surface of the water.

 soil floatation test

Soil floatation test


Agrifood

The fruits of Viburnum tinus, a Mediterranean flowering shrub, have a secret property that gives them a vibrant, metallic blue colour without relying on pigments. Blue fruits are uncommon in nature, due to the rarity of blue pigments, but a recent study, published in Current Biology, investigated the colour properties of the nutritionally valuable fruits of V. tinus and found it originates from unique structural features.

 Viburnum tinus

Viburnum tinus, a Mediterranean flowering shrub

Usually, pigmentation in fruits arises from the presence of flavonoid compounds, specifically anthocyanins. V. tinus is an important food source for birds, which are attracted to the vibrant colour. In turn for nutrition, the birds disperse the plant’s seeds.

Using microscopy and spectroscopy techniques, researchers investigating the stunning metallic properties of V. tinus fruit uncovered nanostructures of lipids in its cell walls. These structures may act as a double signal to birds, indicating these fruits are full of nutritious fats. These nanostructures differ from regular plant cell walls, which are made of cellulose, and lipids are normally only stored within the cell and used for transport. This distinctive structural property of V. tinus fruit allows it to create the blue colour without containing any pigment.

 bluefruitsinnature

Blue fruits are uncommon in nature

“Structural colour is very common in animals, especially birds, beetles, and butterflies, but only a handful of plant species have ever been found to have structural colour in their fruits,” says co-first author Miranda Sinnott-Armstrong, a researcher at the University of Colorado-Boulder. “This means that V. tinus, in addition to showing a completely novel mechanism of structural colour, is also one of the few known structurally coloured fruits.”

The researchers hope this work can help to understand how birds identify nutritious food, and that the interesting structural colour properties could be exploited to provide safe and sustainable food colourants.

“There are lots of problems connected to food coloration,” says Silvia Vignolini, senior author from the University of Cambridge. “Once this mechanism is better understood, it could potentially be used to create a healthier, more sustainable food colorant.” 


Health & Wellbeing

It’s quite likely that most people who end up in the vicinity of a scorpion will more than likely beat a hasty retreat, not least because they can impart a potentially life threatening dose of venom should one get stung.

But scientists are now finding that the venom from these creatures, along with snakes and spiders, could be beneficial in treating heart attacks. Scorpion venom in particular contains a peptide that has been found to have a positive impact on the cardiovascular system of rats with high blood pressure. Reporting their findings in Journal of Proteome Research, scientists from Brazil, Canada and Denmark say that they now have a better understanding of the processes involved.

 An emperor scorpian

Emperor Scorpion 

Scorpion venom is a complex mixture of molecules including neurotoxins, vasodilators and antimicrobial compounds, among many others. Individual venom compounds, if isolated and administered at the proper dose, could have surprising health benefits, the researchers say.

One promising compound is the tripeptide KPP (Lys-Pro-Pro), which the researchers say is part of a larger scorpion toxin. KPP was shown to cause blood vessels to dilate and blood pressure to decline in hypertensive rats.

 A blood vessel on organic tissue

A blood vessel on organic tissue

To understand how KPP worked, the researchers treated cardiac muscle cells from mice, in a Petri dish, with KPP and measured the levels of proteins expressed by the cells at different times using mass spectrometry. They found that KPP regulated proteins associated with cell death, energy production, muscle contraction and protein turnover. In addition the scorpion peptide triggered the phosphorylation of a mouse protein called AKT, which activated another protein involved in production of nitric oxide, a vasodilator.

Treatment with KPP led to dephosphorylation of a protein called phospholamban, which led to reduced contraction of cardiac muscle cells. Both AKT and phospholamban are already known to protect cardiac tissue from injuries caused by lack of oxygen. The researchers said that these results indicate that KPP should be further studied as a drug lead for heart attacks and other cardiovascular problems.

 

Conceptual image for cardiovascular problems . 


Energy

Introduction

The Industrial Decarbonisation Challenge (IDC) is funded by UK government through the Industrial Strategy Challenge Fund. One aim is to enable the deployment of low-carbon technology, at scale, by the mid-2020’s [1]. This challenge supports the Industrial Clusters Mission which seeks to establish one net-zero industrial cluster by 2040 and at-least one low-carbon cluster by 2030 [2]. This latest SCI Energy Group blog provides an overview of Phase 1 winners from this challenge and briefly highlights several on-going initiatives across some of the UK’s industrial clusters.

Phase 1 Winners

In April 2020, the winners for the first phase of two IDC competitions were announced. These were the ‘Deployment Competition’ and the ‘Roadmap Competition’; see Figure 1 [3].

 Phase 1 Industrial Decarbonisation Challenge

Figure 1 - Winners of Phase 1 Industrial Decarbonisation Challenge Competitions. For further information, click here

Teesside

Net-Zero Teesside is a carbon capture, utilisation and storage (CCUS) project. One aim is to decarbonise numerous carbon-intensive businesses by as early as 2030. Every year, up to 6 million tonnes of COemissions are expected to be captured. Thiswill be stored in the southern North Sea which has more than 1,000Mt of storage capacity. The project could create 5,500 jobs during construction and could provide up to £450m in annual gross benefit for the Teesside region during the construction phase [4].

For further information on this project, click here.

 Industrial Skyscape of Teesside Chemical Plants

Figure 2 – Industrial Skyscape of Teesside Chemical Plants

The Humber

In 2019, Drax Group, Equinor and National Grid signed a Memorandum of Understanding (MoU) which committed them to work together to explore the opportunities for a zero-carbon cluster in the Humber. As part of this initiative, carbon capture technology is under development at the Drax Power Station’s bioenergy carbon capture and storage (BECCS) pilot. This could be scaled up to create the world’s first carbon negative power-station. This initiative also envisages a hydrogen demonstrator project, at the Drax site, which could be running by the mid-2020s. An outline of the project timeline is shown in Figure 3 [5].

For further information on this project, click here.

 Overview of Timeline for Net-Zero Humber Project

Figure 3 - Overview of Timeline for Net-Zero Humber Project

North West

The HyNet project envisions hydrogen production and CCS technologies. In this project, COwill be captured from a hydrogen production plant as well as additional industrial emitters in the region. This will be transported, via pipeline, to the Liverpool Bay gas fields for long-term storage [6]. In the short term, a hydrogen production plant has been proposed to be built on Essar’s Stanlow refinery. The Front-End Engineering Design (FEED) is expected to be completed by March 2021 and the plant could be operational by mid-2024. The CCS infrastructure is expected to follow a similar timeframe [7].

For further information on the status of this project, click here.

Scotland

Project Acorn has successfully obtained the first UK COappraisal and storage licence from the Oil and Gas Authority. Like others, this project enlists CCS and hydrogen production. A repurposed pipeline will be utilised to transport industrial COemissions from the Grangemouth industrial cluster to St. Fergus for offshore storage, at rates of 2 million tonnes per year. Furthermore, the hydrogen production plant, to be located at St. Fergus, is expected to blend up to 2% volume hydrogen into the National Transmission System [8]. A final investment decision (FID) for this project is expected in 2021. It has the potential to be operating by 2024 [9].  

For further information on this project, click here.

 Emissions from Petrochemical Plant at Grangemouth

Figure 4 - Emissions from Petrochemical Plant at Grangemouth

SCI Energy Group October Conference

The chemistry of carbon dioxide and its role in decarbonisation is a key topic of interest for SCI Energy Group. In October, we will be running a conference concerned with this topic. Further details can be found here.

Sources: 

[1] https://www.ukri.org/innovation/industrial-strategy-challenge-fund/industrial-decarbonisation/

[2]https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/803086/industrial-clusters-mission-infographic-2019.pdf

[3] https://www.ukri.org/news/ukri-allocates-funding-for-industrial-decarbonisation-deployment-and-roadmap-projects/

[4] https://www.netzeroteesside.com/project/

[5] https://www.zerocarbonhumber.co.uk/

[6]https://hynet.co.uk/app/uploads/2018/05/14368_CADENT_PROJECT_REPORT_AMENDED_v22105.pdf

[7]https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866401/HS384_-_Progressive_Energy_-_HyNet_hydrogen.pdf

[8]https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866380/Phase_1_-_Pale_Blue_Dot_Energy_-_Acorn_Hydrogen.pdf

[9] https://pale-blu.com/acorn/


Health & Wellbeing

According to two studies published in The BMJ, higher consumption of fruit, vegetables and whole grain foods is linked with a lower risk of developing type 2 diabetes.

In the first study, a team of European researchers examined the link between vitamin C, carotenoids and type 2 diabetes.

The findings were based on 9754 participants with type 2 diabetes, compared with a group of  12,622 individuals who were free of diabetes. All of the participants were part of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort totalling 340 234 people.

The results revealed that individuals with the highest intake of fruits and vegetables reduced the  risk of developing diabetes by up to 50%.

 Fresh fruit and vegetables

Fresh fruit and vegetables 

The results also showed that increasing intake of fruit and vegetables by 66g per day was linked with a 25% decreased risk of developing type 2 diabetes.

In the second study, researchers in the United States examined the association between whole grain food intake and type 2 diabetes.

Their research involved 158,259 women and 36,525 men who were diabetes, heart disease and cancer free and who took part in the Nurses’ Health Study, Nurses’ Health Study II, and Health Professionals Follow-Up Study.

 Healthy heart

Healthy heart

Those with the highest intake of whole grains had a 29% lower rate of developing type 2 diabetes compared with those who consumed the least amount. With regards to individual whole grain foods, those with an intake of one or more servings a day of whole grain cold breakfast cereal or dark bread, were associated with a 19% or 21% lower risk of type 2 diabetes, compared with the participants consuming less than one serving a month.

 Fresh bread

Fresh bread

Although both studies took into account several well-known lifestyle risk factors and markers of dietary health, both studies are observational, therefore it should be considered that some of the results may be due to unmeasured factors.  

These new research findings provide more evidence that increasing fruit, vegetable and whole grain foods can lower the risk of developing type 2 diabetes.

DOI: https://www.bmj.com/content/370/bmj.m2194


Sustainability & Environment

Single plant cells have amazing capacities for regenerating into entire plants. This property is known as ‘totipotency’ discovered in the 1920s. Linking this with increasing understanding of growth control by plant hormones resulted in the development of the sterile, in vitro, culture. Tiny groups of cells, explants, are cut from the rapidly growing tips of shoots in controlled environments and washed in sterilising agents. These are cultured sterile jars containing a layer of agar supplemented with nutrients and hormones.

 Green plantlets growing on sterile agar

Green plantlets growing on sterile agar

The process is known as ‘tissue culture’ or micropropagation. As the cells divide and multiply, they are transferred through a series of sterile conditions which encourage root formation.

 Roots growing from newly developing plantlets

Roots growing from newly developing plantlets

Ultimately numerous new whole plants are generated. At that point they are removed from sterile conditions and weaned by planting into clean compost in high humidity environments. High humidity is essential as these transplants lack the protective coating of leaf and stem waxes which prevent desiccation. Ultimately when fully weaned the plants are grown under normal nursery conditions into saleable products.

Why bother with this processes which requires expensive facilities and highly skilled staff? A prime advantage is that micropropagated plants have genotypes very closely similar to those of the original parent, essentially they are clones. As a result vast numbers of progeny can be generated from a few parents preserving their characteristics. That is particularly important as a means of bulking-up newly bred varieties of many ornamental and fruit producing plants which otherwise would be reproduced vegetatively from cuttings or by grafting and budding onto rootstocks. Micropropagation is therefore a means for safeguarding the intellectual property of plant breeding companies.

Explants cut from parent plants before culturing can be heat-treated as a means of removing virus infections. The resultant end-products of rooted plants are therefore disease-free or more accurately disease-tested. These plants are usually more vigorous and produce bigger yields of flowers and fruit. Orchids are one of the crops where the impact of micropropagation is most obvious in florists’ shops and supermarkets. 

Orchids have benefitted greatly from micropropagation

Orchids have benefitted greatly from micropropagation

Large numbers of highly attractive orchids are now readily available. Previously orchids were very expensive and available in sparse numbers.   

The world is not perfect and there are disadvantages with micropropagation. Because the progeny are genetically similar they are uniformly susceptible to pests and pathogens. Crops of clonal plants can be and have been rapidly devasted by existing and new strains of insects and diseases to which they have no resistance.


Sustainability & Environment

Elderflowers are in full bloom this month, both in hedgerows as well as gardens across the country. Whether they are the wild Sambucus nigra or a cultivated variety with green or black leaves they are all beautiful and useful plants.

 black leaved cultivar

The black leaved cultivar growing in the SCIence Garden has pink blooms, whereas the wild species has white flowers. It was purchased as ‘Black Beauty’, but is also sold as ‘Gerda’.

 Black Beauty flower

Sambucus nigra f. porphyrophylla  ‘Black Beauty’ growing in the SCIence Garden 

This cultivar, along with ‘Black Lace’ (Eva) was developed by Ken Tobutt and Jacqui Prevette at the Horticulture Research International research station at East Malling in Kent and released for sale in the horticulture trade in 2000. The leaves stay a dark purple throughout the year and the flowers have a good fragrance.  

The shrub will tolerate hard pruning so is useful for smaller spaces and provides a long season of interest. The plant is also a forager’s delight, both in early summer (for the flowers) and in the autumn (for the berries).

Most commonly one may think of elderflower cordial, or perhaps even elderflower champagne, but an excellent alternative to the rose flavoured traditional “Turkish Delight” can be made -  https://www.rivercottage.net/recipes/elderflower-delight. I can highly recommend it!

The chemistry of the elderflower aroma is complex. Analyses such as that in the reference below* have identified many different terpene and terpenoid components including nerol oxide, hotrienol and nonanal.

 chemistry of the elderflower aroma

 

* Olfactory and Quantitative Analysis of Aroma Compounds in Elder Flower (Sambucus nigra L.) Drink Processed from Five Cultivars. Ulla Jørgensen, Merete Hansen, Lars P. Christensen, Karina Jensen, and Karl Kaack. Journal of Agricultural and Food Chemistry 2000 48 (6), 2376-2383. DOI: 10.1021/jf000005f


Science & Innovation

June 27th 2020 marked the fourth Micro-, Small and Medium-sized Enterprise (MSME) day, established by the International Council for Small Businesses (ICSB).

Along with online events, the ICSB published its annual report highlighting not only the importance of MSMEs as they relate to the United Nations Sustainable Development Goals but also calling for further political and regulatory support for the sector as the global economy looks to make a recovery.

 Concept of a green economy

Concept of a green economy 

Ahmed Osman, President of the ICSB, used the annual report to share his perspectives on the future for MSMEs in the post pandemic world and posed the question ‘What is the new normal for MSMEs?’  

‘There are six key factors every MSME or start-up needs to keep in mind post Covid-19,’ Osman stated, the first of these being financial assessment and security. Encouraging MSMEs to put in place a financial action plan, obtaining information about government relief packages and getting a clear picture of investor expectations, Osman said;  ‘Once this financial risk assessment and support ecosystem are in place, one can execute the plan. This may involve deciding on a potential pay cut, pull back on investments related to infrastructure or expansion, halting new recruitment etc…’

 Digital Business and Technology Concept

Digital Business and Technology Concept 

Having secured the financial footing the next factor was to re-evaluate the business plan in light of the new conditions. Osman stressed the importance of involving all stakeholders to come up with a mutually agreed set of new targets. The third factor to consider, according to Osman, was creating a ‘strong digital ecosystem.’ ‘If there is one thing that Covid-19 has taught businesses. It is the power of digital engagement. Even as an MSME, it helps to be present and active on digital media…Additionally, a digitally enabled internal ecosystem also needs to be in place that can accommodate remote working…without compromising data  security or productivity of employees.’

The fourth factor Osman highlighted was adoption of the fourth revolution for business. ‘…This is also time to leverage the new age technology innovations and adopt the fourth revolution for business. While most SMEs and MSMEs look at this as an ‘out of league’ investment, it is actually very simple and can be incorporated for a higher ROI in the long run. Be it automation, CRM, ERP, IoT, a well planned strategy to scale to technology-enabled, highly productive next generation business can be worked out with a two to three year plan,’ Osman said.

 Bulb future technology

Bulb future technology

Less reliance on physical space was the fifth factor Osman highlighted, anticipating a reversal in the trend that led to increasing the number of people in an office and home working becoming more normal.

The final factor Osman highlighted was the need to have a crisis management strategy in place. ‘It is vital to chalk up an effective crisis management plan that will take into consideration both immediate and long-term impact,’ he said.

Encouraging MSMEs to take stock, Osman asked ‘How did you help in the great pandemic? Quantify what you did for your employees, customers, community and country. Leverage the opportunity to build a better business, have credible solutions to the new major challenge and think globally act locally.’


Health & Wellbeing

Generally, food intake measurement relies on an individual’s ability to recall what and how much they ate, which has inherent limitations. This can be overcome using biomarkers, such as urine, which contains high amounts of data, and looks to be a promising new indicator of nutritional status.

In one study, a group of researchers from Imperial College London, Northwestern University, University of Illinois, and Murdoch University analysed metabolites in the urine to measure the health of an individual’s diet.

Funded by the U.S. National Institutes of Health and Health Data Research UK, the group of scientists analysed levels of 46 different metabolites in the urine of 1,848 people in the U.S, publishing their findings in the journal Nature Food.

The team illustrated the effectiveness of using metabolites in urine as an alternative approach to obtaining information on dietary patterns. Analysing the urinary metabolic profile of the individuals, they found that the 46 metabolites in urine accurately predicted healthy / unhealthy patterns, making the link between 46 metabolites in urine, as well as the types of foods and nutrients in the diet.

 urine test sample

Urine test sample 

The team believes that this technology could inspire healthy changes as health professionals could be better equipped to provide dietary advice tailored to their individual biological make-up. As Dr Isabel Garcia-Perez, author of the research also from Imperial’s Department of Metabolism, Digestion and Reproduction explained: ‘Our technology can provide crucial insights into how foods are processed by individuals in different ways.’

To build on this research, the same Imperial team, in collaboration with Newcastle University, Aberystwyth University, and Murdoch University, developed a five-minute test to measure the health of a person’s diet.

This five-minute test can reveal differences in urinary metabolites, generating a dietary metabotype score for each individual. As part of this research, 19 people were recruited to follow four different diets ranging from very healthy to unhealthy. The experiments indicated that the healthier their diet, the higher the DMS score, associating higher DMS score with lower blood sugar and a higher amount of energy excreted in the urine.

 Healthy heart

Heart in hands

Professor John Mathers, co-author of research and Director of the Human Nutrition Research Centre at Newcastle University said: ‘We show here how different people metabolise the same foods in highly individual ways. This has implications for understanding the development of nutrition-related diseases and for more personalised dietary advice to improve public health.’


Health & Wellbeing

The week provides the opportunity for participants to promote overall awareness for the wide ranging aspects of wellbeing, including social, physical, emotional, financial, career and environmental. 

This week, 22-26 June, 2020 is World Wellbeing Week. The observance began in Jersey, the Channel Islands in 2019 and has since been taken up across the world.

 woman meditating

Wellbeing and healthy lifestyle concept

Since the beginning of the global lockdown, people have been encouraged to maintain some sort of physical activity or exercise. While it is known that exercise is beneficial for overall physical and mental health and wellbeing, researchers from the University of Cambridge and University of Edinburgh UK, have released a study in which they say that physical activity prevents 3.9 million early deaths each year.

Publishing their work in The Lancet Global Health the researchers said that there is often too much focus on the negative health consequences of poor levels of physical activity, when we should be celebrating what we gain from physical activity.

 Exercises and warm up before run

Exercises and warm up before run

Researchers from the Medical Research Council Epidemiology Unit at the University of Cambridge looked at previously published data for 168 countries which covered the proportion of the population meeting WHO global recommendation of at least 150 minutes of moderate-intensity throughout the week or 75 minutes of vigorous-intensity activity.

By combining these data, with estimates of the relative risk of dying early for active people compared to inactive people, the researchers were able to estimate the proportion of premature deaths that were prevented because people were physically active.

They found that globally, due to physical activity, the number of premature deaths was an average 15% lower than it would have been, equating to 3.9 million lives saved each year. Despite the considerable variation in physical activity levels between countries, the positive contribution of physical activity was remarkably consistent across the globe, with a broad trend towards a greater proportion of premature deaths averted for low and middle income countries.

 Hands holding red heart

Hands holding red heart representing healthy heart and wellbeing

The researchers argue that the debate on physical activity has often been framed in terms of the number of early deaths due to the lack of exercise, currently estimated at 3.2 million each year. But showing how many deaths are averted it might be possible to frame the debate in a positive way which could have benefits for policy and population messaging.

 Fitness session

Fitness session

Dr Tess Strain from the Medical Research Council Epidemiology Unit at the University of Cambridge  said; ‘We’re used to looking at the downsides of not getting enough activity – whether that’s sports or a gym or just a brisk walk after lunch time. But by focusing on the number of lives saved, we can tell a good news story of what is already being achieved…We hope our finding will encourage governments and local authorities to protect and maintain services in these challenging times.’


Sustainability & Environment

Momentum for a post-pandemic ‘green recovery’ continues, as the UK government and the European Commission set out steps to accelerate their recoveries, while supporting the paths to net zero by 2050. Here we round-up just some of the initiatives announced in recent weeks to achieve these goals.

 Human hands holding earth globe and tree

Human hands holding earth globe and tree

Plans for preservation of biodiversity

Speaking on the 3rd June 2020, at the Organisation for Security and Cooperation in Europe (OSCE) Economic and Environmental Committee Meeting, the UK’s Second Secretary from the UK Delegation, Justin Addison, said; ‘As we recover, we have an opportunity to protect and restore nature, reducing our exposure to deadly viruses and climate impact.’

Highlighting the UK’s global outlook on addressing climate change, Addison added, ‘The UK will soon announce a £64 million package to support Colombia to tackle deforestation and build a cleaner and more resilient economy in areas affected by Covid-19 and conflict.’

smoke rising in rainforest

Originally posted by travelinglighttoday

As well as the UK’s efforts to preserve biodiversity, the European Commission will be looking to protect and restore biodiversity and natural ecosystems. Frans Timmermans, the European Commission’s Executive Vice President added that, ‘It can boost our resilience and prevent the emergence and spread of future virus outbreaks. We have now seen that this relationship between us and the natural environment is key to our health.’ 

 earth held in human hands

Earth held in human hands 

Enabling low-carbon solutions and boosting clean growth

EU:

In early June, a letter was sent to decision-makers across the European Union from more than 100 investors, urging the EU to ensure a green recovery from the covid-19 pandemic is delivered.

Investors are keen to ensure the government builds on The European Green deal to deliver a long term commitment that will accelerate the economy into one that is more green and carbon resilient post coronavirus.

The European Green deal, set out before the pandemic, details some of their targets including, a 50-55% emissions reduction by 2030; a climate law to reach net-zero emissions by 2050; a transition fund worth €100bn and a series of new sector policies to ensure all industries are able to decarbonise.

 A shoot of a plant and planet Earth

A shoot of a plant and planet Earth 

UK:

To boost clean growth, the UK Government has recently launched a £40 million Clean Growth Fund that will ‘supercharge green start-ups’.

This fund will enable UK clean growth start-ups to scale up low-carbon solutions and drive a green economic recovery.

Potential examples of projects the fund could support include areas in power and energy, buildings, transport and waste.

Business Secretary Alok Sharma said: ‘This pioneering new fund will enable innovative low-carbon solutions to be scaled up at speed, helping to drive a green and resilient economic recovery.’


Sustainability & Environment

In a recent paper published in Nature Climate Change, an international group of researchers are urging countries to reconsider their strategy to remove CO2 from the atmosphere. While countries signed up to the Paris Agreement have individual quotas to meet in terms of emissions reduction, they argue this cannot be achieved without global cooperation to ensure enough CO2 is removed in a fair and equitable way.

 harmful factory emissions

Harmful emissions

The team of international researchers from Imperial College London, the University of Girona, ETH Zürich and the University of Cambridge, have stated that countries with greater capacity to remove CO2 should be more proactive in helping those that cannot meet their quotas.

Co-author Dr Niall Mac Dowell, from the Centre for Environmental Policy and the Centre for Process Systems Engineering at Imperial, said, ‘It is imperative that nations have these conversations now, to determine how quotas could be allocated fairly and how countries could meet those quotas via cross-border cooperation.’

The team’s modelling and research has shown that while the removal quotas vary significantly, only a handful of countries will have the capacity to meet them using their own resources.

 reforestation

Reforestation

A few ways to achieve carbon dioxide removal:

(1)    Reforestation

(2)    Carbon Capture and Storage (CCS)  

(3)    CCS coupled to bioenergy – growing crops to burn for fuel. The crops remove CO2 from the atmosphere, and the CCS captures any CO2 from the power station before its release.

However, deploying these removal strategies will vary depending on the capabilities of different countries. The team have therefore suggested a system of trading quotas. For example, due to the favourable geological formations in the UK’s North Sea, the UK has space for CCS, and therefore, they could sell some of its capacity to other countries.

 Global cooperation

Global cooperation 

Co-lead author Dr Carlos Pozo from the University of Girona, concluded; ‘By 2050, the world needs to be carbon neutral - taking out of the atmosphere as much CO2 as it puts in. To this end, a CO2 removal industry needs to be rapidly scaled up, and that begins now, with countries looking at their responsibilities and their capacity to meet any quotas.’

DOI:  https://www.nature.com/articles/s41558-020-0802-4



Sustainability & Environment

Some plants such as lettuce require cool conditions for germination (<10 oC), a condition known as thermo-dormancy. This reflects the evolution of the wild parent species in cooler environments and growth cycles limited by higher summer temperatures. Transforming live but dormant seed into new healthy self-sufficient plants requires care and planning. The conditions in which seed is stored before use greatly affect the vigour and quality of plants post-germination. Seed which is stored too long or in unsuitable environments deteriorates resulting in unthrifty seedlings.

Aged seed

Aged seed

Seed is either sown directly into soil or into compost designed especially as an aid for germination. These composts contain carefully balanced nutrient formulae which provide larger proportions of potassium and phosphorus compounds which promote rooting and shoot growth. The amounts of nitrogen needed at and immediately post-germination are limited. Excess nitrogen immediately post-germination will cause over-rapid growth which is susceptible to pest and pathogen damage.

Minor nutrients will also be included in composts which ensures the establishment of efficient metabolic activities free from deficiency disorders. Composts require pH values at ~ 7.0 for the majority of seedlings unless they are of calicifuge (unsuited for calcareous soils) species where lime requirement is limited and the compost pH will be formulated at 6.0. Additionally, the pC will be carefully tuned ensuring correctly balanced ionic content avoiding root burning disorders. Finally, the compost should be water retentive but offering a rooting environment with at least 50 percent of the pore spaces filled with air. Active root respiration is essential while at the same time water is needed as the carrier for nutrient ions.  

Seedlings encountering beneficial environments delivering suitable temperatures will germinate into healthy and productive plants.

 Healthy seedlings

Healthy seedlings

Some plants such as lettuce require cool conditions for germination (<10 oC), a condition known as thermo-dormancy. This reflects the evolution of the wild parent species in cooler environments and growth cycles limited by higher summer temperatures.

Careful husbandry under protection such as in greenhouses provides plants which can be successfully transplanted into the garden. The soil receiving these should be carefully cultivated, providing an open crumb structure which permits swift and easy rooting into the new environment. It is essential that in the establishment phase plants are free from water stress. Measures which avoid predation from birds such as pigeons may also be required. 

Pigeon feeding

Pigeon feeding      

Netting or the placing of cotton threads above plants helps as a protection measure. Weeds must be removed otherwise competition will reduce crop growth and encourage pests and diseases, particularly slug browsing. Finally, the gardener will be rewarded for his/her work with a fruitful and enjoyable crop!


Health & Wellbeing

Fan of milk and cheese? Here’s some good news - researchers have associated dairy-rich diets to reduced risk of developing diabetes and high blood pressure.

According to a large international study published in BMJ Open Diabetes Research & Care, a research team has found that eating at least two daily servings of dairy is associated with lower risk of diabetes and high blood pressure.

 Dairy products

Dairy products; milk and cheese

To see if this link exists across a range of countries, researchers drew on people taking part in the Prospective Urban Rural Epidemiology (PURE) study, in which involves participants from 21 countries aged 35–70. Information on dietary intake over a period of 12 months was collected using food frequency questionnaires. Dairy products included milk, yoghurt, yoghurt drinks, cheese, and dishes prepared with dairy products. Butter and cream were assessed separately as they are not so commonly eaten.

cheesy chips

Originally posted by brattylikestoeat

The results demonstrated that total and full fat dairy were associated with a lower prevalence of metabolic syndrome, which was not the case for a diet with no daily dairy intake. Two dairy servings a day was associated with a 24% lower risk of metabolic syndrome, rising to a 28% lower risk for a full fat dairy intake.  

It was also noted that consuming at least two servings of full fat dairy per day was linked to an 11%–12% lower risk of high blood pressure and diabetes, whilst three servings of full fat dairy intake per day decreased the risks by 13% -14%.

 Heart and stethoscope

Heart and stethoscope

The researchers stated that ‘If our findings are confirmed in sufficiently large and long term trials, then increasing dairy consumption may represent a feasible and low cost approach to reducing (metabolic syndrome), hypertension, diabetes, and ultimately cardiovascular disease events worldwide.’

 

Sustainability & Environment

Another month starts in the SCIence Garden with no visitors to appreciate the burgeoning growth of fresh new leaves and spring flowers, but that doesn’t mean we should forget about it!

Hopefully in our absence the Laburnum tree in the garden, Laburnum watereri ‘Vossii’ will be flowering beautifully, its long racemes of golden yellow flowers looking stunning in the spring sunshine!

 Laburnum x watereri

Laburnum x watereri ‘Vossii’ in the SCIence Garden

This particular cultivar originated in the late 19th century in the Netherlands, selected from the hybrid species which itself is a cross between Laburnum alpinum and L. anagyroides. This hybrid species was named for the Waterers nursery in Knaphill, Surrey and was formally named in a German publication of 1893 (Handbuch der Laubholzkunde, Berlin 3:673 (1893)

 Laburnum tree

The laburnum tree is found very commonly in gardens in the UK, and is noticeable at this time of year for its long chains of golden yellow flowers. However, the beautiful flowers hide a dark side to this plant. The seeds (and indeed all parts) of the tree are poisonous to humans and many animals. They are poisonous due to the presence of a very toxic alkaloid called cytisine (not to be confused with cytosine, a component of DNA). Cytisine has a similar structure to nicotine (another plant natural product), and has similar pharmacological effects. It has been used as a smoking cessation therapy, as has varenicline, which has a structure based on that of cytisine. These molecules are partial agonists at the nicotinic receptor (compared to nicotine which is a full agonist) and reduce the cravings and “pleasurable” effects associated with nicotine. 

 cytisine structure

Cytisine is found in several other plants in the legume family, including Thermopsis lanceolata, which also looks stunning in early summer and Baptisia species, also growing in the SCIence Garden and flowering later in the year.

 Thermopsis lanceolata

In 2018 there were 9.6 million deaths from cancer and 33% of these were linked to exposure to tobacco smoke.*  Since the link between smoking and lung cancer was established in 1950, the market for smoking cessation therapies has increased enormously. In 2018 it was worth over 18 billion dollars annually worldwide and is projected to increase to 64 billion dollars by 2026.** Staggering! Varenicline, sold under the brand names Champix and Chantix, is one of the most significant smoking cessation therapies apart from nicotine replacement products.

If you see a laburnum tree whilst out on your daily allowed exercise this month, have a thought for its use as a smoking cessation therapy!

* Data from the Cancer Research UK website https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer#heading-Zero accessed May 2020.

** https://www.businesswire.com/news/home/20200319005381/en/Global-Smoking-Cessation-Market—Expected-Reach


Health & Wellbeing

Here is a roundup on some of the most recent research and scientific efforts against the coronavirus.  

Novartis:

Novartis has reached an agreement with the US Food and Drug Administration to proceed with a phase III clinical trial of hydroxychloroquine in hospitalized Covid-19 patients. The large trial will be conducted at more than a dozen sites in the US and tested on approximately 440 patients to evaluate the use for this treatment.  

Additionally, Norvatis plans to make its hydroxychloroquine intellectual property available to support broad access to hydroxychloroquine. Read more here.  

 Causaly

Causaly

Causaly, an innovative technology company that harnesses AI to interpret vast databases of biomedical knowledge, is collaborating with UCL academics to increase research on potential therapeutic agents and the identification of biomarkers.

Several researchers and research groups within UCL have been granted access to Causaly technology, allowing them the access to rapidly analyse and derive insights from biomedical literature.

Read more here.

 Causaly technology

Vaccine Taskforce

As part of the UK’s wider efforts to support the development of a vaccine, a new government-led Vaccine Taskforce will soon be launched to drive forward the manufacturing and research efforts to fight the virus.

The government will review regulations to facilitate fast and safe vaccine trials, as well as operational plans, to ensure a vaccine can be produced at a large scale when it becomes available. Industry and academic institutions will be given the resources and support needed.

Business Secretary Alok Sharma said, ‘UK scientists are working as fast as they can to find a vaccine that fights coronavirus, saving and protecting people’s lives. We stand firmly behind them in their efforts. The Vaccine Taskforce is key to coordinating efforts to rapidly accelerate the development and manufacture of a potential new vaccine.’  Read more here.

 covid19sample

A new biosensor for the COVID-19 virus

Research teams at Empa and ETH Zurich have developed an alternative test method in the form of an optical biosensor. The sensor made up of gold nanostructure, known as gold nonoislands on a glass substrate, combines two different effects to detect covid-19: an optical and a thermal one.

According to the release, ‘Artificially produced DNA receptors that match specific RNA sequences of the SARS-CoV-2 [virus] are grafted onto the nanoislands,’ and researchers will then use the optical phenomena, - localised surface plasmon resonance - to monitor the presence of the virus.

The biosensor is not yet ready to be used to monitor and detect COVID-19, however tests showed the sensor can distinguish between very similar RNA sequences of SARS-CoV-2 virus and its relative, SARS-Cov. Read more here.

For more information and more updates on the coronavirus, please visit our hub here.


Agrifood

Seed is one of Nature’s tiny miracles upon which the human race relies for its food and pleasure.

 Cabbage seed

Cabbage seed

Each grain contains the genetic information for growth, development, flowering and fruiting for the preponderant plant life living on this planet. And when provided with adequate oxygen, moisture, warmth, light, physical support and nutrients germination will result in a new generation of a species. These vary from tiny short-lived alpines to the monumental redwood trees growing for centuries on the Pacific west coast of America.   

Humankind has tamed and selected a few plant species for food and decorative purposes. 

 Seed head of beetroot

Seed head of beetroot, the seeds are in clusters.

Seed of these, especially food plants, is an internationally traded commodity. Strict criteria governed by legal treaties apply for the quality and health of agricultural and many horticultural seeds. This ensures that resultant crops are true to type and capable of producing high grade products as claimed by the companies who sell the seed. 

Companies involved in the seed industry place considerable emphasis on ensuring that their products are capable of growing into profitable crops for farmers and growers. Parental seed crops are grown in isolation from farm crops thereby avoiding the potential for genetic cross-contamination. With some very high value seed the parent plants may be grown under protection and pollinated by hand.

Samples of seed are tested under laboratory conditions by qualified seed analysts. Quality tests identify levels of physical contamination, damage which may have resulted in harvesting and cleaning the seed and the proportion of capable of satisfactory germination. There may also be molecular tests which can identify trueness to type. Identifying the healthiness of seed is especially important. The seed coat can carry fungal and bacterial spores which could result in diseased crops. Similarly, some pathogens, including viruses, may be carried internally within seed.

 Septoria apicola

  Septoria apicola – seed borne pathogen causing late blight of celery 

Pests, especially insects, find seed attractive food sources and may be carried with it. Careful analytical testing will identify the presence of these problems in batches of seed. 

The capabilities of seed for producing vigorous plants is particularly important with very high value vegetable and salad crops. Vigour testing is a refined analytical process which tracks the uniformity and speed of germination supplemented with chemical tests determining the robustness of plant cells.  Producers rely on the quality, uniformity and maturity rates of crops such as lettuce, green broccoli or cauliflower so they meet the strict delivery schedules set by supermarkets. Financial penalties are imposed for failures in the supply chain. 

Biology’s seemingly inert tiny seed grains are essential ingredients of humankind’s existence!


Health & Wellbeing

As the COVID-19 outbreak increases pressure on the UK’s NHS services and frontline staff, leading scientists and businesses are taking on new initiatives to tackle the outbreak. As there is currently no treatment or vaccine for this virus, researchers are working at unprecedented speed to accelerate the development of a treatment. Businesses are putting in more effort to help those on the frontline of this global crisis.

Below, we have highlighted some of the actions from the chemical industry in the effort to battle COVID-19.

INEOS has managed to built a hand sanitzer plant in the UK and will soon open the facility in Germany, aiming to produce 1m bottles per month each to address a supply shortage across the UK and Europe.

BASF will soon be producing hand sanitizers at its petrochemicals hub in Germany to address the shortage in the region. 

Ramping up the supply of PPE, AstraZeneca is donating nine million face masks to support healthcare workers around the world. Alongside this, AstraZeneca is accelerating the development of its diagnostic testing capabilities to scale-up screening and is also partnering with governments on existing screening programmes. 

Pharmaceutical company Novartis UK, along with several others, is making available a set of compounds from its library that it considers are suitable for in vitro antiviral testing.

GSK has announced that is donating $10 million to the COVID-19 Solidarity Response Fund. The Fund was created by the World Health Organisation (WHO) to help WHO and its partners to prevent, detect and manage the pandemic

 lab kit

Alongside the efforts and initiatives from industries, to continue to aid those on the frontline of this global crisis, social distancing interventions must remain to flatten the curve.

Research and data modelling has shown that policy strategies, such as social distancing and isolation interventions which aim to suppress the rate of transmission, might reduce death and peak healthcare demand by two-thirds. 

 covid graph

Stopping non-essential contact can flatten the curve. Suppressing the curve means we may still experience the same number of people becoming infected but over a longer period of time and at a slower rate, reducing the stress on our healthcare system.


Science & Innovation

In this round-up we will be looking at some of the developments and challenges surrounding artificial intelligence.

Development and Collaborations 

The Organisation for Economic Development (OECD) has launched its Artificial Intelligence (AI) Observatory, which aims to help countries encourage, nurture and monitor the responsible development of trustworthy AI systems for the benefit of society.

The Observatory works with policy communities across and beyond the OECD - from the digital economy and science and technology policy, to employment, health, consumer protection, education and transport policy – considering the opportunities and challenges posed by current and future AI developments in a coherent, holistic manner. 

The AI Observatory is being built on evidence-based analysis and provides a centre for the collection and sharing of information on AI, leveraging the OECD’s reputation for measurement methodologies. The Observatory will also engage a wide spectrum of stakeholders from the technical community, the private sector, academia, civil society and other international organisations, providing a hub for dialogue and collaboration.

According to a report produced by the European Institute of Innovation and Technology (EIT) Health and The McKinsey Centre for Government (MCG), AI can increase productivity and the efficiency of care delivery, allowing healthcare systems to provide better outcomes for patients.

The WHO estimates that by 2030 the world will be short of 9.9 million doctors, nurses and midwives, which adds to the challenges faced by an already overburdened healthcare system. Supporting the widespread adoption and scaling of AI could help alleviate this shortfall, the report says, by streamlining or even eliminating administrative tasks, which can occupy up to 70% of a healthcare professional’s time. 

The issues highlighted, among others, means that ‘AI is now ‘top-of-mind’ for healthcare decision makers, governments, investors and innovators and the EU itself,’ the report states.₁

To fully unlock the potential and capabilities of AI, there is an urgent need to attract and up-skill a generation of data-literate healthcare professionals. 

 Sustainable Development

Sustainable Development 

Artificial intelligence (AI) is influencing larger trends in global sustainability. Many communities in developing nations do not have access to clean water, which impacts health and has economic and environmental implications. 

AI has the capacity and ability to adapt and process large amounts of data in real time. This makes it an ideal tool for managing water resource, whereby utility managers can maximise current revenue, effectively forecasting and planning for the years ahead.

Currently, the development of AI is accelerating, but legal and ethical guidelines are yet to be implemented. In order to prepare the future generations of business leaders and national and international policy makers, the academic community will be playing a large role in this. 

president macron

Originally posted by nikazabini

For more information, click here. 

Reference: 

1. Transforming healthcare with AI: The impact on the workforce and organisations 


Sustainability & Environment

Introduction

This latest SCI Energy Group blog introduces the possible avenues of carbon dioxide utilisation, which entails using carbon dioxide to produce economically valuable products through industrial processes. Broadly, utilisation can be categorised into three applications: chemical use, biological use and direct use. For which, examples of each will be highlighted throughout.

Before proceeding to introduce these, we can first consider utilisation in relation to limiting climate change. As has been discussed in previous blogs, the reduction of carbon dioxide emissions is crucial. Therefore, for carbon dioxide utilisation technologies to have a beneficial impact on climate change, several important factors must be considered and addressed.

1) Energy Source: Often these processes are energy intensive. Therefore, this energy must come from renewable resources or technologies.

2) Scale: Utilisation technologies must exhibit large scaling potential to match the limited timeframe for climate action.

3) Permanence: Technologies which provide permanent removal or displacement of CO2 emissions will be most impactful¹.

 CO2 sign

Figure 1: CO2 sign 

Chemical Uses

Carbon dioxide, alongside other reactants, can be chemically converted into useful products. Examples of which include urea, methanol, and plastics and polymers. One of the primary uses of urea includes agricultural fertilisers which are pivotal to crop nutrition. Most commonly, methanol is utilised as a chemical feedstock in industrial processes.

 Fertilizing soil

Figure 2: Fertilizing soil

One of the key challenges faced with this application of utilisation is the low reactivity of CO2 in its standard conditions. Therefore, to successfully convert it into products of economic value, catalysts are required to significantly lower the molecules activation energy and overall energy consumption of the process. With that being said, it is anticipated that, in future, the chemical conversion of CO2 will have an important role in maintaining a secure supply of fuel and chemical feedstocks such as methanol and methane².

Biological Uses

Carbon dioxide is fundamental to plant growth as it provides a source of required organic compounds. For this reason, it can be utilised in greenhouses to promote carbonic fertilisation. By injecting increased levels of COinto the air supplied to greenhouses, the yield of plant growth has been seen to increase. Furthermore, COfrom the flue gas streams of chemical processes has been recognised, in some studies, to be of a quality suitable for direct injection³.

 Glass greenhouse

Figure 3: Glass greenhouse planting vegetable greenhouses

These principles are applicable to encouraging the growth of microorganisms too. One example being microalgae which boasts several advantageous properties. Microalgae has been recognised for its ability to grow in diverse environments as well as its ability to be cultured in numerous types of bioreactors. Furthermore, its production rate is considerably high meaning a greater demand for CO2 is exhibited than that from normal plants. Micro-algal biomass can be utilised across a range of industries to form a multitude of products. These include bio-oils, fuels, fertilisers, food products, plant feeds and high value chemicals. However, at present, the efficiency of CO2 fixation, in this application, can be as low as 20-50%.

 Illustration of microalgae

Figure 4: Illustration of microalgae under the microscope

Direct Uses

It is important to note that, at present, there are many mature processes which utilise CO2 directly. Examples of which are shown in the table below.

 CO2 processes

Summary

Many carbon dioxide utilisation technologies exist, across a broad range of industrial applications. For which, some are well-established, and others are more novel. For such technologies to have a positive impact on climate action, several factors need to be addressed such as their energy source, scaling potential and permanence of removal/ displacement of CO2.

The chemistry of carbon dioxide and its role in decarbonisation is a key topic of interest for SCI Energy Group. In the near future, we will be running a webinar concerned with this. Further details of this will be posted on the SCI website in due course.

Links:

1. http://co2chem.co.uk/wp-content/uploads/2012/06/CCU%20in%20the%20green%20economy%20report.pdf

2. https://www.carbonbrief.org/guest-post-10-ways-to-use-co2-and-how-they-compare

3. https://www.intechopen.com/books/greenhouse-gases 



Sustainability & Environment

The first splashes of yellow are starting to appear across our gardens and parks so it must be nearly daffodil time. There are over 10,000 narcissus cultivars and ‘Carlton’ is the most commonly grown of all. There are 5,300 hectares of this cultivar grown in the UK for cut flowers alone. This cultivar was first registered in 1927 and it is estimated that there are now 350,000 tons of it (or 9450 million bulbs)! Is this the most massive plant taxon on earth? 
 narcissus cultivars

March in the SCIence Garden

Narcissus was the classical Greek name of a beautiful youth who became so entranced with his own reflection that he killed himself and all that was left was a flower – a Narcissus. The word is possibly derived from an ancient Iranian language. But the floral narcissi are not so self-obsessed. As a member of the Amaryllidaceae, a family known for containing biologically active alkaloids, it is no surprise to learn that they contain a potent medicinal agent. 

Narcissus (and in particular this cultivar) are an excellent source of galanthamine, a drug more commonly associated with snowdrops (Galanthus spp.). Galanthamine is currently recommended for the treatment of moderate Alzheimer’s disease by the National Institute of Health and Clinical Excellence (NICE) but is very effective in earlier stages of the disease too. 

 Galanthamine

Galanthamine

Today, part of the commercial supply of this molecule comes from chemical synthesis, itself an amazing chemical achievement due to the structural complexity of the molecule, and partly from the natural product isolated from different sources across the globe. In China, Lycoris radiata is grown as a crop, in Bulgaria, Leucojum aestivum is farmed and in the UK the humble daffodil, Narcissus ‘Carlton’ is the provider.

 Narcissus

Narcissus ‘Carlton’ growing on large scale

Agroceutical Products, was established in 2012 to commercialise the research of Trevor Walker and colleagues who developed a cost effective, reliable and scalable method for producing galanthamine by extraction from Narcissus. They discovered the “Black Mountains Effect” – the increased production of galanthamine in the narcissus when they are grown under stress conditions at 1,200 feet. With support from Innovate UK and other organisations, the process is still being developed. Whilst not a full scale commercial production process just yet, the work is ongoing. As well as providing a supply of the much needed drug, this company may be showing the Welsh farming community how to secure additional income from their land. They continue to look for partners who have suitable land over 1000 ft in elevation. 

The estimated global patient population for Alzheimer’s in 2010 was 30 million. It is expected to reach 120 million by 2050.  The global market for Alzheimer’s disease drugs for 2019 was US$ 2870 million. 


Sustainability & Environment

Transferring plants between countries was a profitable source for novel commercial and garden plants until quite recently.

 Potato crop

Potato crop: Geoff Dixon 

Potatoes and tomatoes are classic examples arriving in Europe from South America during the 16th century. Substantial numbers of new plants fuelled empire expansion founding new industries such as rubber and coffee. One of the earliest functions of European botanic gardens was finding potentially valuable new crops for colonial businesses. At home selecting orchids and other exotics from imported plants brought fame and fortune for head gardeners managing the large 19th century estates such as Chatsworth.  Commercially seed merchants selected by eye and feel new and improved vegetables, fruit and flowers.

The rediscovery of Mendel’s laws of inheritance brought systematic science and formalised breeding new crops and garden plants. Analysing the effects of transferring physical, chemical and biological characters identified gene numbers and their functions. 

 Colour range in Gladioli

Colour range in Gladioli: Geoff Dixon 

As a result, varieties with improved colourfulness, fruitfulness, yield and pest and pathogen tolerance fill seedsmen’s catalogues. Breeding increased food supplies and added colour into the gardens springing up in suburban areas as affluence increased.

Greater plant reliability and uniformity arrived with the discovery of F1 hybrids.

 Hybrid Sunflowers

Hybrid Sunflowers: Geoff Dixon

Selected parental lines each with very desirable characters such as fruit colour are in-breed for several generations. Then they are crossed bringing an explosion of vigour, uniformity and reliability (known as heterosis). Saving seed from the hybrid lines does not however, perpetuate these characters; new generations come only from remaking the original cross. That is a major boon for the breeder as competitors cannot pirate their intellectual property.

Knowledge at the molecular level has unravelled still further gene structure and functioning. Tagging or marking specific genes with known properties shortens the breeding cycle adding reliability and accuracy for the breeder.  Simplifying the volume of genetic material used in crosses by halving the number of chromosomes involved adds further precision and control (known as haploidisation). 

Opportunities for breeding new plants increases many-fold when advantageous genes are transferred between species. Recent developments of gene-editing where tailored enzymes very precisely snip out unwanted characters and insert advantageous ones is now offering huge opportunities as a non-transgenic technology. Breeding science makes possible mitigation of climate change, reducing for example the impact of soil degradation brought about by flooding.

 Flood degraded land

Flood degraded land: Geoff Dixon


Energy

Batteries have an important role as energy sources with environmental advantages. They offset the negative environmental impacts of fossil fuels or nuclear-based power; they are also recyclable. These attributes have led to increasing research with the aim of improving battery design and environmental impact, particularly regarding their end of life. In addition, there is a desire to improve battery safety as well as design batteries from more sustainable and less toxic materials.

New research shows that aluminium battery could offer several advantages:

Aluminium metal anode batteries could hold promise as an environmentally friendly and sustainable replacement for the current lithium battery technology. Among aluminium’s benefits are its abundance, it is the third most plentiful element the Earth’s crust.  

To date aluminium anode batteries have not moved into commercial use, mainly because using graphite as a cathode leads to a battery with an energy content which is too low to be useful.

This is promising for future research and development of aluminium as well as other metal-organic batteries.

 Battery Charging

Battery Charging

New UK battery project is said to be vital for balancing the country’s electricity demand

Work has begun on what is said to be Europe’s biggest battery. The 100MW Minety power storage project, which is being built in southwest England, UK, will comprise two 50MW battery storage systems. The project is backed by China Huaneng Group and Chinese sovereign wealth fund CNIC. 

Shell Energy Europe Limited (SEEL) has agreed a multi-year power offtake agreement which will enable the oil and gas major, along with its recently acquired subsidiary Limejump, to optimise the use of renewable power in the area.

 Renewable power

Renewable power 

In a statement David Wells, Vice President of SEEL said ‘Projects like this will be vital for balancing the UK’s electricity demand and supply as wind and solar power play bigger roles in powering our lives. 

 Battery

Battery

The major hurdles for battery design, states the EU’s document, include finding suitable materials for electrodes and electrolytes that will work well together, not compromise battery design, and meet the sustainability criteria now required. The process is trial and error, but progress is being made.

For more information, click here.

Reference:

https://ec.europa.eu/environment/integration/research/newsalert/pdf/towards_the_battery_of_the_future_FB20_en.pdf 


Health & Wellbeing

Yesterday was Shrove Tuesday, the traditional feast day before the start of Lent. Also known as Pancake Day, many people will have returned to traditional recipes or experimented with the myriad of options available for this versatile treat. 

But you may not realise pancakes are helping to advance medicine. Here we revisit some interesting research

In a study that was published in Mathematics Today, researchers found that understanding the textures and patterns of pancakes helped improve surgical methods for treating glaucoma. 

The appearance of pancakes depends on how water escapes the batter mix during the cooking process. This is impacted by the batter thickness. Understanding the physics of the process can help in producing the perfect pancake, but also provides insights into how flexible sheets, like those found in human eye, interact with flowing vapour and liquids.

 healthy eye

Illustration of a healthy eye, glaucoma, cataract

The researchers at University College London (UCL), UK, compared recipes for 14 different types of pancake from across the world. For each pancake the team analysed and plotted the aspect ratio, i.e. the pancake diameter to the power of three in relation to the volume of batter. They also calculated the baker’s percentage, the ratio of liquid to flour in the batter.

 Pancake batter

Pancake batter

It was found that thick, almost spherical pancakes had the lowest aspect ratio at three, whereas large thin pancakes had a ratio of 300. The baker’s percentage did not vary as dramatically, ranging from 100 for thick mixtures to 175 for thinner mixtures.

Co-author Professor Sir Peng Khaw, Director of the NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology said; ‘We work on better surgical methods for treating glaucoma, which is a build-up of pressure in eyes caused by fluid. To treat this, surgeons create an escape route for the fluid by carefully cutting the flexible sheets of the sclera.’

‘We are improving this technique by working with engineers and mathematicians. It’s a wonderful example of how the science of everyday activities can help us with medicinal treatments of the future.’

 Classic american pancakes

Classic american pancakes 


Sustainability & Environment

One of the most beloved flowers in China (and elsewhere) this small tree was planted here in the SCIence garden to represent the Chinese UK group. It is in bloom from late winter and the bright pink flowers have a strong perfume. It is growing in the centre at the back of the main area of the garden.

There are 309 accepted species in the genus Prunus listed on the Plants of the World Online database (plantsoftheworldonline.org). The genus is distributed mainly across the Northern temperate zones but there are some tropical species.

 genus Prunus

The genus Prunus is generally defined based on a combination of characteristics which include: a solitary carpel (the structure enclosing the ovules – a combination of the ovary, style and stigma) with a terminal style, a fleshy drupe (fruit), five sepals and five petals and solid branch pith. The drupe contains a single, relatively large, hard coated seed (stone) – familiar to us in cherries, apricots, nectarines, peaches etc

This particular species, Prunus mume, originates from southern China in the area around the Yangtze River. The ‘Beni-chidori’ cultivar has been given an Award of Garden Merit by the Royal Horticultural Society.

 Prunus mume

Over 300 different cultivars of this species have been recorded in China, perhaps not surprisingly for a plant that has been domesticated for thousands of years due to its floral beauty. A recent study on the genetic architecture of floral traits across the cultivars of this species was published in Nature Communications.1

Prunus mume was introduced from China into Japan, Korea, Taiwan and Vietnam and it is now fully integrated into the cuisines of all these countries. In addition to its uses in many foodstuffs and drinks, extracts from the fruit are also widely used in traditional Chinese medicine and in the traditional medicines in Korea and Japan. Anti-bacterial, anti-oxidative, anti-inflammatory and anti-cancer properties have all been ascribed to the extract which has been used to treat tiredness, headaches, constipation and stomach disorders amongst other things. A recent review published in the Journal of Ethnopharmacology2 gathers together information from literature reports on the anti-cancer activity of Prunus mume fruit extract.

One standardised extract in particular (MK615) has shown antitumour activity against most common cancer types.

The anti-cancer activity has not been ascribed to a particular component. Compounds isolated from the extract include ursolic acid, amygdalin, prunasin, chlorogenic acid, mumefural and syringaresinol.

 MK615-extract

Like all the plants in the SCIence garden – there’s a lot more to this one than just its ornamental beauty.

References

1.  Zhang, Q., Zhang, H., Sun, L. et al. The genetic architecture of floral traits in the woody plant Prunus mumeNat Commun 9, 1702 (2018). https://doi.org/10.1038/s41467-018-04093-z

2.  Bailly, C. Anti-cancer properties of Prunus mume extracts. J Ethnopharmacology 246, 2020, 112215. https://doi.org/10.1016/j.jep.2019.112215


Sustainability & Environment

Introduction

In November 2020, the UK is set to host the major UN Climate Change summit; COP26. This will be the most important climate summit since COP21 where the Paris Agreement was agreed. At this summit, countries, for the first time, can upgrade their emission targets through to 20301. In the UK, current legislation commits government to reduce greenhouse gas emissions by at least 100% of 1990 levels by 2050, under the Climate Change Act 2008 (2050 Target Amendment)2.

Hydrogen has been recognised as a low-carbon fuel which could be utilised in large-scale decarbonisation to reach ambitious emission targets. Upon combustion with air, hydrogen releases water and zero carbon dioxide unlike alternative heavy emitting fuels. The potential applications of hydrogen span across an array of heavy emitting sectors. The focus of this blog is to highlight some of these applications, and on-going initiatives, across the following three sectors: Industry, Transport and Domestic.

Please click (here3) to access our previous SCI Energy Group blog centred around UK COemissions.

 climate change activists

Figure 1: climate change activists 

Industry

Did you know that small-scale hydrogen boilers already exist?4

Through equipment modification, it is technically feasible to use clean hydrogen fuel across many industrial sectors such as: food and drink, chemical, paper and glass.

Whilst this conversion may incur significant costs and face technical challenges, it is thought that hydrogen-fuelled equipment such as furnaces, boilers, ovens and kilns may be commercially available from the mid-2020’s4.

 gas hydrogen peroxide boiler line vector icon

Figure 2:  gas hydrogen peroxide boiler line vector icon

Domestic

Did you know that using a gas hob can emit up to or greater than 71 kg of COper year?5

Hydrogen could be supplied fully or as a blend with natural gas to our homes in order to minimise greenhouse gas emissions associated with the combustion of natural gas.

As part of the HyDeploy initiative, Keele University, which has its own private gas network, have been receiving blended hydrogen as part of a trial study with no difference noticed compared to normal gas supply6.

Other initiatives such as Hydrogen 1007 and HyDeployare testing the feasibility of delivering 100% hydrogen to homes and commercial properties.

 gas burners

Figure 3: gas burners

Transport

Did you know that, based on an average driving distance of approximately 11,500 miles per annum, an average vehicle will emit approximately 4.6 tonnes of COper year?9

In the transport sector, hydrogen fuel can be utilised in fuel cells, which convert hydrogen and oxygen into water and electricity.

Hydrogen fuel cell vehicles are already commercially available in the UK. However, currently, form only a small percentage of Ultra Low Emission Vehicle (ULEV) uptake10.

Niche applications of hydrogen within the transport sector are expected to show greater potential for hydrogen such as buses and trains. Hydrogen powered buses are already operational in certain parts of the UK and hydrogen trains are predicted to run on British railways from as early as 202211.

 h2 combustion engine

Figure 4:  h2 combustion engine for emission free ecofriendly transport

Summary

This blog gives only a brief introduction to the many applications of hydrogen and its decarbonisation potential. The purpose of which, is to highlight that hydrogen, amongst other low-carbon fuels and technologies, can play an important role in the UK’s transition to net-zero emissions.

Stay tuned for further SCI Energy Group blogs which will continue to highlight alternative low-carbon technologies and their potential to decarbonise.

Links to References:

1. https://eciu.net/briefings/international-perspectives/cop-26

2. https://www.legislation.gov.uk/ukdsi/2019/9780111187654

3. https://www.soci.org/blog/2019-08-09-Understanding-UK-Carbon-Dioxide-Emissions/

4. http://www.element-energy.co.uk/2020/01/hy4heat-wp6-has-shown-that-switching-industrial-heating-equipment-to-hydrogen-is-technically-feasible-with-large-potential-to-support-initiation-of-the-hydrogen-economy-in-the-2020s/

5. https://www.carbonfootprint.com/energyconsumption.html

6. https://hydeploy.co.uk/hydrogen/

7. https://sgn.co.uk/about-us/future-of-gas/hydrogen/hydrogen-100

8. https://www.hy4heat.info/

9. https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle

10. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/794473/veh0202.ods

https://www.telegraph.co.uk/cars/news/hydrogen-fuel-cell-trains-run-british-railways-2022/


Agrifood

Every garden centre will currently bombard you with colourful displays of seed packets (figure 1). Each contains tiny grains of dormant life. Provided with water, warmth, suitable soil or compost and eventually light (figure 2) that resting grain will transform into the roots and shoots of a new plant. 

 racks of seed packs

 Image 1: Racks of seed packets

Inside that seed cascades of genes trigger enzymes which release energy from stored starch and in some cases lipids. As a result, the seed coat opens and a root emerges which takes in supplies of water and nutrients. Shoots follow which grow upwards towards the light. They turn green as chlorophyll is manufactured and photosynthesis commences. At that point the seemingly inert grain becomes a self-sustaining living plant.  Root and shoot growth result from active cell divisions with genetic controls determining the form and functions of each organ.

 Germinating seeds

Image 2: Germinating seeds and the correct conditions

Each seed’s compliment of genes will determine what type of plant develops. But it is the environment provided by the gardener which determines the plant’s success. Careful and accurate husbandry results in succulent, health-promoting vegetables or colourful, vigorous flowers. Seedlings of some plants may be given nursery treatment before being placed into the garden’s big wide world. Providing protection in the early stages either in a green house or under cloches for many annual flowers and most vegetables boosts growth (figure 3) and eventually the quality of the produce. 

 Legumes grown under protection

 Image 3: Legumes grown under protection

This does require time, skill and investment by the gardener. An alternative is purchasing seedlings from garden centres (figure 4). But an element of caution is required. These plants will have been raised under protection. Hence planting directly into the garden means still need care and attention. Frost protection and watering are essential, otherwise poor results may follow.

 Garden centre seedlings

Image 4: Garden centre seedlings

Direct sowing seeds into garden soil is another alternative. Hardy vegetables and annual flowers may be cultured in this way. The requirements for success are a fertile soil with a fine tilth, that means it is free from stones and consists of uniform, aggregated particles allowing unimpeded movement of air and water. 

Vegetables such as beetroot, carrots and parsnips will grow vigorously given these conditions. Hardy annuals such as African daisy, larkspur, love-in-the-mist, marigold and nasturtium will also thrive from direct sowings. Success in both garden departments depends on watering during dry spells and supplementary nutrition. Avoid nitrogenous fertilizers as these will encourage leaf growth whereas phosphate (P) and potassium (K) will promote root and flower formation.


Health & Wellbeing

Who is Dmitri Mendeleev?

Russian chemist, Dmitri Mendeleev was born in 1834 in a Siberian village. His early life has been described as tumultuous; his father lost his sight and died when Dmitri was thirteen, leaving his family in financial difficulties.

His mother prioritised Dmitiri’s academic potential, taking him and his sister to St Petersburg, where he studied at the Main Pedagogical Institute. When his mother died, he carried out his doctoral research in St Petersburg where he explored the interactions of alcohols with water.

 St Petersburg

Between 1859 and 1861 he went to Paris to study the densities of gases, and he travelled to Germany where he studied capillarity and surface tension that subsequently led to his theory of ‘absolute boiling point.’ In 1861 he returned to Russia to publish everything he knew on organic chemistry in a 500-page textbook, and by 1864 he became a professor at the Saint Petersburg Technological Institute and Saint Petersburg State University.

As he continued his research, he tried to classify the elements according to the chemical properties. He became aware of a repeating pattern – elements with similar properties appeared at regular intervals. He arranged the elements in order of increasing relative atomic mass and noticed the chemical properties of these elements revealed a trend, which led to the formation of the periodic table.

 periodic table

Beyond his work in chemistry, during the 1870s, he devoted time to help the Russian industry, particularly in strengthening the productivity in agriculture. He became very active in exploring the Russian petroleum industry and developed projects in the coal industry in the Donets Basin. Additionally, he was responsible for creating and introducing the metric system to Russia.

 chalkboard

Careers

In this third article in our ‘How to…’ series, we reflect on what we learned from Martin Curry, STEM Healthcare, in his training session on managing the money.

What is a profit and loss table?

A table detailing all business transactions showing all incoming and outgoing cash activity. This will inform potential investors and credit sources how your business will generate its income and manage its costs. Documenting this information is important to show the progression (improvement) over a period and to forecast whether your business is set to make a future profit or loss.

 profit loss forecasting

So why is forecasting important?

A profit and loss table give businesses an idea of where the business is headed financially.

If your forecast suggests that profit levels will be low and therefore capital will be limited, it can help you to become more cautious with your credit and supply chain arrangements. Having this level of insight can help you to manage your risks and allow you to rethink your strategy in order to reduce loss and increase profitability.

 Manufacturing costs

Manufacturing costs

Monitoring your manufacturing costs is critical in order to represent the efficiency of the production process. There are two types of costs: fixed and variable.

Fixed: rent, rates, employee, insurance,

Variable: raw materials, transport, utilities,

Keeping track of the manufacturing costs will allow you to review the expenses associated with all the resources spent in the process of making the finished goods. To maximise the productivity of each unit of materials you use in the manufacturing process, ensure you review your procedures, materials and ensure waste is reduced to its minimum during the process.

 Financial awareness

Financial awareness

Awareness of the market is key to impressing potential investors; knowing what the key drivers are and understanding the risks and the market demand. Having this information enables you to provide evidence that you can effectively evaluate the commerciality of the project.

In summary, investors will be able to learn a great deal from the financial figures of a business. Thus, preparing a profit and loss account (detailing the business transactions) is critical to providing an insight of the business’s overall position within the market.


Sustainability & Environment

Growing in just about the most challenging of locations in the SCIence Garden are a small group of Helleborus niger. They are planted in a very dry and shady location underneath a large tree sized Escallonia and although they struggled to establish when they were first planted (in May 2017) they are now flowering and growing well.

This plant was first featured as a Horticulture Group Medicinal Plant of the Month in December 2011 and as it is now in the SCIence garden I thought a reprise was in order.

 Helleborus flower

Helleborus is a genus of 15 species of evergreen perennials in the buttercup family, Ranunculaceae. In common with most members of the family, the flowers are radially symmetric, bisexual and have numerous stamen.

Helleborus is the Latin name for the lent hellebore, and niger means black – referring in this species to the roots.

This species is native to the Alps and Appenines. Helleborus niger has pure white flowers, with the showy white parts being sepals (the calyx) and the petals (corolla) reduced to nectaries. As with other hellebores, the sepals persist long after the nectaries (petals) have dropped.

 Another angle of a Helleborus flower

All members of the Ranunculaceae contain ranunculin, an unstable glucoside, which when the plant is wounded is enzymatically broken down into glucose and protoanemonin. This unsaturated lactone is toxic to both humans and animals, causing skin irritation and nausea, vomiting, dizziness and worse if ingested.

Protoanemonin dimerises to form anemonin when it comes into contact with air and this is then hydrolysed, with a concomitant ring-opening to give a non-toxic dicarboxylic acid.

 Protoanemonin chemical structure

Many hellebores have been found to contain hellebrin, a cardiac glycoside. The early chemical literature suggests that this species also contains the substance but later studies did not find it suggesting that either mis-identified or adulterated material was used in the early studies.

It is reported to contain many other specialized metabolites including steroidal saponins.

This plant has long been used in traditional medicine – in European, Ayurvedic and Unani systems and recent research has been aimed at elucidating what constituents are responsible for the medicinal benefit.

 black hellebore

Extract of black hellebore is used sometimes in Germany as an adjuvant treatment for some types of tumour.

A recent paper* reports the results of a safety and efficacy investigation. The Helleborus niger extract tested was shown to exhibit neither genotoxic nor haemolytic effects but it was shown to have anti-angiogenetic effects on human umbilical vein endothelial cells (HUVEC), anti-proliferative effects and migration-inhibiting properties on tumour cells thus supporting its use in cancer treatment.

 A helleborus flower

* Felenda, J.E., Turek, C., Mörbt, N. et al. Preclinical evaluation of safety and potential of black hellebore extracts for cancer treatment. BMC Complement Altern Med 19, 105 (2019) doi:10.1186/s12906-019-2517-5


Science & Innovation

In this second article in our ‘How to…’ series, we reflect on what we learned from Mugdha Joshi, IP & Licensing expert at Kings College London, in her training session on Intellectual Property.

What is Intellectual Property?

Intellectual Property (IP) is a term that refers to the ‘creations of the mind’ such as inventions, works of art and symbols, names and images used in commerce.

 lightbulb

Types of IP

Patents - Works to prevent another person from being able to use the same invention. They cover how inventions work, how they do it, what they are made of and how they are made. A patent lasts for 20 years and it must be renewed on its fourth anniversary. It then must be renewed every year. After 20 years the patent is given to the public. To qualify for a patent, the invention needs to meet the following criteria:

- The invention needs to be undisclosed and not in the public domain before the date of filing. However, any disclosure under a non-disclosure agreement is fine.

- Your idea needs an inventive step that is not obvious to someone with knowledge of the subject.

- It must be a solution to a problem.

- It must be something that can be made and not just speculative.

Copyrights – Protects work created by their author. It must be the author’s own intellectual creation and not have been copied from somewhere else.

Designs – This refers to the aesthetic aspects of an article. It protects 3D objects, or the designs applied to them.

Trademarks – A distinctive sign that identifies certain goods or properties provided by an individual or a company.

 patent graphic

Commercialisation of IP

The commercialisation process involves:

Market analysis - What does your product solve? Why is it better than your competition? Who wants it and why? What are its limitations? What is the development time? (Click here for more on marketing).

Due Diligence - In-depth research of your company and invention and will include schedules of patents, copyrights and trademarks

IP protection -  Prior art search and patent attorney. You must ensure there is no evidence of your idea already being known.

Proof of concept fund

Marketing - Reaching out to companies and sending non-confidential flyers

Licensing - What’s down the pipeline? Exclusive or non-exclusive licence? What obligations are there, e.g. development milestones?

Spit-out creation - What do venture capitalists look for? They will want to see all your documentation that demonstrates that you meet various requirements. They will want to see your granted patents. It is a good idea to have a portfolio with multiple aspects of the product covered. They want to see that your product and company is professionally managed and that there are no issues of contested ownership or opposition.

 IP graphic

The Bright SCIdea Challenge 2020 Final

SCI are unable to protect any intellectual property submitted as part of the competition. It is in your best interest to not disclose any information that could give away key aspects of your innovation for others to reproduce.


Careers

This latest instalment of SCI Energy Group’s blog delves deeper into the working life of another one of its own members – Peter Reineck.

Peter is currently a consultant working alongside technology developers. Throughout this article, he shares insights into his career to date.

 Peter Reineck

Figure 1- Peter Reineck

Peter, can you please provide a brief introduction about yourself? 

I worked with a number of chemical and environmental service companies in the UK and Canada in commercial operations roles.

I now work as a consultant with technology developers to support market and business development.

Can you please explain how your job is aligned with the energy sector? 

I have a particular interest in advanced combustion systems with CO2 capture.

Most recently, I became involved in a new project to produce bio-based plastic that would replace fossil-based plastics in packaging and other applications.

Bio-based plastic has the advantage of producing biogenic CO2 if composted or sent for energy recovery at end of life.

In your current role, what are your typical day-to-day tasks?

Typically, my work involves communicating with stakeholders by phone and email and in meetings, assessing their responses and planning developments accordingly.

 chemicals in vials

Figure 2 - A knowledge of science is particularly helpful

How has your education/previous experience prepared you for this role?

I would say that English language skills and a knowledge of science and chemistry in particular have been the most helpful in my career.

What is your favourite aspect of your current job role?

Consultancy works well for me as the focus is on business development activities; as well, the hours are flexible.

What is the most challenging part of your job? 

A high degree of self-discipline is required in order to meet deadlines.

So far, what is your biggest accomplishment/ achievement throughout your career? 

The most satisfying were moving a number of businesses forward into new markets and applications.

 hourglass

Figure 3 - Self-discipline is required to meet deadlines

In your opinion, what do you think is the biggest problem faced in this field of work at present? 

I think the biggest problem is regulatory changes which affect the potential market for new technologies for packaging and power generation.

These changes are governmental responses to activist claims which are not based on a holistic interpretation of a complete set of data.

What advice would you give someone who is seeking / about to enter the same field of work? 

A practical understanding of science and statistics is essential. Combined with, an ability to translate new technologies into solutions which are economically viable.


Careers

On 6 December 2019 SCI held its entrepreneurial training day for this year’s Bright SCIdea Challenge. The first article in our How to series will take a look at what we learned from Neil Simpson, R&D Director at Borchers, in his training session on how to market and brand your idea.

In order to successfully promote a product or service, it is essential to understand the customer and the market. It is important to be more effective than your competitors in creating, delivering and communicating your idea.

Segmentation, Targeting and Positioning (STP) is a useful tool to help you to define your product and customer base.

When segmenting your customer base, consider the demographics including age, income and gender, as well as their geographical location and behavioural traits.

Once you have segmented your customer base, you will be able to identify which groups are the most suited for your product.

After you have considered which segments to target, you need to take into consideration what your product solves for these people – what is your unique selling point?

 Marketing Mix

The 4 Ps – Marketing Mix

Once you have used the STP framework to define your product and customer base, you can use the 4 Ps Marketing Mix to develop a strategy to bring your product to the market.

Product – This can be a tangible product, for example clothing, or a service. You should consider: What does your product stand for? What needs does it satisfy? How does it differ to your competitors?

Price – It is vital to think carefully about the pricing of your product. Do you compete on price or quality? Consider the perceived value of your product, along with supply costs and competitors’ prices. Pricing your product too high or too low could harm your sales and reputation.

Place – Where is the best location to provide your product to your customer base, and how do you distribute it to them? If you understand your customer base, you will be able to answer important questions such as: Where do your target customers shop? Do they buy online, or in high street shops?

Promotion – What is the most effective way to market your product and which channels should you use? Will you run a social media and email campaign? Would you benefit from attending conferences and exhibitions?

 laptop
Use SWOT to summarise your position

Finally, a useful tool to analyse your current position is the SWOT model. SWOT stands for Strengths, Weaknesses, Opportunities and Threats.

Strengths – How are you perceived by your customer base? What separates you from your competitors?

Weaknesses – What do others see as your weaknesses? What do your competitors do better than you?

Opportunities – What are current market trends? Are there any funding opportunities you could apply for? Are there any gaps in the market?

Threats – Are there any emerging competitors? Do you have any negative media or press coverage?

Using STP, the 4 Ps, and SWOT will be invaluable when it comes to completing your business plan. The more you understand your product, your customer base, where you sell it, and how you sell it, the more successful you will be!

 ipad graphic



image
Use SWOT to summarise your position

image
Use SWOT to summarise your position


Agrifood

A growing population is placing greater pressure on limited resources including land, oceans, water and energy. If agricultural production continues in its present form, water degradation, biodiversity loss and climate change will continue. As a result, people are adopting an increased interest in the environmental impact of food choice, choosing alternatives like insects.

This round-up explores examples of the various insect-based alternative foods.

Insect Snacks

According to data from Grand View Research, a US-based market research company, the global healthy snacks market is expected to reach $32.88 billion by 2025. Companies across Europe are developing healthy snack products based on insects, tapping into our desire for a variety of foods and tastes.

 insect

 Insect

Eat Grub, established in 2013 and based in London UK, developed an insect snack made from house crickets, which are farmed in Europe. They are a sustainable, nutritious and tasty source of food, rich in protein. Research has indicated that insects are good for gut health due to their high chitin content. Chitinous fibre has been linked to increased levels of a metabolic enzyme associated with gut health.

Insect Beer

A start-up Belgian beer company, Belgium Beetles Beer, described their drink as a real Belgium blond beer enriched with insect vitamins and proteins.

Upon ‘accidentally’ developing this product, they realised that the dry beetle powder offered a rich, light sweet, slightly bitter flavour.

 insect beer

Beer

Insect Burger

A growing number of companies are now focusing their efforts on producing a product that looks and tastes like a traditional meat-based burger.

Bugfoundation’s burgers are based on buffalo worms, which are the larvae of the Alphitobius Diaperinus beetle. The company’s founders said that they decided to use buffalo worms because of their ‘slightly nutty flavour.’

The idea stemmed from a trip to Asia, where co-founder, Max Charmer came across fried crickets. His experience inspired him to bring these flavours to the west, hoping to please western tastes and comply with evolving European regulations.

 insect burger

 Burger

Concerns regarding the livestock system have prompted novel inventions in the food space; insects, considered a source of protein, could outperform conventional meats to reduce environmental impacts.

So, will consumers soon be able to introduce insects to their everyday diets? Only time will tell.

 fried insects

Fried insects


Agrifood

Holly berries are emblematic of Christmas. Decorative wreaths containing sprays of holly boughs, bright red with berries, or sprigs set on cakes and puddings help bring seasonal cheer.

 holly

Holly is a problem for horticulturists! Male and female flowers develop separately requiring cross-pollination before fertilised berries develop. Dutch nurserymen got around this by selecting a self-fertile variety ‘J. C Van Tol’ which sets copious berries. Adding further colour in the winter garden is the variety ‘Golden King’ producing mixtures of creamy-white and green foliage. Most hollies in Great Britain are Ilex aquifolium which is a native of Northern Europe and is still found wild in the Welsh Marches. It is a flexible and valuable garden evergreen, very suitable for hedges as they form tough, prickly, impenetrable barriers.

 holly berries

Holly berries

Why plants use considerable energy to produce brightly coloured fruits is a puzzle for botanists. Co-evolution is an explanation. Bright berries attract birds which eat them, digesting the flesh and excreting the seeds. Wide seed distribution accompanied by a package of manure helps spread these plants increasing their geographical range.

Which came first, bright berries or vectoring birds? A combination is the answer. Plants with brighter berries attracted more birds spreading their seed more widely. Brighter berries are more nutritious and hence those birds which ate them were stronger and better fitted for the rigours of winter. Garden residents such as blackbirds and thrushes now thrive and survive on such natural food. Migratory species such as fieldfares travel from Scandinavia, attracted particularly by other berried treasures such as Cotoneaster.

 Cotoneaster

Cotoneaster

Fleshy fruits such as those of holly or Cotoneaster are examples of some of the last energy sinks formed in the gardening year.

They draw products of photosynthesis from the manufacturing centres in leaves and accumulate sugars plus nutrients drawn up from the soil via root systems. That provides a rich diet for birds.

While digestive acids in the vector’s gut starts degrading the hard shell which surrounds the seed at the centre of the berry. Botanically that term is a misnomer since true berries, such as gooseberry fruits contain several seeds. Holly has one seed contained within a hard case encased in flesh and should be a drupe! Not a term which fits well for Christmas carols, decorations or cards!

Merry Christmas and a Prosperous New Year.

 Gooseberries

Gooseberries- true berry


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on Beryllium.

Beryllium alloys are strong and temperature resistant. These qualities make them highly valued across several sectors.

Beryllium copper alloys account for a huge percentage of the beryllium used in the United States. As these alloys are good conductors of electricity and heat, they are used in making connectors, switches and other electrical devices for use in many sectors including aerospace, automobile, computer, defense and medical.

Beryllium

Originally posted by konczakowski

Beryllium metal is very light and stiff and maintains its shape in both high and low temperatures. This makes it the ideal material for use as mirrors of the Spitzer Space Telescope and the James Webb Space Telescope (JWST), due to be launched in the next few years.  The key mirror of the JWST comprises 18 hexagonal segments- each must maintain its shape even at - 400 degrees Fahrenheit.

Automobile and Aircraft

 Aircraft

Additionally, Beryllium alloy connectors are used in the electrical systems of automobiles, as they are reliable and improve vehicle fuel efficiency.

In commercial aircraft, the strength of beryllium copper provides many advantages, as it can handle wear forces and exposure to corrosive atmospheres and temperatures. Beryllium copper also allows bearings to be made lighter and smaller, which also improves fuel efficiency. 

 xray equipment

Medical uses

Beryllium copper’s strength and stability makes it ideal for medical technologies and x-ray equipment.

As imaging technology progresses, beryllium copper will continue to play an important role in x-ray tube windows.

Other medical uses of beryllium:

•Pacemakers

•CAT scanners

•MRI machines

•Laser scalpels

•Springs and membranes for surgical instruments


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on Nickel.

Nickel, a silvery-white lustrous metal with a slight golden tinge may be commonly known as a US five cent coin, however, today nickel is one of the most widely used metals. According to the Nickel Institute, the metal is used in over 300,000 various products. It is also commonly used as a catalyst for hydrogeneration, cathodes for batteries and metal surface treatments.

 nickel coins

Nickel in batteries:

Historically, nickel has been widely used in batteries; nickel cadmium (NiCd) and in nickel metal hydride (NiMH) rechargeable batteries. These batteries were used in power tools and early digital cameras. Their success as batteries in portable devices became a stepping stone that led to the significant use of NiMH batteries in car vehicles, such as the Toyota Prius.

 nickel battery

The demand for nickel will increase even further as we move away from fossil fuel energy. More energy wll need to be stored in the cathode part of lithium-ion batteries as a result.

Socio-economic data on nickel demonstrates the importance the nickel value chain has on industries, which includes mining through end use to recycling.

The data reflects that globally, the nickel value chain supports a large number of jobs, primarily ones in manufacturing and chemical engineering. The output generated by nickel related industries is approximately €130bn, providing around 750,000 jobs.

 nickel machine

Nickel is fully recyclable without its qualities being downgraded, making it very sustainable. It is difficult to destroy and its qualities – corrosion resistance, high-temperature stability, strength, recyclability, and catalytic and electromagnetic properties are enabling qualities required for sustainability.

reduce reuse recycle gif

Originally posted by thesustainer


Science & Innovation

Congratulations to Hallam Wheatley, voted Young Ambassador of 2019/2020!

Can you tell us about your early involvement in the chemical industry?

My career in the chemical industry began at the age of 18 as an advanced apprentice. I spent two years completing my laboratory-based apprenticeship with Lotte Chemical on Teesside, where my passion for chemistry really materialised. Applying chemical principles into the world of work gave me a great appreciation for just how big a role chemistry plays in our everyday lives. After finishing my apprenticeship, I began studying part-time, for my degree in Chemistry.

 chemistry set

Can you tell about your work as a research chemist?

In 2017, I began working in SABIC’s research department, this really put me on the front line of the innovative technology that is being developed in the world today. As a research chemist, my main responsibilities revolve around supporting SABIC’s assets, and any chemistry related issues they may have. During my time, that’s mainly revolved around catalyst research. When I’m not helping with plant support, I work on sustainability issues, that will help answer some of the world’s toughest questions, relating to the chemical recycling of plastic waste, or helping to implement a hydrogen economy, to help reduce carbon emissions.

 CO2 dial

How do you feel to be named Young Ambassador of the year?

I was in shock when my name was called! The standard of applicants was really high, so to be named the Young Ambassador this year was a real honour.

I do feel that the award won’t mean a thing if I don’t make the most of my time as the Young Ambassador. It’s important to carry on the great work from last year and try and help the Future Forum continue to grow.

I know that task won’t be easy, but it’s really great that a lot of the short-listed finalists, have agreed to join the Leadership team this year, so I’m really excited to work with them, and I’m excited for the year ahead!

 hands on hands

What are your plans for the year ahead as Young Ambassador and with the Future Forum?

As Young Ambassador, I’m really hoping to continue the great work that Jennifer did last year. I want to build up a resource to help Future Forum members old and new alike.

I think it’s important that as a network we communicate effectively with each other to not only get an understanding of how young people are feeling in the industry, but also to identify some of the challenges their facing, as well as offering support from within the network.

I want to make the Future Forum something that people want to join, not because it looks good on a CV, but because it will offer people real opportunities to develop and network. This won’t be easy, but through help from Jennifer and this year’s Leadership Team, I think we’ll be able to lay strong foundations, so that moving forward, to Future Forum can be more than just a young professional networking platform.

 young ambassador network

What advice would you give someone starting out their career as a research chemist?

Look around!! Whilst I knew that I had a passion for Chemistry, I wasn’t so sold on the idea of university at 18 and after college. I decided to see what my best route into the industry that was on my doorstep was, and I was fortunate enough to find an apprenticeship that suited me. The apprenticeship gave me the grounding knowledge and understanding to progress, and two years later, I felt ready to tackle the challenge of a degree.

I do know, that whilst the apprenticeship route worked for me, it won’t work for everyone, but I think it’s important that students of all ages understand that there’s multiple choices that they may not have heard. Over the coming year, I’m hoping to use the Future Forum as a tool to best showcase some of the options to get a career within the Chemical Industry.

One thing I would recommend for all students though, is email local chemical companies, ask HR departments for advice about careers, and ask about the opportunities to come in and shadow, even if it’s only for a day! You’ll learn a lot, but you never know what it might lead to!


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on tungsten.

History

Over three centuries ago, this metal was first used by porcelain makers in China. They used a tungsten pigment to incorporate a peach colour into their art work. In 1781, Wilhelm Scheele examined a metal containing tungsten and successfully isolated an acidic white oxide, deducing the oxide of the new metal. In 1783, Wilhelm’s brothers produced the same acidic metal oxide, and upon heating it with carbon, they successfully reduced it to tungsten.

 tungsten

Health concerns

Tungsten raises concerns regarding the health effects associated with its levels of toxicity. Initially, tungsten was perceived to be immobile in the environment and therefore used as a viable replacement for lead and uranium in military applications. However, reports showed traces of tungsten detected in soil and potable water sources, increasing the risk to human exposure. According to public health reports, it is unlikely that tungsten present in consumer products poses a hazard or causes any long-term health effects. Therefore, further assessment on the potential long-term health effects of tungsten exposure is still required.

 tungsten pot

Properties

Tungsten is a refractory metal and as it has the highest melting temperature of all metals, it is used across a range of applications. Tungsten is alloyed with other metals to strengthen them. This makes them useful to many high-temperature applications, including arc-welding electrodes.

 hazard assessment form

Properties

Tungsten is a refractory metal and as it has the highest melting temperature of all metals, it is used across a range of applications. Tungsten is alloyed with other metals to strengthen them. This makes them useful to many high-temperature applications, including arc-welding electrodes.

the simpsons gif - heat wave causes ink to fall off newspaper

Originally posted by everythingstarstuff

It is used as a novel material for glass parts due to its superior thermochemical stability. As it is a good electric conductor, it is also used in solar energy devices. Tungsten compounds act as catalysts for energy converting reactions, leading many manufacturers to investigate further uses of tungsten.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. 

Discovery of this noble gas:

In 1894 argon was discovered by chemists Sir William Ramsay and Lord Rayleigh. Ramsay believed the presence of a heavy impurity in the ‘atmospheric’ nitrogen could be responsible for giving nitrogen a higher density when isolated from the air. Both scientists worked to discover this unrecognised new element hiding in the air, winning a Nobel Prize in 1904, primarily for their role in the discovery of argon.

Facts

Argon makes up 1% of the earth’s atmosphere and it is the most plentiful of the rare gases. Argon can be both used in its gaseous state and its liquid form. In its liquid state, argon can be stored and transported more easily, affording a cost-effective way to deliver product supply.

image

Argon as a narcotic agent

One of the most well-known biological effects of argon gas is in its narcotic capabilities. Sea divers normally develop narcotic symptoms under high pressure with normal respiratory air. These symptoms include slowed mental cognition and psychological instability. Argon exerts this narcotic effect in a physical way rather than in a chemical way, as argon, an inert gas, does not undergo chemical reactions in the body.

sea diver gif

Originally posted by gajo1987

3-D Printing

During the heating and cooling of printing materials, argon provides several benefits to this process. The gas reduces oxidation of the metal preventing reactions and keeping out impurities. This creates a stable printing environment as a constant pressure is maintained.

 3d printer

Future of argon

Argon as a clinical utility tool has received maximum attention. Although the potential benefits are still in the experimental stages, argon could be the ideal neuroprotective agent. Studies have shown that argon could improve cell survival, brain structural integrity and neurological recovery. These protective effects are also efficient when delivered up to 72 hours after brain injury.


Careers

This latest instalment of SCI Energy Group’s blog delves deeper into the working life of one of its own members and SCI ambassador – Reace Edwards. She is currently pursuing an industry funded PhD in Chemical Engineering at the University of Chester and, through this blog, answers some questions to shed some light on her experience so far.

 Reace Edwards

Reace Edwards: Head shot 

Can you please provide a brief summary of your research?

My research is concerned with the establishment of a hydrogen gas network, in the North West, as a method of large-scale decarbonisation. This cross-disciplinary work will examine different elements of the hydrogen economy from production to end-use and explore the opportunities and barriers possessed by the region. Whilst technical and economic considerations are key components of this, policy, regulatory and social aspects will also be explored.

 Reace Edwards on bike

Reace Edwards: Riding a bike that generates hydrogen from pedalling

What does a day in the life of a Chemical Engineering PhD Student look like?

“It’s hard to define a typical day for a PhD student as no one day is ever the same.

At the beginning of the PhD, I spent a lot of time reading literature to help contextualise my research and appreciate its importance at a local, national and international scale.  

Within time, I began to not only read but review and analyse this literature, which ultimately led to the construction of my literature review (this is regularly updated still)! Through this process, I identified research gaps, helping me focus my research questions, and inspired my field research and methodology.

Since then, I have applied for, and gained, ethical approval.  At my current stage, I have chosen semi-structured interviews for data collection. So, now, my typical day consists of conducting interviews and transcribing the recordings.

Alongside this, there have always been ample opportunities to attend conferences and networking events, which, provides another form of skills development. So, there’s lots going on. But, what’s for sure, is that though each day is busy, the results are definitely rewarding.” 

How did your education prepare you for this experience?  

“In 2018, I graduated, from the University of Chester, with a first-class bachelor’s degree in Chemical Engineering. Therefore, I was eligible to apply for the PhD studentship when it was advertised.”

 reace edwards graduation

Reace Edwards: Graduation 

What are some of the highlights so far?

For me, one of my main highlights had been to travel abroad to deliver a presentation on my work at an international conference.

Another highlight was the opportunity to co-author a conference article with a colleague from my industrial sponsor, and others, which was presented at another major, international conference.

In addition to this, I’ve done a TEDx talk and appeared on the BBC politics show. Where, on both accounts, I have discussed the opportunities for hydrogen.

Without doing this PhD, none of this would have even been possible!

 reace edwards tedx

Reace Edwards: After delivering TEDx talk 

What is one of the biggest challenges faced in a PhD?

Time management is definitely a challenge, from two different perspectives.

Firstly, there are many different things that you can be tasked with at one time. Therefore, it’s important to learn how to prioritise these things and assign your time accordingly.

But, as well as that, because of your passion for the research, it can be very tempting to work exceedingly long hours. Whilst this may be necessary at times, it is important to give yourself some rest to avoid becoming run down.

 reace edwards interview

Reace Edwards: Whilst being interviewed by BBC 

What advice would you give to someone considering a PhD?

“If you’re passionate about the subject – do it!

You won’t regret it


Sustainability & Environment

Springtime colour is one of gardening’s greatest joys. Colourful bursts dispel the long darkness of winter with its depressing wetness and cold. Social research is clearly showing the physical and mental benefits obtained from the emergence in spring of bright garden colours linked with lengthening daylight. As with most gardening pleasures, this requires advanced financial outlay and an understanding of the rhythms of plant growth. 

spring flowers

Originally posted by velvetmotel

Planting bulbs such as daffodils, tulips and hyacinths in autumn is the necessary investment. In return, plant breeders now provide a huge array of colours, shapes, sizes and seasonal sequencing with bulbous plants.

 February Gold daffodils

Geoff Dixon:  February Gold daffodils

Bulbs are large pieces of vegetative tissue which come pre-loaded with immature leaves and flowers, safely wrapped inside a dry coating of protective scales. Essentially, bulbs are large flower buds which are stimulated into growth by planting in warm, moist soil or compost. These conditions trigger the emergence of roots from the base of each bulb. Because bulbs are nascent plants, they require careful handling and are safest once planted. 

Many bulbous species originate from higher altitude mountainous pastures and are naturally evolved for dealing with fluctuating periods of heat, cold and drought. Once safely planted at depths which should equal twice the length of each bulb, they will survive the freezing, thawing and fluctuating soil water- content delivered by winter weather.

 Bulb structure

Geoff Dixon: Bulb structure showing the flower bud embedded in the bulb

Warming soils of spring encourage growth and emergence of the leaves and flower buds contained within each bulb. Speed of emergence is governed by interaction between the genetic complement of bulbs and an interaction with their environment. Identifying and understanding the impact of this interaction formed the basis for Charles Darwin and Alfred Wallaces’ theory of natural selection. For springtime gardeners it is expressed in the multiplicity of bulbs on offer. Choosing a range of daffodil varieties for example, provides colourful gardens from February through to late May.

 Technique for planting bulbs

Geoff DixonTechnique for planting bulbs using hand trowel and some sand for drainage under the bulb

Conserving the joys of spring pleasure over years can be achieved by naturalising bulbs. This means planting them in grass swards. This works effectively for daffodils, provided the foliage is allowed 8 to 10 weeks of uninterrupted growth and senescence after flowering. During this period, photosynthesis produces the chemical energy needed for replacement growth, which provides bulb multiplication and flower bud development for the following year. Tulips are much less easily naturalised in British gardens. This is because the leaves mature and senesce much more quickly after flowering, hence, less energy is produced, therefore, regrowth is less, and replacement flower buds are not formed.

For most gardeners the policy should be one of enjoying each springtime’s show and replacing bulbs with new ones every autumn for a relatively modest outlay.


Careers

Nearly two years ago, while attending admissions day in the Department of Chemical Engineering at Imperial College London, I was asked, ‘Why Chemical Engineering?’ That is also the question I will attempt to answer today, before beginning my second year at Imperial.

sheldon gif

Originally posted by keep-calm-and-allons-y-whovians

1.  ChemEng is everywhere

If you look around, you will see countless things whose production involved chemical engineers. From a plastic bottle on your desk, through cosmetics and medicines, to the fuel that your car uses – all those products involve complex chemical processes designed and improved by engineers. I see chemical engineering as a job full of opportunities – and of many diverse ones, as well.

Not only are there numerous industry sectors to work in, but also possibilities beyond the scope of ChemEng. For example, other areas of employment stretch across research, finance and management, as chemical engineering equips students with many useful transferrable skills, such as problem-solving abilities or analytical thinking.

monica gif

Originally posted by livelovecaliforniadreams

2.      Chemical engineers can make the world a better place

It may sound like a slogan, but I really believe it’s true. Today’s society faces serious problems, some of which are caused by human activity. It is hard to ignore the changes in the natural environment and the problems such as climate change, but chemical engineers are here to find a way to fight it.

Nowadays, the focus in designing chemical processes is increasingly shifting towards environmental sustainability. Even our department has a carbon capture pilot plant, and when implemented on a chemical plant, carbon capture is aimed at reducing CO2 emissions. Chemical engineers can make production processes more eco-friendly and help to develop clean energy generation, which is crucial for today’s world.

 CO2 emissions graphic

Another big challenge of the 21st century is ageing society. It results in increased occurrence of diseases such as cancer, cardiovascular diseases, and many other types of illnesses. Subsequently, this increases the demand for various kinds of medicines, increases the consequent development of pharma industries, and thus, more opportunities for chemical engineers to benefit society.

 yoga stance

3.      ChemEng is fun!

To be perfectly honest, this course can be challenging at times. But at the same time, I find it really exciting and rewarding. Its multidisciplinary nature is what makes it interesting; we study elements of maths, physics, mechanics, some elementary programming and different branches of chemistry. It is also a course full of practical work – lab experiments and group projects, which develop co-operation skills and the ability to solve real-life problems, but it is also a fun way to learn and to meet new people!

Originally posted by kane52630

The most important thing is to enjoy what you study, and ChemEng is an ideal fit for those enjoying STEM subjects and willing to solve practical problems. And that is probably why I am so excited to come back to uni and start second year.


Science & Innovation

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on zinc and its contribution towards a sustainable future.  

image

Foods high in zinc: Evan Lorne

Zinc is a naturally occurring element, considered a ‘life saving commodity’ by the United Nations. As well as playing a fundamental role in the natural development of biological processes, it is also highly recyclable which means that once it has reached the end of its life cycle, it can be recycled, and returned to the cycle as a new source of raw material. Statistically, around 45% of zinc in Europe and in the United States is recovered and recycled once it has reached the end of its life cycle.

image

Circular and linear economy showing product life cycle:  Petovarga 

Circular economy is an economic model that focuses on waste reduction and ensuring a product that has reached its end cycle is not considered for disposal, but instead becomes used as a new source of raw material. Zinc fits this model; its lifecycle begins from mining and goes through a refining process to enable its use in society. Finally, it is recycled at the end of this process.

image

The production of zinc-coated steel mill: gyn9037

Zinc contributes to the planet in various ways:

1.  Due to its recyclable nature, it lowers the demand for new raw material

2.  As zinc provides a protective coating for steel, it extends the lifecycle of steel products

3.  Coating steel reduces carbon dioxide emissions

As reported by the Swedish Environmental Protection Agency, zinc uses the lowest energy on a per unit weight and per unit volume basis, (with the exception of iron). Only a small amount of zinc is needed to conserve the energy of steel, and during electrolytic zinc production, only 7% of energy is used for mining and mineral processing.

image

Green technology:  Petrmalinak

According to a new report published by The World Bank, ‘The Growing Role of Minerals and Metals for a Low-Carbon Future,’ a low carbon future and a rise in the use of green energy technologies will lead to an increased demand in a selected range of minerals and metals. These metals include aluminium, copper, lead, lithium, manganese, nickel, silver, steel, zinc and rare earth minerals. Hence, zinc will be one of the main metals to fill this demand.

Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on titanium and its various uses in industries.

 titanium

What is titanium?

Titanium is a silver- coloured transition metal, exhibiting low density, high strength and a strong resistance to corrosion from water and chlorine. Suitably, titanium delivers many uses to various industries with approximately 6.6 million tonnes produced annually. 

Titanium Dioxide 

Titanium Dioxide is the most popular usage of titanium, composed of approximately of 90%. It is a white powder with high opacity; its properties have been made for a broad range of applications in paints, plastic good, inks and papers. Titanium dioxide is manufactured through the chloride process or the sulphate process. The sulphate process is the more popular process making up 70% of the production within the EU. 

 titanium in production

Aerospace industry 

Titanium’s characteristics - lightweight, strong and versatile, make titanium a valuable metal in the aerospace industry. In order for aircrafts to be safely airborne, the aerospace industry need parts which are both light and strong, and at the same time safe. Thus, titanium is seen as the most ideal match for these specifications.

 Aircraft

Dentistry

Titanium implants have been used with success, becoming a promising material in dentistry. As a result of its features, including its physiological inertia, resistance to corrosion, and biocompatibility, titanium plays an important role in the dental market.

 titanium dentistry

However, despite this, the technologies and systems used in the machining, casting and welding of titanium is slow and expensive. Despite the wide availability of these technologies and systems used in the process of creating dental prosthesis from titanium, it does depend on the technological advancements and the availability of resources, to create a more profitable and efficient manufacturing process.


Sustainability & Environment

 sunshine and showers

Aldrin, Armstrong and Collins, Apollo 11’s brave astronauts were the first humans with the privilege of viewing Earth from another celestial body.  These men uniquely wondered “what makes Earth special?” Certainly, within our Solar System, planet Earth is very special. Its environment has permitted the evolution of a panoply of life.

earth gif

Originally posted by spinningblueball

Green plants containing the pigment, chlorophyll either in the oceans as algae or on land as a multitude of trees, shrubs and herbs harvest energy from sunshine. Using a series of chemical reactions, known as photosynthesis, light energy is harvested and attached onto compounds containing phosphorus.

Captured energy then drives a series of reactions in which atmospheric carbon dioxide and water are combined forming simple sugars while releasing oxygen. These sugars are used further by plants in the manufacture of larger carbohydrates, amino acids and proteins, oils and fats.

The release of oxygen during photosynthesis forms the basis of life’s second vital process, respiration. Almost all plants and animals utilise oxygen in this energy releasing process during which sugars are broken down.

 leaf

Released energy then drives all subsequent growth, development and reproduction.   These body-building processes in plants are reliant on the transfer of the products of photosynthesis from a point of manufacture, the source, to the place of use, a sink.

Leaves and shoots are the principle sources of energy harvesting while flowers and fruits are major sinks with high levels of respiration.

 respiration and photosynthesis

Figure 1: Photosynthesis vs respiration, drawn by James Hadley

Transfer between sources and sinks occurs in a central system of pipes, the vascular system, using water as the carrier. Water is obtained by land plants from the soils in which they grow. Without water there would be no transfer and subsequent growth. Earth’s environment is built around a ‘water-cycle’ supplying the land and oceans with rain or snow and recycles water back into the atmosphere in a sustainable manner.

sea gif

Originally posted by gajo1987

Early in Earth’s evolution, very primitive marine organisms initiated photosynthetic processes, capturing sunlight’s energy. As a result, in our atmosphere oxygen became a major component. That encouraged the development of the vast array of land plants which utilise rain water as the key element in their transport systems.

Subsequently, plants formed the diets of all animals either by direct consumption as herbivores or at second-hand as carnivores. As a result, evolution produced balanced ecosystems and humanity has inherited what those astronauts saw, “the Green Planet”.

 globe in hands

Earth will only retain this status if humanity individually and collectively defeats our biggest challenge – climate change. Burning rain forests in South America,  Africa and Arctic tundra will disbalance these ecosystems and quicken climate change.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on sodium and its role in the next series of innovative nuclear energy systems.

 sodium

Sodium; the sixth most abundant element on the planet is being considered as a crucial part of nuclear reactors. Implementing new safety levels in reactors is crucial as governments are looking for environmentally friendly, risk-free and financially viable reactors. Therefore, ensuring new safety levels is a main challenge that is being tackled by many industries and projects.

safety sign gif

Originally posted by contac

In the wake of Fukushima, several European nations and a number of U.S plants have shut down and switched off their ageing reactors in order to eliminate risk and safety hazards.

The sodium- cooled fast reactor (SFR), a concept pioneered in the 1950s in the U.S, is one of the nuclear reactors developed to operate at higher temperatures than today’s reactors and seems to be the viable nuclear reactor model. The SFR’s main advantage is that it can burn unwanted byproducts including uranium, reducing the need for storage. In the long run, this is deemed cost-competitive as it can produce power without having to use new natural uranium.

 nuclear reactor

 Nuclear reactor. Source: Hallowhalls

However, using sodium also presents challenges. When sodium comes into contact with air, it burns and when it is mixed with water, it is explosive. To prevent sodium from mixing with water, nitrogen - driven turbines are in the process of being designed as a solution to this problem.

colourful explosion gif

Originally posted by angulargeometry

A European Horizon 2020 Project, ESFR-SMART project (European Sodium Fast Reactor Safety Measures Assessment and Research Tools), launched in September 2017, aims to improve the safety of Generation-IV Sodium Fast Reactors (SFR). This project hopes to prove the safety of new reactors and secure its future role in Europe. The new reactor is designed to be able to reprocess its own waste, act more reliably in operation, more environmentally friendly and more affordable. It is hoped that this reactor will be considered as one of the SFR options by Generation IV International Forum (GIF), who are focused on finding new reactors with safety, reliability and sustainability as just some of their main priorities.

 EU flag

European Horizon. Source: artjazz

Globally, the SFR is deemed an attractive energy source, and developments are ongoing, endeavouring to meet the future energy demands in a cost-competitive way.  


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on lead and its place in the battery industry.

lead

2019 is a critical year for the European Battery Industry. As policymakers set priorities to decarbonise the energy systems, whilst boosting Europe’s economic and technical performance, lead-acid batteries have become a viable player in the battery industry. 

Increased government action and ongoing transformations to address the environmental situation has furthered global interest in the lead battery market, as they remain crucial in the battle to fight against the adverse effects of climate change. Subsequently, reliance on fuel technologies is lessening as we see a rise in the lead battery industry which had a market share of 31% in year 2018 with an annual growth rate of 5.4%.

earth temperature gif

Originally posted by spacetimewithstuartgary

According to reports by Reports and Data, the Global Lead- Acid Battery market is predicted to reach USD 95.32 Billion by 2026. Rising demand for electric vehicles and significant increases of this battery use in sectors including automotive, healthcare, and power industries, are a large push behind the growth in this market. 

Thus, expansion of these sectors and particularly the automobile sector, means further development in this market will be underway, especially as it is the only battery technology to meet the technical requirements for energy storage on a large market scale. 

 tesla car

Lead-acid battery is a rechargeable cell, comprising plates of lead and lead oxide, mixed in a sulfuric acid solution, which converts chemical energy into electrical power. The oxide component in the sulfuric acid oxidizes the lead which in turn generates electric current.

funny gif

Originally posted by bringmesomepie56

In the past, lead has fallen behind competing technologies, such as lithium-ion batteries which captured approximately 90% of the battery market. Although lithium-ion batteries are a strong opponent, lead still has advantages. Lead batteries do not have same fire risks as lithium-ion batteries and they are the most efficiently recycled commodity metal, with over 99% of lead batteries being collected and recycled in Europe and U.S. 

 lead battery cell

Researchers are trying to better understand how to improve lead battery performance. A build-up of sulfation can limit lead battery performance by half its potential, and by fixing this issue, unused potential would offer even lower cost recyclable batteries. Once the chemical interactions inside the batteries are better understood, one can start to consider how to extend battery life. 


Science & Innovation

 sir william perkin

British chemist and entrepreneur, Sir William Perkin (1838-1907), transformed the fashion industry and defined his career with his accidental discovery of the first synthetic organic dye, mauveine at the age of 18.

Raised in Shadwell in East London, and the youngest of seven siblings, he entered the Royal College of Chemistry at the age of 15 where he studied under the great German scientist August Wilhelm von Hofmann.

 The Royal College of Chemistry

The Royal College of ChemistrySource: Wellcome Collection gallery

At the age of 18, he was assigned a homework project to conduct over the Easter break, in which he was tasked with finding a cheap way to produce quinine. Quinine is used to treat malaria and, at the time, had to be extracted from the bark of exotic trees rendering it expensive to produce.

Perkin turned his attention to coal tar as he believed it to be similar in structure to quinine. In finishing his experiment, he found he was left with a dark substance, as opposed to colourless quinine. In trying to clean out his flask with alcohol, he found a purple residue deposit. The vivid residue transferred onto a cloth dying it a bright purple, which remained on the cloth after it was washed. Although he had failed to synthesize quinine, Sir William Perkin had fortuitously stumbled upon the first synthetic dye and had begun his journey to become one of the founders of the modern chemical industry.

gif putting on spectacles

Originally posted by spockvarietyhour

Against the advice of Hofmann, Perkin commercialized the discovery and developed the production process for mauveine, inventing a method for the dye to be used on cotton in addition to silk, and giving advice to the dyeing industry on how this new synthetic dye worked. He opened his own factory in 1857 and He later ‘retired’ from industry to focus on 'pure science’ at the age of 36, having achieved international acclaim.

 Colour dyes in fabric manufacturing

Colour dyes in fabric manufacturing. Source: BalLi8Tic 

The discovery revolutionised colour chemistry and helped to establish the modern chemical industry. Other companies founded shortly after his discovery adopted Perkin’s innovative methods of chemical synthesis on a large scale.

The discovery also had a huge impact on the textiles and clothing industry. Until then, clothing had been largely made up of beige and brown fabrics. After Perkin’s discovery, many new aniline dyes were developed, and factories producing them were constructed across Europe. German and British dye manufacturers were keen to unearth more colours, which pushed them to advance chemical knowledge, which also linked closely to developments in medicine and pharmaceuticals.

 Fabric and textile industry

Fabric and textile industry. Source: Mikhail Gnatkovskiy

In 1906 the Society of Chemical Industry created the Perkin Medal to commemorate the discovery of mauve and awarded the first medal to its namesake at a banquet in his honour. It remains the highest honour given for outstanding applied chemistry in the US.

 Perkin Medal

Perkin Medal. Source:  Science History Institute, Conrad Erb


Sustainability & Environment

Since the beginning of SCI Energy Group’s blog series, new legislation has come into place regarding emission targets. Instead of the previous 80% reduction target, the UK must now achieve net-zero emissions by 2050. This makes significant, rapid emission reduction even more critical. This article introduces the main sources of UK CO2 emissions across individual sectors.

The Big Picture

In 2018, UK CO2 emissions totalled to roughly 364 million tonnes. This was 2.4% lower than 2017 and 43.5% lower than 1990. The image below shows how much each individual sector contributed to the total UK carbon dioxide emissions in 2018. As can be seen, large emitting sectors include: energy supply, transport and residential. For this reason, CO2 emission trends from these sectors are discussed in this article.

 Total UK Greenhouse Gas Emissions per Sector graph

Figure 1 Shows the percentage contribution toward Total UK Greenhouse Gas Emissions per Sector (2018) Figure: BEIS. Contains public sector information licensed under the Open Government Licence v1.0.      

Transport Sector

In 2018, the transport sector accounted for 1/3rd of total UK CO2 emissions. Since 1990, there has been relatively little change in the level of greenhouse gas emissions from this sector. Historically, transport has been the second most-emitting sector. However, due to emission reductions in the energy supply sector, it is now the biggest emitting sector and has been since 2016. Emission sources include road transport, railways, domestic aviation, shipping, fishing & aircraft support vehicles.

cars on motorway gif

Originally posted by fuzzyghost

The main source of emissions are petrol and diesel in road transport. 

Ultra-low emission vehicles (ULEV) can provide emission reductions in this sector. Some examples of these include: hybrid electric, battery electric and hydrogen fuel cell vehicles. In 2018, there were 200,000 ULEV’s on the road in the UK. In addition to this, there was a 53% increase in ULEV vehicle registration compared to 2016. In 2018, UK government released the ‘Road to Zero Strategy’, which seeks to see 50% of new cars to be ULEV’s by 2030 and 40% of new vans.

 electric vehicle charging

Energy Supply Sector

In the past, the energy supply sector was the biggest emitting sector but, since 1990, this sector has reduced its greenhouse gas emissions by 60% making it the second-biggest emitting sector. Between 2017 and 2018, this sector accounted for the largest decrease in CO2 emissions (7.2%). Emission sources included fuel combustion for electricity generation and other energy production sources, The main sources of emission are use of natural gas and coal in power plants.  

Beryllium

Originally posted by konczakowski

In 2015, the Carbon Price Floor tax changed from £9/tonne CO2 emitted to £18/ tonne CO2 emitted. This resulted in a shift from coal to natural gas use for power generation. There has also been a considerable growth in low-carbon technologies for power generation. All of these have contributed to emission reductions in this sector.

 Natural gas power plant

Figure 2 - Natural gas power plant

Residential Sector

Out of the total greenhouse gas emissions from the residential sector, CO2 emissions account for 96%. Emissions from this sector are heavily influenced by external temperatures. For example, colder temperatures drive higher emissions as more heating is required.

In 2018, this sector accounted for 18% of total UK CO2 emissions. Between 2017 and 2018, there was a 2.8% increase in residential emissions. Overall, emissions from this sector have dropped by 16% since 1990. Emission sources include fuel combustion for heating and cooking, garden machinery and aerosols. The main source of emission are natural gas for heating and cooking. 

Originally posted by butteryplanet

Summary

The UK has reduced CO2 emissions by 43.5% since 1990. However, further emission reductions are required to meet net-zero targets. The energy supply sector has reduced emissions by 60% since 1990 but remains the second biggest emitter. In comparison to this, emission reductions in the residential sector are minor. Yet, they are still greater than the transport sector, which has remained relatively static. Each of these sectors require significant emission reduction to aid in meeting new emission targets.

bacon and eggs gif

Science & Innovation

 sir william ramsay

Scottish chemist and past SCI President, Sir William Ramsay (1852–1916) came from a long line of scientists on both sides of his family and was described as ‘the greatest chemical discoverer of his time’.

Born in Glasgow, he showed a strong interest in science from a young age and, in his teenage years, he experimented with making fireworks, using materials acquired by his father.

fireworks gif

Originally posted by heartsnmagic

He completed his doctorate in organic chemistry and later, in 1887, was appointed as the Chair of Chemistry at University College London, where he made his most renowned discoveries.

Working with British physicist John William Strutt (better known as Lord Rayleigh), the two men discovered an unknown gas. Owing to its apparent lack of chemical activity, they named the gas argon, meaning “the lazy one”.  

 argon

After the co-identification of argon, Sir William Ramsay suggested that it be placed into the periodic table between chlorine and potassium in a group with helium. Due to the zero valency of the elements this was named the “zero” group.

From 1895 Ramsay spent three years trying to prove the theory of this new group of gasses, leading to the isolation of helium, neon, krypton and xenon. Eventually, a new column was added to the periodic table.

Ramsay was an outstanding experimentalist. He rolled his own cigarettes, claiming that machine-made ones were unworthy of an experimentalist such as himself.

 sir william ramsay teaching

In 1904, he was awarded the Nobel Prize in Chemistry “for his discovery of the inert gaseous elements in air, and his determination of their place in the Periodic system”. As a result, Ramsay became a considerable celebrity in London and was cartooned both by Spy for Vanity Fair and by Henry Tonks, Head of UCL’s Slade School of Art.

Ramsay ascribed his success in isolating the rare gases to his large flat thumb which could close the end of eudiometer tubes (graduated glass tube used to mix gases) full of mercury.

The group of elements that he discovered is now known commonly as the noble gases and is comprised of helium, neon, argon, krypton, xenon, and radon. Generally, they are chemically inert (they do not react with other elements) this is because they have the desired amount of total s and p electrons in their outermost energy orbital. However, only helium and neon are truly inert. Under very specific conditions, the other noble gases will react on a limited scale.

Today, the noble gasses are in wide use in the real world.

Argon is particularly important for the metal industry, due to the fact that it does not react with the metal at high temperatures. It is used in arc welding (a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal) and is also used in light bulbs to prevent oxygen from corroding the hot filament.

light bulb pendulum

Originally posted by loopedgifs

Helium, one of the most common and lightest elements in the universe, is used for diluting the pure oxygen in deep-sea diving tanks. It’s also used to inflate the tires of large aircraft, weather balloons, blimps and party balloons.

 balloons

Neon, which means ‘New one’ in Greek, is commonly used in colourful glass tube neon signs, it glows bright red when an electric current is sent through the gas, as it enters a plasma state. Other uses of Neon include in vacuum tubes, television tubes, and helium-neon lasers.

 neon signs

Krypton and xenon, valued for their total inertness, are used in photographic flash units, in lightbulbs and in lighthouses, as these elements generate a bright light when an electric current is run through them.

The original glass tubes that Ramsay used to isolate and collect his samples at UCL still exist today, they continue to glow red, yellow, purple and green, more than a century later.

Not only did Ramsay’s successes complete gaps in the periodic table, but he also paved the way for a deeper understanding of how the elements are connected, shaping our understanding today, a huge achievement that can be attributed in no small part to his experimental nature and his large flat thumb!



Health & Wellbeing

On 8th March, I hosted my company’s first International Women’s Day event. Here’s what inspired me to do it…

1.       We need to talk about the lack of women in science

There are a lot of factors at play as to why women are underrepresented in science – it’s a complex issue and there’s been a rise in efforts to tackle it, which is great to see. We need to challenge the idea of what a ‘scientist’ looks like.

Simply by making people aware of stereotype threat and inherent bias, we can begin to break the rigid mould of what it means to be a ‘scientist’. We can’t face it if we never talk about it, and dedicated events are a way of opening up the conversation.

A ‘leaky pipeline’ has actually been coined in science – women ‘trickle out’ as they go up the career ladder. If we’re making an effort to encourage younger girls to study science subjects, we need to question why they’re not being retained at more senior levels. This effort needs to come from businesses.

 women in stem graphic
 women in management graphic

WISE (Women in Science and Engineering) reports the science workforce gender split in 2018Source: WISE

2.       There’s a difference between diversity and inclusion

When we think about the ‘leaky pipeline’, we need to address the difference between diversity and inclusion.

Diversity is important, but it’s not enough. Diversity is the who and what; inclusion is the how. It’s not just about who’s being recruited, or who gets a seat at the table. It’s about creating behaviours that embrace the diverse voices of these people. Diversity without inclusion is just a box-ticking exercise. We need to acknowledge our differences and show a commitment to changing company culture to embrace them.

Hosting events like International Women’s Day is a good start to demonstrating this commitment and dedicating a day for women to be heard.

 funny gif 2

Image: BrandisEGO

3.       I want to celebrate my colleagues

I’m lucky to work with some amazing scientists, some of whom happen to be women. I wanted to take a day to celebrate their accomplishments and those of all the women who are breaking glass ceilings in science. When people feel seen and recognised for their work it creates a healthier work environment. By having this day in place, we can dedicate a day each year to celebrate and congratulate women on their achievements. Plenty of my female colleagues were keen to get involved and help, and I was inspired to hear all their stories and ideas.

funny gif 3

Originally posted by kngoftheclouds

4.       It’s a win-win

I suggested this event because I thought it was a great fit for my company and could benefit us in many tangible ways. Workplace diversity can actually boost performance - a report found that when employees “think their organisation is committed to and supportive of diversity, and they feel included”, their ability to innovate increases by 83%. It also makes perfect sense to me that, by including all genders equally, we have access to a greater pool of talent and a wider range of mentors available for junior talent. Plus, it’s a brand-booster to show that we are bringing ourselves into the future and being socially conscious.

funny gif 4

Originally posted by beamlyus

5.       It’s just the beginning

We’re starting to talk more about gender issues in the workplace, but women are not the only people who are affected by discrimination. We need inclusion for everyone.

For example, most people are aware of the gender pay gap and companies are now obliged to publish their data on this, but in the UK, black male graduates earn almost £4 less per hour than their white peers.  Another study found that almost a third of LGBT+ physical scientists had considered leaving their workplace because of discrimination. These are issues that need to be openly talked about and acknowledged before we can even think about solving them. Science should be for everyone and I’m really excited to host more events to encourage this.

 funny gif 5

Image: Tiffany Pollard


Sustainability & Environment

Controlling when and how vigorously plants flower is a major discovery in horticultural science. Its use has spawned vast industries worldwide supplying flowers and potted plants out-of-season. The control mechanism was uncovered by two American physiologists in the 1920s. Temperate plants inhabit zones where seasonal daylength varies between extending light periods in spring and decreasing ones in autumn. 

 flower gif

Originally posted by annataberko

Those environmental changes result in plants which flower in long-days and those which flower in short-days. ‘Photoperiodism’ was coined as the term describing these events. Extensive subsequent research demonstrated that it is the period of darkness which is crucially important. Short-day plants flower when darkness exceeds a crucial minimum, usually about 12 hours which is typical of autumn. Long-day plants flower when the dark period is shorter than the crucial minimum. 

 Irises flowers

Irises are long day flowers. Image: Geoffery R Dixon

A third group of plants usually coming from tropical zones are day-neutral; flowering is unaffected by day-length. Long-day plants include clover, hollyhock, iris, lettuce, spinach and radish. Gardeners will be familiar with the way lettuce and radish “bolt” in early summer. Short-day plants include: chrysanthemum, goldenrod, poinsettia, soybean and many annual weed species. Day-neutral types include peas, runner and green beans, sweet corn (maize) and sunflower. 

Immense research efforts identified a plant pigment, phytochrome as the trigger molecule. This exists in two states, active and inactive and they are converted by receiving red or far-red wavelengths of light. 

 Sunflowers

 Sunflowers are day neutral flowers. ImageGeoffery R Dixon 

In short-day plants, for example, the active form suppresses flowering but decays into the inactive form with increasing periods of darkness. But a brief flash of light restores the active form and stops flowering. That knowledge underpins businesses supplying cut-flowered chrysanthemums and potted-plants and supplies of poinsettias for Christmas markets. Identifying precise demands of individual cultivars of these crops means that growers can schedule production volumes gearing very precisely for peak markets. 

Providing the appropriate photoperiods requires very substantial capital investment. Consequently, there has been a century-long quest for the ‘Holy Grail of Flowering’, a molecule which when sprayed onto crops initiates the flowering process. 

 Chrysanthemums

Chrysanthemums are short day flowers. Image: Geoffery R Dixon

In 2006 the hormone, florigen, was finally identified and characterised. Biochemists and molecular biologists are now working furiously looking for pathways by which it can be used effectively and provide more efficient flower production in a wider range of species.



Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on cobalt and its current and potential uses.

 cobalt

History

In 1739, Georg Brandt, whilst studying minerals that gave gave glass a deep blue colour he discovered a new metal, namely cobalt.Today cobalt’s uses vary from health and nutrition to industry. Cobalt is an essential metal, used in the production of alloys to make rechargeable batteries and catalysts. Cobalt is an essential trace element for the human body, an important component of vitamin B12 and plays an essential role in forming amino acids, proteins in nerve cells and in creating neurotransmitters. 

 b12 diagram

 

 Cobalt is an important component of B12. Image source: flickr: Healthnutrition 

Cobalt and medicine 

The salts found in cobalt can be used as a form of treatment for anaemia, as well as having an important role for athletes acting as an alternative to traditional blood doping. This metal enhances synthesis of erythropoietin, increasing the erythrocyte quantity in blood, and subsequently, improving aerobic performance.

exercise gif

Originally posted by icefitness

The skin

Cobalt can enter the body via various ways: one way is by the skin. This organ is susceptible to environmental pollution, especially in workers who are employed in heavy industry. 

When cobalt ions from different metal objects repeatedly come into contact with skin, these cobalt ions then diffuse through the skin, causing allergic and irritant reactions.

allergic gif

Originally posted by showcaseshirley17

Important raw material for electric transport

Cobalt is also a critical raw material for electric transport. It is used in the production of the most common types of lithum-ion batteries, thus, powering the current boom in electric vehicles. 

The electric vehicle industry has the potential to grow from 3.2 million in 2017 to around 130 million in 2030, seeing the demand for cobalt increase almost threefold within the next decade.

electric vehicle charging

As the EU continues to develop the battery industry, it is becoming a priority for manufacturing industries to secure adequate cobalt supplies. The electric vehicle boom means cobalt will increase in demand in the EU as well as globally; further projects to monitoring the supply-and-demand situation will be announced.


Materials

2019 has been declared by UNESCO as the Year of the Periodic Table. To celebrate, we are releasing a series of blogs about our favourite elements and their importance to the chemical industry. Today’s blog focuses on iron and its importance for human health.

 iron

Iron’s biological role

Iron is an important component of hemoglobin, a protein in the red blood cells which transports oxygen throughout the body. If there is a low level of iron in your body, your body will be unable to carry healthy oxygen-carrying red blood cells and a lack of these red blood cells can result in iron deficiency anemia.

During the 17th century, iron had early medicinal uses by Egyptians, Greeks, Hindus and Romanians, and around 1932, it became established that iron was essential for haemoglobin synthesis.

 red blood cells

Red blood cells 

Figures

The World Health Organisation (WHO) released figures suggesting that iron deficiency is incredibly common in humans and therefore happens to be a primary cause of anaemia. 

According to their statistics, around 1.62 bn cases of anaemia are caused by iron deficiency and according to WHO’s 2008 reports, anaemia can be caused by excessive blood loss, poor iron absorption, and low dietary intake of iron.

Bioavailability

Iron bioavailability in food is low among populations consuming plant-based diets. Iron requirement is very important, and when low levels of iron deficiency are prominent among populations in developing countries, subsequent behavioural and health consequences follow. 

tired gif

Originally posted by lilpieceofmyworld

These include reduced fertility rates, fatigue, decreased productivity and impaired school performance among children.

Pregnancy

During pregnancy, iron utilisation is increased as it is essential nourishment for the developing fetus. In 1997, a study proved that pregnant women needed the increase in iron, as 51% of pregnant women suffered from anaemia, which is twice as many non-pregnant women.

 iron graphifc

As iron is a redox-active transitional metal, it can form free radicals and in excessive amounts. This is dangerous as it can cause oxidative stress which could lead to tissue damage. Epidemiological studies provide evidence to show that excessive iron can be a potent risk factor associated with chronic conditions like cardiovascular and developing metabolic abnormalities.

Food sources:

Dietary iron is found in two basic forms. It is found from animal sources (as haem iron) or in the form of plant sources (as non-haem iron). The most bioavailable form of iron is from animal sources, and iron from plant sources are predominantly found in cereals, vegetables, pulses, beans, nuts and fruit. 

However, this form of iron is affected by various factors, as the phytate and calcium can bind iron in the intestine, unfortunately reducing absorption. Vitamin C which is present in fruit and vegetables can aid the absorption of non-haem iron when it is eaten with meat.

 salad bowl

‘The global burden of iron deficiency anaemia hasn’t changed in the past 20 years, particularly in children and women of reproductive age,’ says researcher, Dora Pereira. Although iron is an important nutrient to keeping healthy, it is imperative that iron levels are not too high.


Sustainability & Environment

Banana is the largest herbaceous plant in the world and the UK’s favourite fruit. Every year 100 bn bananas are eaten around the world. The banana industry itself was worth US$44bn in 2011, however taking the fruits from the field to the grocery store relies on a delicately coordinated transportation and ripening system.

monkeys eating

The banana colour scheme distinguishes seven stages from ‘All green’ to ‘All yellow with brown flecks’. The green, unripe banana peel contains leucocyanidin, a flavonoid that induces cell proliferation, accelerating the healing of skin wounds. But once it is yellowish and ready to eat, the chlorophyll breaks down, leaving the recognisable yellow colour of carotenoids.

 unripe and ripe bananas

Unripe (green) and ready-to-eat (yellow) bananas.

The fruits are cut from the plant whilst green and on average, 10-30 % of the bananas do not meet quality standards at harvest. Then they are packaged and kept in cold temperatures to reduce enzymatic processes, such as respiration and ethylene production.

However, below 14°C bananas experience ‘chilling injury’ which changes fruit ripening physiology and can lead to the brown speckles on the skin. Above 24°C, bananas also stop developing fully yellow colour as they retain high levels of chlorophyll.

Once the green bananas arrive at the ripening facility, the fruits are kept in ripening rooms where the temperature and humidity are kept constant while the amount of oxygen, carbon dioxide and ethene are controlled.

 palm tree

The gas itself triggers the ripening process, leads to cell walls breakdown and the conversion of starches to sugars. Certain fruits around bananas can ripen quicker because of their ethene production.

By day five, bananas should be in stage 2½ (’Green with trace of yellow’ to ‘More green than yellow’) according to the colour scale and are shipped to the shops. From stage 5 (’All yellow with green tip’), the fruits are ready to be eaten and have a three-day shelf-life.

 fruit market

A fruit market. Image: Gidon Pico

The very short shelf-life of the fruit makes it a very wasteful system. By day five, the sugar content and pH value are ideal for yeasts and moulds. Bananas not only start turning brown and mouldy, but they also go through a 1.5-4 mm ‘weight loss’ as the water is lost from the peel.

While scientists have been trying out different chemical and natural lipid ‘dips’ for bananas to extend their shelf-life, such methods remain one of the greatest challenges to the industry.

In fruit salads, to stop the banana slices go brown, the cut fruits are sprayed with a mixture of citric acid and amino acid to keep them yellow and firm without affecting the taste.

 bananas and potassium

Bananas are a good source of potassium and vitamins.

The high starch concentration – over 70% of dry weight – banana processing into flour and starch is now also getting the attention of the industry. There are a great many pharmaceutical properties of bananas as well, such as high dopamine levels in the peel and high amounts of beta-carotene, a precursor of vitamin A.

Whilst the ‘seven shades of yellow’ underpin the marketability of bananas, these plants are also now threatened by the fungal Panama disease. This vascular wilt disease led to the collapse of the banana industry in the 1950’s which was overcome by a new variety of bananas.

 bananas growing

However, the uncontrollable disease has evolved to infect Cavendish bananas and has been rapidly spreading from Australia, China to India, the Middle East and Africa.

The future of the banana industry relies on strict quarantine procedures to limit further spread of the disease to Latin America, integrated crop management and continuous development of banana ‘dips’ for extending shelf-life.



Energy

Having previously explored the various ways in which energy is supplied in the UK, this article highlights UK energy consumption by fuel type and the sectors it is consumed in. 

national grid

But before proceeding, it is important to first distinguish between the terms ‘primary energy consumption’ and ‘final energy consumption’. The former refers to the fuel type in its original state before conversion and transformation. The latter refers to energy consumed by end users.

Primary energy consumption by fuel type

 oil rig

Oil consumption is on the decline.

In 2018, UK primary energy consumption was 193.7 m tonnes of oil equivalent. This value is down 1.3% from 2017 and down 9.4% from 2010. This year, the trend has continued so far. Compared to the same time period last year, the first three months of 2019 have shown a declination of 4.4% in primary fuel consumption.

It is also important to identify consumption trends for specific fuels. Figure 1 below illustrates the percentage increases and decreases of consumption per fuel type in 2018 compared to 2017 and 2010.

 

Figure 1 shows UK Primary Energy Consumption by Fuel Type in 2018 Compared to 2017 & 2010. Figure: BEIS. Contains public sector information licensed under the Open Government Licence v1.0.

As can be seen in 2018, petroleum and natural gas were the most consumed fuels. However, UK coal consumption has dropped by almost 20% since 2017 and even more significantly since 2010. But perhaps the most noticeable percentage change in fuel consumption is that of renewable fuels like bioenergy and wind, solar and hydro primary electricity. 

In just eight years, consumption of these fuels increased by 124% and 442%, respectively, thus emphasising the increasingly important role renewables play in UK energy consumption and the overall energy system.

Final energy consumption by sector

Overall, the UK’s final energy consumption in 2018, compared to 2017, was 0.7% higher at a value of approximately 145 m tonnes of oil equivalent. However, since 2010, consumption has still declined by approximately 5%. More specifically, figure 2 illustrates consumption for individual sectors and how this has changed since.

 uk energy consumption statistics 2

Figure 2 from UK Final Energy Consumption by Sector in 2018 Compared to 2017 & 2010. Figure: BEIS. Contains public sector information licensed under the Open Government Licence v1.0.

Immediately, it is seen that the majority of energy, consumed in the UK, stems from the transport and domestic sector. Though the domestic sector has reduced consumption by 18% since 2010, it still remains a heavy emitting sector and accounted for 18% of the UK’s total carbon dioxide emissions in 2018. 

Therefore, further efforts but be taken to minimise emissions. This could be achieved by increasing household energy efficiency and therefore reducing energy consumption and/or switching to alternative fuels.

 loft insulation

Loft insulation is an example of increasing household energy efficiency.

Overall, since 2010, final energy consumption within the transport sector has increased by approximately 3%. In 2017, the biggest percentage increase in energy consumption arose from air transport. 

Interestingly, in 2017, electricity consumption in the transport sector increased by 33% due to an increased number of electric vehicles on the road. Despite this, this sector still accounted for one-third of total UK carbon emissions in 2018.  

 electric vehicle charging

Year upon year, the level of primary electricity consumed from renewables has increased and the percentage of coal consumption has declined significantly, setting a positive trend for years to come.


Policy

Many aid organisations have recognised that to change the growing population rate, investing in women is pivotal. Today (Wednesday 11 July) is World Population Day and we will briefly discuss why changing the living conditions for women and girls is essential to preventing overpopulation.

Although population numbers have stabilised in many regions, recent data has indicated that the global population is set to rise to 10.9 bn people will exist on this earth by 2100.

Today, there are 1.2 bn Africans and, according to figures released by the UN, by 2021 there will be more than 4 bn, stressing the urgency to prioritise the population crisis. Making contraception easily available and improving comprehensive sexual education are key to reducing Africa’s population growth.

 Family photo of five sisters from Africa

Family photo of five sisters from Africa. Image: Sylvie Bouchard

Over 225 m women in developing countries have stressed their desire to delay or stop childbearing, but due to the lack of contraception, this has not been the result.

Family planning would prevent unsafe abortions, unintended pregnancies, which would, in turn, also prevent infant and maternal mortality. If there was a decrease in infant mortality as a result of better medical care, parents would be able to make more informed decisions about having more children. 

It is therefore pivotal that governments and organisations invest more money into projects that will strengthen the health services in these regions, and in women’s health and reproductive rights.

 Lessons on family planning

Lessons on family planning.

In Niger, there are an estimated 205 births per 1,000 women between the ages of 16 and 19 –  a rate that hasn’t changed since 1960. The number of births in Somalia, have increased from around 55 to 105 births per 1,000 women within the same age range in the same time period.

In Rwanda, figures from Rwanda Demographic and Health Survey illustrate an increase in the use of modern contraceptive methods among married women, but the unmet need for family planning remains a large issue, stagnating at 19% between 2010 and 2015. 

Rwanda’s leadership in creating platforms and programmes of action to progress sexual and reproductive health rights has resulted in a decrease in fertility rate, dropping from 6.1 children per women in 2005 to 4.2 in 2015.

 World map of the population growth rate

World map of the population growth rate. Image: Wikimedia Commons.

‘Every year, roughly 74 m women and girls in developing countries experience an unwanted pregnancy primarily because there is a lack of sex education and a lack of contraception. It’s also because women and girls aren’t given equal rights’" said Renate Bähr, Head of the German World Population Foundation (DSW).

With opportunities and access to education, women and girls would be able to understand their rights to voluntary family planning. If women’s access to reproductive education and healthcare services were prioritised, public health and population issues would improve.


Health & Wellbeing

In honour of World Chocolate Day on 7 July, we delve into the health benefits of chocolate. You can thank us later!

chocolate mousse gif

Originally posted by satisfeye

Chocolate – one of the most consumed foods in the world – contains flavonoids, an antioxidant compound present in cocoa pulp, which can cause negative effects on human vascular health. 

However, new studies have explored the benefits of adding nutritional oils to food products, and found that adding high oleic peanut oil can increase the bioactive property of dark chocolate, leading to significant health benefits!

 High oleic peanut oil

 peanut oil

Adding microcapsules of high oleic peanut oil reduces the lipid content of dark chocolate and influences the nutritional composition, thus increasing the content of unsaturated fatty acids in the lipid fraction of chocolate. 

Studies have demonstrated that by adding microcapsules to the chocolate mass, the fat content would not rise, which means dark chocolate containing microcapsules has a lower amount of free fat. Therefore, the use of microcapsules can act as an alternative to protecting the fatty acids.

 chocolate bar

Phenolic compounds

Natural antioxidants are highly valued because they are protective agents and highly sought out to replace synthetic ones in plant products. A broad range of plant foods including cocoa have been sources of phenolic compounds. 

Trans-resveratrol, a phenolic compound is frequently associated with prevention of cancer, ischemias, diabetes, inflammations and viral infections. During chocolate production, the content of phenolic compounds naturally present in cocoa beans becomes lost or reduced. Therefore, it is important to minimise the loss of phenolic compounds. 

 antioxidant graphic

Although, phenolic compounds are essential to obtaining good quality coca beans, they also have a potentially negative influence on flavour conferring to bitterness. Understanding the factors that influence the losses of phenolic compounds is important in obtaining the final product with the desirable sensory attributes.

There is considerable evidence that cocoa with high oleic peanut oil and cocoa with high content of phenolic compounds can provide powerful health benefits, especially against heart disease. 

Science & Innovation

Nowhere on earth has the power to inspire awe and wonder in the endless outcomes of evolution than a natural history museum. It’s a bold claim, but where else can you find over 500m years of biodiversity? 

In a good museum, vi